
A RECURSION-THEORETIC CHARACTERISATION OF THE

POSITIVE POLYNOMIAL-TIME FUNCTIONS

ANUPAM DAS1 AND ISABEL OITAVEM2

Introduction

Monotone functions abound in the theory of computation, e.g. sorting a string,
and detecting cliques in graphs. They have been comprehensively studied in the
setting of circuit complexity, via ¬-free circuits (usually called ‘monotone circuits’),
cf. [Kor03]. Indeed several seminal results in circuit complexity concern bounds on
the size of ¬-free circuits, e.g. [Raz85, AB87, Tar88].

The study of ‘uniform’ monotone computation is a much less developed subject.
Grigni and Sipser began a line of work studying the effect of restricting ‘negation’
in computational models [GS92, Gri91]. One shortfall of their work was that de-
terministic classes lacked a bona fide treatment, with positive models only natively
defined for nondeterminstic classes. This means that positive versions of, say, P
must rather be obtained via indirect characterisations, e.g. as ALOGSPACE.

Later work by Lautemann, Schwentick and Stewart solved this problem by
proposing a model of deterministic computation whose polynomial-time predicates
coincide with several characterisations of P once ‘negative’ operations are omitted
[LSS96, LSS98]. This induces a robust definition of a class ‘posP’, the positive
polynomial-time predicates [GS92, Gri91].

Here we extend this line of work to associated function classes, which are of
natural interest for logical approaches to computational complexity, e.g. [Bus86,
CN10] (see, e.g., [CK02]). Noting that several of the characterisations proposed
by [LSS96] make sense for function classes (and, indeed, coincide), we propose
a function algebra for the ‘positive polynomial-time functions’ on binary words
(posFP) based on Cobham’s bounded recursion on notation [Cob65]. We show that
this algebra indeed coincides with certain characterisations proposed in [LSS96].

This work is based on the submitted preprint [DO18].

Monotone functions and positive computation

We consider binary strings (or ‘words’), i.e. elements of {0, 1}∗ =
⋃

n∈N
{0, 1}n,

and for x ∈ {0, 1}n we write x(j) for the jth bit of x, where j = 0, . . . , n − 1. We
follow the usual convention that bits are indexed from right (‘least significant’) to
left (‘most significant’), e.g. as in [CK02]; for instance the word 011 has 0th bit

1University of Copenhagen
2CMA and DM, FCT, Universidade Nova de Lisboa
1This work has been supported by a Marie Sk lodowska-Curie fellowship, Monotonicity in Logic

and Complexity, ERC project 753431.
2This work is partially supported by the Portuguese Science Foundation, FCT, through the

projects UID/MAT/00297/2013 and PTDC/MHC-FIL/2583/2014.

1



2 A CHARACTERISATION OF POSITIVE POLYNOMIAL-TIME FUNCTIONS

1, 1st bit 1 and 2nd bit 0. We write ε, s0, s1 for the usual generators of {0, 1}∗,
with ε denoting the empty string, s0x = x0 and s1x = x1. We also write 1n for 1
concatenated with itself n times, for n ∈ N.

We consider functions of type {0, 1}∗ × · · · × {0, 1}∗ → {0, 1}∗. For n ∈ N, we
define ≤n as the n-wise product order of ≤ on {0, 1}, i.e. for x, y ∈ {0, 1}n we have
x ≤n y if ∀j < n. x(j) ≤ y(j). The partial order ≤ on {0, 1}∗ is the union of all ≤n,
for n ∈ N. A function f : ({0, 1}∗)k → {0, 1}∗ is monotone if x1 ≤ y1, . . . , xk ≤ yk
=⇒ f(~x) ≤ f(~y). One particular feature of monotone functions, independent of
any machine model, is that they are rather oblivious: the length of the output
depends only on the length of the inputs:

Observation 1. Let f(x1, . . . , xk) be a monotone function. Then, whenever |x1| =
|y1|, . . . , |xk| = |yk|, also |f(~x)| = |f(~y)|.

Uniform families of ¬-free circuits

One way to define a positive variant of FP is to consider ¬-free circuits that are
in some sense uniform. [LSS96, LSS98] followed this approach too for P, showing
that one of the strongest levels of uniformity (P) and one of the weakest levels
(‘quantifier-free’) needed to characterise P indeed yield the same class of languages
when describing ¬-free circuits. We consider ∆0-uniformity rather than quantifier-
free uniformity in [LSS96, LSS98] since it is easier to present and suffices for our
purposes. (We point out that this subsumes, say, L-uniformity.)

Recall that a ∆0 formula is a first-order formula over {0, 1,+,×, <} where all
quantifiers of the form ∃x < t or ∀x < t for a term t. A ∆0-formula ϕ(n1, . . . , nk)
is interpreted over N in the usual way, computing the set {~n ∈ Nk : N � ϕ(~n)}.

Definition 2 (Positive circuits). A family of k-argument ¬-free circuits is a set
{C(~n)}~n∈Nk , where each C(~n) is a circuit with arbitrary fan-in

∨
and

∧
gates,1

given as a tuple (N,D,E, I1, . . . , Ik, O), where [N ] = {n < N} is the set of gates,
D ⊆ [N ] is the set of

∨
gates (remaining gates are assumed to be

∧
), E ⊆ [N ]× [N ]

is the set of (directed) edges (requiring E(m,n) =⇒ m < n), Ij ⊆ [nj ] × [N ]
contains just pairs (l, n) s.t. the lth bit of the jth input is connected to the gate n,
and O ⊆ [N ] is the (ordered) set of output gates.

If these sets are polynomial-time computable from inputs (1n1 , . . . , 1nk) then we
say the circuit family is P-uniform. Similarly, we say the family is ∆0-uniform
if N(~n) is a term (i.e. a polynomial) in ~n and there are ∆0-formulae D(n,~n),
E(m,n,~n), Ij(l, n, ~n), O(n,~n) computing the associated sets.

Notice that, importantly, we restrict the set O of output gates to depend only on
the length of the inputs, not their individual bit-values; this is pertinent thanks to
Obs. 1. Also, when it is convenient, we may construe Ij as a function [nj ]→ P([N ]),
by Currying.

Positive Turing machines

Now we introduce a machine model for positive computation. The definition of a
multitape machine below is essentially from [Pap07]. The monotonicity criterion is
identical to that from [LSS96, LSS98], though we also allow auxiliary ‘work’ tapes
so that the model is easier to manipulate. This also means that we do not need

1Note that a
∨

gate with zero inputs outputs 0, while a
∧

gate with zero inputs outputs 1.



A CHARACTERISATION OF POSITIVE POLYNOMIAL-TIME FUNCTIONS 3

explicit accepting and rejecting states with the further monotonicity requirements
from [LSS96, LSS98], since this is subsumed by the monotonicity requirement on
writing 0s and 1s: predicates can be computed in the usual way by Boolean valued
functions, with 0 indicating ‘reject’ and 1 indicating ‘accept’.

Definition 3 (Positive machines). A k-tape (deterministic) Turing machine (TM)
is a tuple M = (Q,Σ, δ, s, h) such that:

• Q is a finite set of (non-final) states.
• Σ ⊇ {.,�, 0, 1} is a finite set, called the alphabet.
• δ : Q × Σk → (Q ∪ {h}) × (Σ × {←,−,→})k such that, whenever
δ(q, σ1, . . . , σk) = (q, τ1, d1, . . . , τk, dk), if σi = . then τi = . and di = →.
• s ∈ Q is the initial state.
• Q and Σ are disjoint, and neither contains the symbols h,←,−,→.

We call h the final state, . the ‘beginning of tape marker’, � the ‘blank’ symbol,
and ←,−,→ are the directions ‘left’, ‘stay’ and ‘right’.

Now, write I = Q × Σk and O = (Q ∪ {h}) × (Σ × {←,−,→})k, so that δ is a
function I → O. We define partial orders ≤I and ≤O on I and O resp. as follows:

• (q, σ1, . . . , σk) ≤I (q′, σ′1, . . . , σ
′
k) if q = q′ and, for i = 1, . . . , k, either σi =

σ′i, or both σi = 0 and σ′i = 1.
• (q, σ1, d1, . . . , σk, dk) ≤O (q′, σ′1, d

′
1, . . . , σ

′
k, d
′
k) if q = q′ and, for i = 1, . . . , k,

we have di = d′i and either σi = σ′i, or both σi = 0 and σ′i = 1.

We say that M is positive (a PTM) if δ : I → O is monotone with respect to ≤I
and ≤O, i.e. I ≤I I ′ =⇒ δ(I) ≤O δ(I ′).

A run of input strings x1, . . . , xk ∈ {0, 1}∗ on M is defined in the usual way
(see, e.g., [Pap07]), beginning from the initial state s and initialising the ith tape to
.xi�∞, for i = 1, . . . , k. If M halts, i.e. reaches the state h, its output is whatever
is printed on the kth tape at that moment, up to the first � symbol.

We say that a function f : ({0, 1}∗)k → {0, 1}∗ is computable by a PTM if there
is a k′-tape PTM M , with k′ ≥ k, such that M halts on every input and, for inputs
(x1, . . . , xk, ε, . . . , ε), outputs f(x1, . . . , xk).

The monotonicity condition on the transition function above means that the
value of a Boolean read does not affect the next state or cursor movements (this
reflects the ‘obliviousness’ of monotone functions, cf. Prop. 1). Moreover, it may
only affect the Boolean symbols printed: the machine may read 0 and print 0 but
read 1 and print 1, in otherwise-the-same situation. However, if in one situation it
prints a non-Boolean σ when reading a Boolean i, it also prints σ when reading ¬i.

A uniform version of Cobham’s algebra for FP

We present a function algebra for positive feasible computation by considering
‘uniform’ versions of recursion operators. We write [F ;O] for the function class
generated by a set of initial functions F and a set of operations O, and generally
follow conventions and notations from [CK02].

Let us first recall Cobham’s function algebra for the polynomial-time func-
tions, FP. This algebra was originally formulated over natural numbers, though
the version over binary words here is essentially as in [Fer90] and [Oit97]. Define
πk
j (x1, . . . , xk) := xj and x#y := 1|x||y|. We also write comp for the operation of

function composition.



4 A CHARACTERISATION OF POSITIVE POLYNOMIAL-TIME FUNCTIONS

Definition 4. A function f(x, ~x) is defined by bounded recursion on notation
(BRN) from g, h0, h1, k if |f(x, ~x)| ≤ |k(x, ~x)| for all x, ~x and:

(1)
f(ε, ~x) = g(~x)

f(s0x, ~x) = h0(x, ~x, f(x, ~x))
f(s1x, ~x) = h1(x, ~x, f(x, ~x))

We write C for the function algebra [ε, s0, s1, π
k
j ,#; comp,BRN].

Theorem 5 ([Cob65]). C = FP.

Notice that ε, s0, s1, π
k
j ,# are monotone, and the composition of two monotone

functions is again monotone. However, non-monotone functions are definable using
BRN, for instance:

(2)
cond(ε, yε, y0, y1) = yε

cond(s0x, yε, y0, y1) = y0
cond(s1x, yε, y0, y1) = y1

This ‘conditional’ function is definable since we do not force any connection be-
tween h0 and h1 in (1). Insisting on h0 ≤ h1 would retain monotonicity, but this
condition is external and not generally checkable. Instead, we can impose mono-
tonicity implicitly by somewhat ‘uniformising’ BRN. First, we will need to recover
certain monotone variants of the conditional:

Definition 6 (Meets and joins). We define x ∧ y = z by |z| = min(|x|, |y|) and
z(j) = min(x(j), y(j)), for j < min(|x|, |y|). We define analogously x ∨ y = z by
|z| = max(|x|, |y|) and z(j) = max(x(j), y(j)), for j < min(|x|, |y|)

Definition 7 (The function algebra uC). We say that a function is defined by
uniform bounded recursion on notation (uBRN) from g, h, k if |f(x, ~x)| ≤ |k(x, ~x)|
for all x, ~x and:

(3)
f(ε, ~x) = g(~x)

f(s0x, ~x) = h(0, x, ~x, f(x, ~x))
f(s1x, ~x) = h(1, x, ~x, f(x, ~x))

We define uC to be the function algebra [ε, s0, s1, π
k
j ,#,∧,∨; comp, uBRN].

Notice that ∧ and ∨ are clearly FP functions, therefore they are in C. More-
over, notice that (uBRN) is the special case of (1) when hi(x, ~x, y) has the form
h(i, x, ~x, y). So, we have that uC ⊆ C = FP.

Main results

Our main result is that all the previously introduced models of computation
coincide, in terms of the polynomial-time 0-1 functions they compute:

Theorem 8. The following function classes are equivalent:

(1) Functions on {0, 1}∗ computable by ∆0-uniform families of ¬-free circuits.
(2) Functions on {0, 1}∗ computable by multitape PTMs in polynomial time.
(3) Functions on {0, 1}∗ definable in uC.
(4) Functions on {0, 1}∗ computable by P-uniform families of ¬-free circuits.



A CHARACTERISATION OF POSITIVE POLYNOMIAL-TIME FUNCTIONS 5

This result is similar to analogous ones found in [LSS96] for positive versions
of the predicate class P. The proof, which can be found in [DO18], uses mostly
standard techniques, adapted to the monotone setting. Notice that the equivalence
of models thus holds for any level of uniformity between ∆0 and P, e.g. for L-
uniform ¬-free circuits.

Finally, the robustness of the class induced by Thm. 8 above allows us to recover
a natural notion of ‘positive polynomial-time function’:

Definition 9 (Positive FP). We define the function class posFP as the set of
functions on {0, 1}∗ computed by any of the equivalent models from Thm. 8.

In [DO18] we furthermore give a function algebra based on safe recursion, in the
style of Bellantoni and Cook [BC92], yielding an entirely implicit characterisation of
posFP, mentioning neither explicit bounds nor explicit monotonicity constraints.
As far as we know, this is the first implicit approach to monotone computation.

References

[AB87] Noga Alon and Ravi B Boppana. The monotone circuit complexity of boolean functions.
Combinatorica, 7(1):1–22, 1987.

[BC92] Stephen Bellantoni and Stephen A. Cook. A new recursion-theoretic characterization of

the polytime functions. Computational Complexity, 2:97–110, 1992.
[Bus86] Samuel R. Buss. Bounded arithmetic, volume 1 of Studies in Proof Theory. Bibliopolis,

Naples, 1986.
[CK02] Peter Clote and Evangelos Kranakis. Boolean Functions and Computation Models. Texts

in Theoretical Computer Science. An EATCS Series. Springer, 2002.

[CN10] Stephen Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. Cambridge
University Press, New York, NY, USA, 1st edition, 2010.

[Cob65] A. Cobham. The intrinsic computational difficulty of functions. In Proc. of the Inter-

national Congress for Logic, Methodology, and the Philosophy of Science, pages 24–30.
Amsterdam, 1965.

[DO18] A. Das and I. Oitavem. A recursion-theoretic characterisation of the positive polynomial-

time functions, 2018. Submitted. http://www.anupamdas.com/wp/pos-fp/.
[Fer90] Fernando Ferreira. Polynomial time computable arithmetic. In Contemporary Mathemat-

ics, volume 106, pages 137–156. AMS, 1990.

[Gri91] Michelangelo Grigni. Structure in monotone complexity. PhD thesis, 1991.
[GS92] Michelangelo Grigni and Michael Sipser. Monotone complexity. In London Mathemat-

ical Society Symposium on Boolean Function Complexity, New York, NY, USA, 1992.
Cambridge University Press.

[Kor03] A D Korshunov. Monotone boolean functions. Russian Mathematical Surveys, 58(5),
2003.

[LSS96] Clemens Lautemann, Thomas Schwentick, and Iain A. Stewart. On positive P. In IEEE
Conference on Computational Complexity ’96, 1996.

[LSS98] Clemens Lautemann, Thomas Schwentick, and Iain A. Stewart. Positive versions of poly-
nomial time. Inf. Comput., 147(2):145–170, 1998.

[Oit97] Isabel Oitavem. New recursive characterizations of the elementary functions and the
functions computable in polynomial space. Revista Matematica de la Universidad Com-
plutense de Madrid, 10(1):109–125, 1997.

[Pap07] Christos H. Papadimitriou. Computational complexity. Academic Internet Publ., 2007.

[Raz85] A. A. Razborov. Lower bounds on the monotone complexity of some Boolean functions.
Doklady Akademii Nauk SSSR, 285, 1985.

[Tar88] E. Tardos. The gap between monotone and non-monotone circuit complexity is exponen-
tial. Combinatorica, 8(1):141–142, 1988.

http://www.anupamdas.com/wp/pos-fp/

	Introduction
	Monotone functions and positive computation
	Uniform families of -free circuits
	Positive Turing machines
	A uniform version of Cobham's algebra for FP
	Main results
	References

