
Submitted to:
LINEARITY 2018

c© J. Jiang & H. Eades III & V. de Paiva
This work is licensed under the
Creative Commons Attribution License.

On the Lambek Calculus with an Exchange Modality

Jiaming Jiang
Computer Science

North Carolina State University
Raleigh, North Carolina, USA
jjiang13@ncsu.edu

Harley Eades III
Computer Science
Augusta University

Augusta, Georgia, USA
harley.eades@gmail.com

Valeria de Paiva
Nuance Communications

Sunnyvale, California, USA
valeria.depaiva@gmail.com

In this paper we introduce Commutative/Non-Commutative Logic (CNC logic) and two categorical
models for CNC logic. This work abstracts Benton’s Linear/Non-Linear Logic [4] by removing the
existence of the exchange structural rule. One should view this logic as composed of two logics;
one sitting to the left of the other. On the left, there is intuitionistic linear logic, and on the right is
a mixed commutative/non-commutative formalization of the Lambek calculus. Then both of these
logics are connected via a pair of monoidal adjoint functors. An exchange modality is then derivable
within the logic using the adjunction between both sides. Thus, the adjoint functors allow one to pull
the exchange structural rule from the left side to the right side. We then give a categorical model in
terms of a monoidal adjunction, and then a concrete model in terms of dialectica Lambek spaces.

1 Introduction

Joachim Lambek first introduced the Syntactic Calculus, now known as the Lambek Calculus, in 1958
[13]. Since then the Lambek Calculus has largely been motivated by providing an explanation of the
mathematics of sentence structure, and can be found at the core of Categorial Grammar; a term first used
in the title of Bar-Hillel, Gaifman and Shamir (1960), but categorical grammar began with Ajdukiewicz
(1935) quite a few years earlier. At the end of the eighties the Lambek calculus and other systems of
categorial grammars were taken up by computational linguists as exemplified by [16, 15, 2, 10].

It was computational linguists who posed the question of whether it is possible to isolate exchange
using a modality in the same way that the of-course modality of linear logic, !A, isolates weakening
and contraction. de Paiva and Eades [8] propose one solution to this problem by extending the Lambek
calculus with the modality characterized by the following sequent calculus inference rules:

κΓ ` B

κΓ ` κB
Er

Γ1,A,Γ2 ` B

Γ1, κA,Γ2 ` B
El

Γ1, κA,B,Γ2 ` C

Γ1,B, κA,Γ2 ` C
E1

Γ1,A, κB,Γ2 ` C

Γ1, κB,A,Γ2 ` C
E2

The thing to note is that the modality κA appears on only one of the operands being exchanged. That is,
these rules along with those for the tensor product allow one to prove that κA⊗B( B⊗ κA holds. This
is somewhat at odds with algebraic intuition, and it is unclear how this modality could be decomposed
into adjoint functors in a linear/non-linear (LNL) formalization of the Lambek calculus.

In this paper we show how to add an exchange modality, eA, where the modality now occurs on both
operands being exchanged. That is, one can show that eA⊗ eB( eB⊗ eA holds. We give a LNL natural
deduction formalization for the Lambek calculus with this new modality, and two categorical models:
a LNL model and a concrete model in dialectica spaces. Thus giving a second solution to the problem
proposed above.

The Lambek Calculus also has the potential for many applications in other areas of computer science,
such as, modeling processes. Linear Logic has been at the forefront of the study of process calculi for
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many years [11, 17, 1]. We can think of the commutative tensor product of linear logic as a parallel
operator. For example, given a process A and a process B, then we can form the process A⊗B which runs
both processes in parallel. If we remove commutativity from the tensor product we obtain a sequential
composition instead of parallel composition. That is, the process AB B first runs process A and then
process B in that order. Vaughan Pratt has stated that , “sequential composition has no evident counterpart
in type theory” see page 11 of [17]. We believe that the Lambek Calculus will lead to filling this hole.

Acknowledgments. The first two authors were supported by NSF award #1565557. We thank the
anonymous reviewers for their helpful feedback that made this a better paper.

2 An Adjoint Formalization of the Lambek Calculus

We now introduce Commutative/Non-commutative (CNC) logic in the form of a term assignment. One
should view this logic as composed of two logics; one sitting to the left of the other. On the left, there is
intuitionistic linear logic, denoted by C, and on the right is the Lambek calculus denoted by L. Then we
connect these two systems by a pair of monoidal adjoint functors C : F aG :L. Keeping this intuition in
mind we now define the syntax for CNC logic.

Definition 1. The following grammar describes the syntax of CNC logic:
(C-Types) W,X,Y ,Z ::= Unit | X⊗Y | X( Y | GA
(L-Types) A,B,C,D ::= Unit | A .B | A ⇀ B | B ↼ A | FX
(C-Terms) t ::= x | triv | t1⊗ t2 | let t1 : X beq in t2 | λx : X.t | t1t2 | ex t1, t2 withx1,x2 in t3 | Gs
(L-Terms) s ::= x | triv | s1 . s2 | lets1 : Abep ins2 | let t : X beq ins | λlx : A.s | λrx : A.s

| appl s1 s2 | appr s1 s2 | Ft
(C-Patterns) q ::= triv | x | q1⊗q2 | Gp
(L-Patterns) p ::= triv | x | p1 .p2 | Fq
(C-Contexts) Φ,Ψ ::= · | x : X | Φ,Ψ
(L-Contexts) Γ,∆ ::= · | x : A | x : X | Γ;∆
(C-Typing Judgment) Φ `C t : X
(L-Typing Judgment) Γ `L s : A

The syntax for C-types are the standard types for intuitionistic linear logic. We have a constant Unit,
tensor product X ⊗Y , and linear implication X ( Y , but just as in LNL logic we also have a type GA
where A is an L-type; that is, a type from the non-commutative side corresponding to the right-adjoint
functor between L and C. This functor can be used to import types and terms from the non-commutative
side into the commutative side. Now C-typing judgments are denoted by Ψ `C t : X where Ψ is a sequence
of pairs of variables and their types, denoted by x : X, t is a C-term, and X is a C-type. The C-terms are
all standard, but Gs corresponds to the morphism part of the right-adjoint of the adjunction between both
logics, and ex t1, t2 withx1,x2 in t3 is the introduction form for the structural rule exchange.

The non-commutative side is a bit more interesting than the commutative side just introduced. The
L-typing judgment has the form Γ `L s : A where Γ is now aL-context, denoted by Γ or ∆. These contexts
are ordered sequences of pairs of free variables with their types from both sides denoted by x : B and x : X
respectively. Finally, the term s is a L-term, and A is a L-type. Given two typing contexts Γ and ∆ we
denote their concatenation by Γ;∆; we use a semicolon here to emphasize the fact that the contexts are
ordered.

The context consisting of hypotheses from both sides goes back to Benton [4] and is a property
unique to adjoint logics such as Benton’s LNL logic and CNC logic. This is also a very useful property
because it allows one to make use of both sides within the Lambek calculus without the need to annotate
every formula with a modality.
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x : X `C x : X
C-id

· `C triv : Unit
C-UnitI

Φ `C t1 : Unit Ψ `C t2 : Y

Φ,Ψ `C let t1 : Unitbetriv in t2 : Y
C-UnitE

Φ `C t1 : X Ψ `C t2 : Y

Φ,Ψ `C t1 ⊗ t2 : X⊗Y
C-⊗I

Φ `C t1 : X⊗Y Ψ1,x : X,y : Y ,Ψ2 `C t2 : Z

Ψ1,Φ,Ψ2 `C let t1 : X⊗Y bex⊗ y in t2 : Z
C-⊗E

Φ,x : X `C t : Y

Φ `C λx : X.t : X( Y
C-(I

Φ `C t1 : X( Y Ψ `C t2 : X

Φ,Ψ `C t1t2 : Y
C-(E

Φ `L s : A

Φ `C Gs : GA
C-GI

Φ,x : X,y : Y ,Ψ `C t : Z

Φ,z : Y ,w : X,Ψ `C exw,zwithx,y in t : Z
C-ex

Φ `C t1 : X Ψ1,x : X,Ψ2 `C t2 : Y

Ψ1,Φ,Ψ2 `C [t1/x]t2 : Y
C-Cut

x : A `L x : A
L-id

· `L triv : Unit
L-UnitI

Γ `L s1 : Unit ∆ `L s2 : A

Γ;∆ `L lets1 : Unitbetriv ins2 : A
L-UnitE

Φ `C t : Unit Γ `L s : A

Φ;Γ `L let t : Unitbetriv ins : A
LC-UnitE

Γ `L s1 : A ∆ `L s2 : B

Γ;∆ `L s1 . s2 : A .B
L-⊗I

Γ `L s1 : A .B ∆1;x : A;y : B;∆2 `L s2 : C

∆1;Γ;∆2 `L lets1 : A .Bbex . y ins2 : C
L-⊗E

Φ `C t : X⊗Y Γ1;x : X;y : Y;Γ2 `L s : A

Γ1;Φ;Γ2 `L let t : X⊗Y bex⊗ y ins : A
LC-⊗E

Γ;x : A `L s : B

Γ `L λrx : A.s : A ⇀ B
L- ⇀I

Γ `L s1 : A ⇀ B ∆ `L s2 : A

Γ;∆ `L appr s1 s2 : B
L- ⇀E

x : A;Γ `L s : B

Γ `L λlx : A.s : B ↼ A
L- ↼I

Γ `L s1 : B ↼ A ∆ `L s2 : A

∆;Γ `L appl s1 s2 : B
L- ↼E

Φ `C t : X

Φ `L Ft : FX
L-FI

Γ `L s1 : FX ∆1;x : X;∆2 `L s2 : A

∆1;Γ;∆2 `L lets1 : FX beFx ins2 : A
L-FE

Φ `C t : GA

Φ `L derelict t : A
L-GE

Γ;x : X;y : Y;∆ `L s : A

Γ;z : Y;w : X;∆ `L exw,zwithx,y ins : A
L-ex

Γ `L s1 : A ∆1;x : A;∆2 `L s2 : B

∆1;Γ;∆2 `L [s1/x]s2 : B
L-Cut

Φ `C t : X Γ1;x : X;Γ2 `L s : A

Γ1;Φ;Γ1 `L [t/x]s : A
LC-Cut

Figure 1: Typing Rules for CNC Logic

The reader familiar with LNL logic will notice that our typing judgment, Γ `L s : A, differs from
Benton’s. His is of the form Γ;∆ ` t : A, where Γ contains non-linear formulas, and ∆ contains linear
formulas. Just as Benton remarks, the splitting of his contexts was a presentational device. One should
view his contexts as merged, and hence, linear formulas were fully mixed with non-linear formulas. Now
why did we not use this presentational device? Because, when contexts from LNL logic become out of
order Benton could use the exchange rule to put them back in order again, but we no longer have general
exchange. Thus, we are not able to keep the context organized in this way.

The syntax for L-types are of the typical form for the Lambek Calculus. We have an unit type Unit,
a non-commutative tensor product A .B, right implication A ⇀ B, and left implication B ↼ A. L-terms
correspond to introduction and elimination forms for each of the previous types. For example, s1 . s2
introduces a tensor, and lets1 : A .Bbex . y ins2 eliminates a tensor.

The typing rules for CNC logic can be found in Figure 1. We split the figure in two: the top of
the figure are the rules of intuitionistic linear logic whose judgment is the C-typing judgment denoted by
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Ψ `C t : X, and the bottom of the figure are the rules for the mixed commutative/non-commutative Lambek
calculus whose judgment is the L-judgment denoted by Γ `L s : A, but the two halves are connected via
the functor rules C-GI , L-GE , L-FI , and L-FE . Just as in LNL logic, the fact that the context Γ on the
L side of the logic is mixed results in this side having additional elimination rules, because the type
being eliminated is constructed on the C side of the logic; for example, the rules LC-UnitE , LC-⊗E , and
LC-Cut are additional mixed rules.

The one step β-reduction rules are listed in Figure 2. Similarly to the typing rules, the figure is split
in two: the top lists the rules of the intuitionistic linear logic, and the bottom are those of the mixed
commutative/non-commutative Lambek calculus.

let triv : Unitbetriv in t {β t let t1 ⊗ t2 : X⊗Y bex⊗ y in t3 {β [t1/x][t2/y]t3 (λx : X.t1)t2 {β [t2/x]t1

let triv : Unitbetriv ins {β s let t1 ⊗ t2 : X⊗Y bex . y ins {β [t1/x][t2/y]s

lets1 . s2 : A .Bbex . y ins3 {β [s1/x][s2/y]s3 letFt : FX beFx ins {β [t/x]s appl (λlx : A.s1)s2 {β [s2/x]s1

appr (λrx : A.s1)s2 {β [s2/x]s1 derelict (Gs) {β s

Figure 2: β-reductions for CNC Logic

The commuting conversions can be found in Figures 3-5. We divide the rules into three parts due
to the length. The first part, Figure 3, includes the rules for the intuitionistic linear logic. The second,
Figure 4, includes the rules for the commutative/non-commutative Lambek calculus. The third, Figure 5,
includes the mixed rules LC-UnitE and LC-⊗E .

let (let t2 : Unitbetriv in t1) : Unitbetriv in t3 {c let t2 : Unitbetriv in (let t1 : Unitbetriv in t3)

let (let t2 : Unitbetriv in t1) : X⊗Y bex⊗ y in t3 {c let t2 : Unitbetriv in (let t1 : X⊗Y bex⊗ y in t3)

(let t2 : Unitbetriv in t1)t3 {c let t2 : Unitbetriv in (t1t3)

let (let t2 : X⊗Y bex⊗ y in t1) : Unitbetriv in t3 {c let t2 : X⊗Y bex⊗ y in (let t1 : Unitbetriv in t3)

let (let t2 : X2 ⊗Y2 bex⊗ y in t1) : X1 ⊗Y1 bew⊗ z in t3 {c let t2 : X2 ⊗Y2 bex⊗ y in (let t1 : X1 ⊗Y1 bew⊗ z in t3)

(let t2 : X2 ⊗Y2 bex⊗ y in t1)t3 {c let t2 : X2 ⊗Y2 bex⊗ y in (t1t3) let (t1t2) : Unitbetriv in t3 {c t1(let t2 : Unitbetriv in t3)

Figure 3: Commuting Conversions: Intuitionistic Linear Logic

Additional Results. The following subsection shows the reduction rules for CNC Logic. In addition
to the results given in this paper we also have defined a sequent calculus for CNC logic, proved cut
elimination, and proved the the sequent calculus formalization is equivalent to the natural deduction
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let (lets2 : Unitbetriv ins1) : Unitbetriv ins3 {c lets2 : Unitbetriv in (lets1 : Unitbetriv ins3)

appr (lets2 : Unitbetriv ins1)s3 {c lets2 : Unitbetriv in (appr s1 s3)

let (lets2 : Unitbetriv ins1) : FX beFx ins3 {c lets2 : Unitbetriv in (lets1 : FX beFx ins3)

let (lets2 : A .Bbex . y ins1) : Unitbetriv ins3 {c lets2 : A .Bbex . y in (lets1 : Unitbetriv ins3)

let (lets2 : A2 .B2 bex . y ins1) : A1 .B1 bew . z ins3 {c lets2 : A2 .B2 bex . y in (lets1 : A1 .B1 bew . z ins3)

appr (lets2 : A2 .B2 bex . y ins1)s3 {c lets2 : A2 .B2 bex . y in (appr s1 s3)

appl (lets2 : A2 .B2 bex . y ins1)s3 {c lets2 : A2 .B2 bex . y in (appl s1 s3)

let (lets2 : A .Bbex . y ins1) : FX beFz ins3 {c lets2 : A .Bbex . y in (lets1 : FX beFz ins3)

let (lets2 : FX beFx ins1) : Unitbetriv ins3 {c lets2 : FX beFx in (lets1 : Unitbetriv ins2)

let (lets2 : FX beFx ins1) : A .Bbex . y ins3 {c lets2 : FX beFx in (lets1 : A .Bbex . y ins3)

appr (lets2 : FX beFx ins1)s3 {c lets2 : FX beFx in (appr s1 s3)

appl (lets2 : FX beFx ins1)s3 {c lets2 : FX beFx in (appl s1 s3)

let (lets2 : FX beFx ins1) : FY beFy ins3 {c lets2 : FX beFx in (lets1 : FY beFy ins3)

Figure 4: Commuting Conversions: Commutative/Non-commutative Lambek Calculus

formalization given here. Furthermore, we proved strong normalization of CNC logic via a translation
to LNL logic. We omit these results due to space.

3 Adjoint Model

In this section we introduce Lambek Adjoint Models (LAMs). Benton’s LNL model consists of a
symmetric monoidal adjunction F : C a L : G between a cartesian closed category C and a symmet-
ric monoidal closed category L. LAM consists of a monoidal adjunction between a symmetric monoidal
closed category and a Lambek category.

Definition 2. A Lambek category is a monoidal category (L, ., I′,α′,λ′,ρ′) with two functors −⇀ − :
Lop×L //L and −↼ − :L×Lop //L such that the following two natural bijections hold:

HomL(A .B,C) � HomL(A,B⇀C) HomL(A .B,C) � HomL(B,C ↼ A)

Definition 3. A Lambek Adjoint Model (LAM), (C,L,F,G,η,ε), consists of
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let (let t : Unitbetriv ins1) : Unitbetriv ins2 {c let t : Unitbetriv in (lets1 : Unitbetriv ins2)

appr (let t : Unitbetriv ins1)s2 {c let t : Unitbetriv in (appr s1 s2)

let (let t : Unitbetriv ins1) : FX beFx ins2 {c let t : Unitbetriv in (lets1 : FX beFx ins2)

let (let t : X⊗Y bex⊗ y ins1) : Unitbetriv ins2 {c let t : X⊗Y bex⊗ y in (lets1 : Unitbetriv ins2)

let (let t : X⊗Y bex⊗ y ins1) : A1 .B1 bew . z ins2 {c let t : X⊗Y bex⊗ y in (lets1 : A1 .B1 bew . z ins2)

appr (let t : X⊗Y bex⊗ y ins1)s2 {c let t : X⊗Y bex⊗ y in (appr s1 s2)

appl (let t : X⊗Y bex⊗ y ins1)s2 {c let t : X⊗Y bex⊗ y in (appl s1 s2)

let (let t : X⊗Y bex⊗ y ins1) : FZ beFz ins3 {c let t : X⊗Y bex⊗ y in (lets1 : FZ beFz ins3)

Figure 5: Commuting Conversions: Mixed Rules

• a symmetric monoidal closed category (C,⊗, I,α,λ,ρ);

• a Lambek category (L, ., I′,α′,λ′,ρ′);

• a monoidal adjunction F : C a L : G with unit η : IdC → GF and counit ε : FG → IdL, where
(F : C→L,m) and (G :L→C,n) are monoidal functors.

Following the tradition, we use letters X, Y , Z for objects in C and A, B, C for objects in L. The rest of
this section proves essential properties of any LAM.

An isomorphism. Let (C,L,F,G,η,ε) be a LAM, where (F,m) and (G,n) are monoidal functors.
Similarly as in Benton’s LNL model, mX,Y : FX .FY //F(X ⊗Y) are components of a natural isomor-
phism, and mI : I′ //FI is an isomorphism. This is essential for modeling certain rules of CNC logic,
such as tensor elimination in natural deduction. We define the inverses of mX,Y : FX . FY → F(X ⊗Y)
and mI : I′→ FI as:

pX,Y : F(X⊗Y) F(GFX⊗GFY)
F(ηX⊗ηY ) // F(GFX⊗GFY) FG(FX .FY)

FnFX,FY // FG(FX .FY) FX .FY
εFX.FX //

pI : FI FGI′
FnI′ // FGI′ I′

εI′ //

We can now see that this straightforwardly follows from Benton’s proof.

Theorem 4. mX,Y are components of a natural isomorphism and their inverses are pX,Y .

Proof. This proof follows by a diagram chase using the adjunction in the definition of a LAM and
naturality. �

Strong non-commutative monad. Next we show that the monad on C in LAM is strong but non-
commutative. In Benton’s LNL model, the monad on the cartesian closed category is commutative,
but later Benton and Wadler [3] wonder, is it possible to model non-commutative monads using adjoint
models similar to LNL models? The following answers their question in the positive.
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Lemma 5. The monad induced by any LAM, GF : C //C, is monoidal.

However, the monad is not symmetric because the following diagram does not commute.

GFX⊗GFY GFY ⊗GFX
exGFX,GFY //GFX⊗GFY

G(FX .FY)

nFX,FY

��

GFY ⊗GFX

G(FX .FY)

GFY ⊗GFX G(FY .FX)
nFY,FX //

GF(X⊗Y) GF(Y ⊗X)
GFexX,Y

//

G(FY .FX)

GF(X⊗Y)

G(FY .FX)

GF(Y ⊗X)

GmY,X

��
G(FX .FY) GF(X⊗Y)

GmX,Y

//

Commutativity fails, because the functors defining the monad are not symmetric monoidal, but only
monoidal. This means that the diagram

F(A⊗B) F(B⊗A)
FexA,B

//

FA⊗′ FB

F(A⊗B)

mA,B

��

FA⊗′ FB FB⊗′ FA
exFA,FB // FB⊗′ FA

F(B⊗A)

mB,A

��

does not hold for G nor F. However, we can prove the monad is strong.
Lemma 6. The monad, GF : C //C, on the symmetric monoidal closed category in LAM is strong.

Finally, we obtain the non-communativity of the monad induced by any LAM as follows.
Lemma 7 (Due to Kock [12]). LetM be a symmetric monoidal category and T be a strong monad on
M. Then T is commutative iff it is symmetric monoidal.

Theorem 8. The monad, GF : C //C, on the SMCC in LAM is strong but non-commutative.

Proof. This proof follows from Lemma 6 and Lemma 7. �

Comonad for exchange. We conclude this section by showing that the comonad induced by any
LAM is monoidal and extends L with exchange. The latter is shown by proving that its corresponding
co-Eilenberg-Moore category is symmetric monoidal closed.
Lemma 9. The comonad, FG :L //L, on the Lambek category in any LAM is monoidal.

Proof. This proof follows by several diagram chases, but really does not depart much from Benton’s
proof [4]. �

Theorem 10. Given a LAM (C,L,F,G,η,ε) and the comonad FG : L //L, the co-Eilenberg-Moore
category LFG has an exchange natural transformation exFG

A,B : A .B→ B .A.

Proof. The natural transformation exFG
A,B : A .B→ B .A is defied as follows:

A .B FGA .FGB
hA.hB // FGA .FGB F(GA⊗GB)

mGA,GB // F(GA⊗GB) F(GB⊗GA)
FexGA,GB// F(GB⊗GA) FG(B .A)

FnB,A // FG(B .A) B .A
εB.A //

in which ex is the exchange for C. The remainder of the proof is fairly straightforward, and shows that
the typical diagrams for any symmetric monoidal category hold. �

Corollary 11. The subcategory, Exp(LFG), of the co-Eilenberg-Moore category LFG consisting of the
free exponential coalgebras is symmetric monoidal closed.

Proof. The proof that Exp(LFG) is monoidal closed follows similarly to Benton [4]. �
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4 A Model in Dialectica Spaces

In this section we give a different categorical model in terms of dialectica categories; which are a sound
and complete categorical model of the Lambek Calculus as was shown by de Paiva and Eades [8]. This
section is largely the same as the corresponding section de Paiva and Eades give, but with some modifi-
cations to their definition of biclosed posets with exchange (see Definition 16). However, we try to make
this section as self contained as possible.

Dialectica categories were first introduced by de Paiva as a categorification of Gödel’s Dialectica
interpretation [7]. Dialectica categories were one of the first sound categorical models of intuitionis-
tic linear logic with linear modalities. We show in this section that they can be adapted to become a
sound and complete model for CNC logic, with both the exchange and of-course modalities. Due to the
complexities of working with dialectica categories we have formally verified1 this section in the proof
assistant Agda [6].

First, we define the notion of a biclosed poset. These are used to control the definition of morphisms
in the dialectica model.

Definition 12. Suppose (M,≤,◦,e) is an ordered non-commutative monoid. If there exists a largest x ∈M
such that a◦ x ≤ b for any a,b ∈ M, then we denote x by a ⇀ b and called it the left-pseudocomplement
of a w.r.t b. Additionally, if there exists a largest x ∈M such that x◦a ≤ b for any a,b ∈M, then we denote
x by b ↼ a and called it the right-pseudocomplement of a w.r.t b.

A biclosed poset, (M,≤,◦,e,⇀,↼), is an ordered non-commutative monoid, (M,≤,◦,e), such that
a ⇀ b and b ↼ a exist for any a,b ∈ M.

Now using the previous definition we define dialectica Lambek spaces.

Definition 13. Suppose (M,≤,◦,e,⇀,↼) is a biclosed poset. Then we define the category of dialectica
Lambek spaces, DialM(Set), as follows:

- objects, or dialectica Lambek spaces, are triples (U,X,α) where U and X are sets, and α : U ×
X //M is a generalized relation over M, and

- maps that are pairs ( f ,F) : (U,X,α) // (V,Y,β) where f : U //V, and F : Y //X are functions
such that the weak adjointness condition ∀u ∈ U.∀y ∈ Y.α(u,F(y)) ≤ β( f (u),y) holds.

Notice that the biclosed poset is used here as the target of the relations in objects, but also as providing
the order relation in the weak adjoint condition on morphisms. This will allow the structure of the
biclosed poset to lift up into DialM(Set).

We will show that DialM(Set) is a model of the Lambek Calculus with modalities. First, we must
show that DialM(Set) is monoidal biclosed.

Definition 14. Suppose (U,X,α) and (V,Y,β) are two objects of DialM(Set). Then their tensor product is
defined as follows:

(U,X,α)B (V,Y,β) = (U ×V, (V → X)× (U → Y),αBβ)

where −→ − is the function space from Set, and (αBβ)((u,v), ( f ,g)) = α(u, f (v))◦β(g(u),v).

It follows from de Paiva and Eades [8] that this does indeed define a monoidal tensor product, but
take note of the fact that this tensor product is indeed non-commutative, because the non-commutative
multiplication of the biclosed poset is used to define the relation of the tensor product.

The tensor product has two right adjoints making DialM(Set) biclosed.

1The complete formalization can be found online at https://github.com/MonoidalAttackTrees/

non-comm-monads-adjoint-models/tree/master/dialectica-formalization.

https://github.com/MonoidalAttackTrees/non-comm-monads-adjoint-models/tree/master/dialectica-formalization
https://github.com/MonoidalAttackTrees/non-comm-monads-adjoint-models/tree/master/dialectica-formalization
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Definition 15. Suppose (U,X,α) and (V,Y,β) are two objects of DialM(Set). Then two internal-homs can
be defined as follows:

(U,X,α) ⇀ (V,Y,β) = ((U → V)× (Y → X),U ×Y,α ⇀ β)
(V,Y,β) ↼ (U,X,α) = ((U → V)× (Y → X),U ×Y,α ↼ β)

It is straightforward to show that the typical bijections defining the corresponding adjunctions hold; see
de Paiva and Eades for the details [8].

We now extend DialM(Set) with two modalities: the usual modality, of-course, denoted !A, and the
exchange modality denoted ξA. However, we must first extended biclosed posets to include an exchange
operation.

Definition 16. A biclosed poset with exchange is a biclosed poset (M,≤,◦,e,⇀,↼) equipped with an
unary operation ξ : M→ M satisfying the following:

(Compatibility) a ≤ b implies ξa ≤ ξb for all a,b,c ∈ M
(Minimality) ξa ≤ a for all a ∈ M

(Duplication) ξa ≤ ξξa for all a ∈ M
(Exchange) (ξa◦ ξb) ≤ (ξb◦ ξa) for all a,b ∈ M

This definition is where the construction given here departs from the definition of biclosed posets with
exchange given by de Paiva and Eades [8].

We can now define the two modalities in DialM(Set) where M is a biclosed poset with exchange.

Definition 17. Suppose (U,X,α) is an object of DialM(Set) where M is a biclosed poset with exchange.
Then the of-course and exchange modalities can be defined as !(U,X,α) = (U,U→ X∗, !α) and ξ(U,X,α) =

(U,X, ξα) where X∗ is the free commutative monoid on X, (!α)(u, f ) = α(u, x1) ◦ · · · ◦α(u, xi) for f (u) =

(x1, . . . , xi), and (ξα)(u, x) = ξ(α(u, x)).

This definition highlights a fundamental difference between the two modalities. The definition of the
exchange modality relies on an extension of biclosed posets with essentially the exchange modality in
the category of posets. However, the of-course modality is defined by the structure already present in
DialM(Set), specifically, the structure of Set.

Both of the modalities have the structure of a comonad. That is, there are monoidal natural trans-
formations ε! :!A // A, εξ : ξA // A, δ! :!A // !!A, and δξ : ξA // ξξA which satisfy the appropriate
diagrams; see the formalization for the full proofs. Furthermore, these comonads come equipped with
arrows w :!A // I, d :!A // !A⊗!A, exA,B : ξA⊗ ξB // ξB⊗ ξA.

Finally, using the fact that DialM(Set) for any biclosed poset is essentially a non-commutative for-
malization of Bierman’s linear categories [5] we can use Benton’s construction of an LNL model from a
linear category to obtain a LAM model, and hence, obtain the following.

Theorem 18. Suppose M is a biclosed poset with exchange. Then DialM(Set) is a sound and complete
(w.r.t. derivability and the equational theory) model for CNC logic.

5 Future Work

We introduce the idea above of having a modality for exchange, but what about individual modalities
for weakening and contraction? Indeed it is possible to give modalities for these structural rules as well
using adjoint models. Now that we have each structural rule isolated into their own modality is it possible
to put them together to form new modalities that combine structural rules? The answer to this question
has already been shown to be positive, at least for weakening and contraction, by Melliés [14], but we
plan to extend this line of work to include exchange.
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The monads induced by the adjunction in CNC logic is non-commutative, but Benton and Wadler
show that the monads induced by the adjunction in LNL logic [3] are commutative. Using the extension
of Melliés’ work we mention above would allow us to combine both CNC logic with LNL logic, and then
be able to support both commutative monads as well as non-commutative monads. We plan on exploring
this in the future.

Hasegawa [9] studies the linear of-course modality, !A, as a comonad induced by an adjunction
between a cartesian closed category a (non-symmetric) monoidal category. The results here generalizes
his by generalizing the cartesian closed category to a symmetric monoidal closed category. However, his
approach focuses on the comonad rather than the adjunctions. It would be interesting to do the same for
LAM as well.
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