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Extended Abstract
Resources are numerical properties about the execution of a program, such as number

of resolution steps, execution time, energy consumption, number of calls to a particular

predicate, number of network accesses, number of transactions in a database, etc. The

goal of automatic static cost analysis is estimating the resource usage of the execution

of a program without running it, as a function of input data sizes and possibly other

(environmental) parameters. The significant body of work on static analysis for logic

programs has actually also been applied to the analysis of other programming paradigms,

including imperative programs. This is achieved via a transformation of the program into

Horn Clauses (Méndez-Lojo et al. 2007). In this work we concentrate on the analysis of

Horn Clause programs, independently of whether they are the result of a translation or

the actual program source.

Given a program P and a predicate p ∈ P of arity k and a set Π of k-tuples of actual

arguments to p, we refer to the standard cost of a call p(ē) (i.e., a call to p with actual

data ē ∈ Π), as the resource usage (under a given cost metric) of the complete execution

of p(ē). Thus, the standard cost is a per-call cost formalized as a function Cp : Π→ R∞,

where R∞ is the set of real numbers augmented with the special symbol∞ (which is used

to represent non-termination). Standard cost, and, in general, resource usage information,

is very useful for a number of applications, such as automatic program optimization,

verification of resource-related specifications, detection of performance bugs, or helping

developers make resource-related design decisions. In the latter case, the analysis has to

show which parts of the program are the most resource-consuming, i.e., which predicates

would bring the highest overall improvement if they were optimized, so that programming

efforts can be focused more productively. The standard cost information only partially

meets these objectives. For example, often predicates with the highest (standard) cost

are not the ones whose optimization is most profitable, since predicates which have lower

costs but which are called more often may be responsible for a larger part of the overall

resource usage. The input data sizes to such calls are also relevant. Thus, rather than

the global costs provided by standard cost analyses, what is really needed in many such
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applications is the results of a static profiling of the program that helps identify the parts

of a program responsible for highest fractions of the cost, or, more generally, how the

total resource usage of the execution of a program is distributed over selected parts of

it. By static profiling we mean the static inference of the kinds of information that are

usually obtained at run-time by profilers.

For this reason, herein we are more interested in what we refer to as accumulated cost.

To give an intuition of this concept, we first explain our notion of cost centers, which is

similar to the one we use in (Haemmerlé et al. 2016), and was inspired from (Sansom and

Jones 1995; Morgan and Jarvis 1998): they are user-defined program points (predicates,

in our case) to which execution costs are assigned during the execution of a program.

Data about computational events is accumulated by the cost center each time the cor-

responding program point is reached by the program execution control flow. Assume for

example that predicate p calls another predicate q (either directly or indirectly), and that

we declare that both predicates are cost centers. In this case, the cost of a (single) call

p(ē) accumulated in cost center q, denoted Cqp(ē), expresses how much of the standard

cost of p(ē) is attributed to q, and is the sum of the costs of the computations performed

“under the scope” of all the calls to q generated during the complete execution of p(ē).

We say that a computation is “under the scope” of a call to cost center q if the closest

ancestor of such computation in the call stack that is a cost center is q. The accumulated

cost is formalized as a function Cqp : Π→ R∞. We refer the reader to (Haemmerlé et al.

2016) for a formal definition of accumulated cost.1

The goal of static analysis is to infer approximations (i.e., abstractions) of the con-

crete functions Cqp and Cp (or, more precisely, of the extensions of such functions to the

powerset of Π) that represent the accumulated and standard cost respectively. In this

work we propose a novel, general, and flexible framework for setting up cost equation-

s/relations which can be instantiated for performing a wide range of static resource usage

analyses, including both accumulated cost and standard cost. Our starting point is the

well-developed technique of setting up recurrence relations representing resource usage

functions parameterized by input data sizes (Wegbreit 1975; Rosendahl 1989; Debray

et al. 1990; Debray and Lin 1993; Debray et al. 1997; Navas et al. 2007; Albert et al.

2011; Serrano et al. 2014), which are then solved to obtain (exact or safely approximated)

closed-forms of such functions (i.e., functions that provide upper or lower bounds on re-

source usage in general). In addition, recently many other approaches have been proposed

for resource analysis (Vasconcelos and Hammond 2003; Hoffmann et al. 2012; Grobauer

2001; Igarashi and Kobayashi 2002; Nielson et al. 2002; Giesl et al. 2012; Albert et al.

2011; Gulwani et al. 2009). While based on different techniques, all these analyses are

aimed at inferring the standard notion of cost. Please see (Haemmerlé et al. 2016) for

a further discussion of related work. Our proposal extends and generalizes the standard

resource analysis techniques that are based on setting up recurrence relations. This is

mainly achieved by introducing into the derived relations extra Boolean control variables

whose value is 0 or 1. A particular resource profile can be analyzed by assigning values

to the control variables, effectively switching on or off different terms in the relations.

The standard resource analysis is obtained by assigning 1 to all variables. We also define

1 In (Haemmerlé et al. 2016) we use the notation C
p
q(ē) instead of Cqp(ē).
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a concrete Boolean variable assignment that instantiates our framework so that it per-

forms static profiling of accumulated cost, similarly to (Haemmerlé et al. 2016), where

the results are also parameterized by input data sizes. However, the approach we present

in this work is quite different from our previous approach (Haemmerlé et al. 2016), which

was based on a program transformation. The main contributions of this work and the

differences and advantages over that work can be summarized as follows:
• We propose a novel, general, and flexible framework for setting up cost relations

which can be instantiated for performing a wide range of resource usage analyses.

Is more general than (Haemmerlé et al. 2016), which is limited to accumulated cost

analysis.
• Our new approach can deal with non-deterministic/multiple-solution predicates,

unlike (Haemmerlé et al. 2016). This is obviously a requirement for analyzing logic

programs and is also useful for dealing with certain aspects of imperative programs,

such as multiple dispatch; see (Méndez-Lojo et al. 2007). While our previous ap-

proach could conceivably be extended to deal with such programs, it would certainly

result in a more complicated and indirect solution.
• Our new approach and its implementation are based on a direct applica-

tion of abstract interpretation and integration into the Ciao preprocessor,

CiaoPP (Hermenegildo et al. 2005), rather than on a program transformation. As

a result, many useful CiaoPP features are inherited for free, such as multivariance

(being able to infer separate cost functions for different abstract call patterns for

the same predicate), communication with the other required analyses, integrated

treatment of special control features (such as, e.g., the cut), assertion-based verifica-

tion and user interaction, efficient fixpoint, etc. Also, for this integration we define

a novel abstract domain for resource analysis that keeps track of the environment.
• The integration also inherits the capability of CiaoPP’s analyzers of analyzing for

several resources at the same time. While it might be possible to define a new

transformation capable of keeping track of several resources, this would further

complicate the transformed program, and in any case requires additional work.
• Finally, as our experimental results show, our new approach is more efficient than

the transformation-based approach. This is not only due to its implementation as

a direct abstract interpretation, but also to the inclusion and use of reachability

information, performed automatically by the abstract interpretation framework.
Finally, we argue that our approach is quite general, and it can be easily applied to

other paradigms, including imperative programs, functional programs, CHR, etc., using

the strategy based on compilation to Horn Clauses, as in our previous work with Java or

XC.
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Giesl, J., Ströder, T., Schneider-Kamp, P., Emmes, F., and Fuhs, C. 2012. Symbolic
evaluation graphs and term rewriting: a general methodology for analyzing logic programs.
In Proceedings of PPDP’12. ACM, 1–12.

Grobauer, B. 2001. Cost recurrences for DML programs. In Proceedings of ICFP ’01. ACM,
New York, NY, USA, 253–264.

Gulwani, S., Mehra, K. K., and Chilimbi, T. M. 2009. SPEED: Precise and Efficient Static
Estimation of Program Computational Complexity. In The 36th Symposium on Principles of
Programming Languages (POPL’09). ACM, 127–139.
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