The CLEAR Way To Transparent Formal Methods

Devesh Bhatt, Anitha Murugesan, Brendan Hall, Hao Ren
Honeywell Advanced Technology, Plymouth, Minnesota, USA

{devesh.bhatt, anitha.murugesan, brendan.hall, hao.ren2}@honeywell.com

Yogananda Jeppu
Honeywell Technology Solutions, Hyderabad, India
Yogananda. Jeppu@honeywell.com

Although Formal Method (FM) based techniques and tools have impressively improved in re-
cent years, the need to train engineers to be accomplished users of formal notation and tailor the
tools/workflow to meet objectives of the specific application domain, involves a high initial invest-
ment and difficulty to actualize in large, legacy organizations. In this paper, we present our approach
to address these challenges in Honeywell Aerospace and share our experiences enroute. Starting
with a constrained, structured natural language notation for author requirements and orchestrated
with a set of novel in-house tool suite our approach automatically transforms those requirements into
a consolidated formal representation to perform rigorous analyses and test generation. While the no-
tation’s natural-language flavour provides a ‘softer’ front end, the tool-suite allows ’transparent’ use
of formal tools at the back-end without engineers having to know the underlying mathematics and
theories. The initial application of our approach across various avionic software systems in Honey-
well is well-accepted due to it minimal impact on the existing workflow while leveraging the benefits
of formal methods.

1 Introduction

Over the past two decades, formal method techniques have widespread acceptance in many industrial
sectors, such as the system and software arenas particularly in the aerospace domain. But, the application
of formal methods within large scale industrial projects is still in its infancy. A primary obstacle to the
industrial use of formal methods [8]] is the perceived mathematics required in the application of these
methods. In addition to learning the notation, the complexity involved in easily expressing and validating
the ‘intents’ in the mind of the engineers — such as expressing precedence, chronology, and persistence
behaviors — is high when using formal notation. Another obstacle is the level of effort required to
integrate tools for formal methods into the existing workflow. Orchestrating formal tools to specific
application development workflows, even within the same domain, requires in-depth knowledge of the
notations used and their underlying theories; All of these require a steep learning curve and a huge initial
investment that naturally discourages large industries from adopting formal methods directly in their
development.

In this paper, we present our approach to a ‘transparent’ formal-methods workflow at Honeywell
Aerospace where the initial results are promising. Drawing heavily from our experience with sev-
eral large-scale avionic systems as well as industrial techniques [7] such as EARS [11], PBR [12],
etc. [14} 150110} [1} 2], we define a constrained, structured natural language notation to capture require-
ments, called CLEAR (Constrained Language Enhanced Approach to Requirements). Further, our tool
Text2Test, developed in-house, is specifically purposed to automatically convert the CLEAR require-
ments into an unambiguous, intermediate, consolidated formal representation; this can be handed down

(© D.Bhatt, A.Murugesan, B.Hall, H.Ren & Y.Jeppu
This work is licensed under the
Creative Commons |Attribution License.

Submitted to:
SOS 2007

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 The CLEAR Way To Transparent Formal Methods

as-is to existing Honeywell tool suites, as well as be easily transformed for other tools suites to per-
form formal back-end analysis such as model-checking, consistency and completeness analysis, and
automated test generation.

We have been reasonably successful in our initial venture of introducing this notation-tool suite com-
bination in several avionic software systems in Honeywell. We received promising results and positive
feedback since (a) the natural-language flavor of CLEAR provides a ‘soft’ front-end for engineers to
author requirements with minimal disruption to their existing workflow and (b) the automated trans-
formation and analysis of requirements do not necessitate the engineers to know the mathematics and
theories underlying the formal tools and techniques. In the following sections, we introduce the notation
and tool-suite, illustrating with examples from real aerospace systems and discussing challenges and
critical issues encountered enroute.

2 Overall Approach

Over the last several years, we have developed a number of powerful tools that perform automated
analysis and test generation [3} 4] at Honeywell Aerospace and have extensively used them in several
product groups to claim certain DO-178C objectives [9]. However, it was not easy to deploy them in
newer applications, leverage their combined benefits or add new tools due to vast difference between their
input/output notations and underlying mathematics. It was challenging to provide extensive training to
new engineers not only to use the tools and be adept in those notations, but also in precisely orchestrating
the tools and translating notations. Moreover, requirements — a crucial prerequisite for most analysis —
when captured in formal notations were not easy to understand and validate with high-confidence.

To overcome these issues, we defined CLEAR (Constrained Language Enhanced Approach to Require-
ments) notation to capture requirements that has an intuitive, natural-language flavor, whilst provides a
rigours formal basis. CLEAR leverages several best practices and state-of-the-art requirements specifi-
cation approaches from academia and industry. One of our major considerations in designing CLEAR
is to ensure compatibility with emerging verification technologies and enable a transparent translation to

tool inputs from the requirements.

/ ForReq

Constrained Language Enhanced Approach
to Requirements (CLEAR) grammar «_

Parsing,

Requirement
Editor

Requirements

Glossary

Data-Flow Analysis

I

Data-Flow
Synthesis Model

|

Text 2 Test

SMT Solvers

HIiLITE
Interface

Figure 1: Tool-suite Overview

Acacia

Consistency,
Accuracy,
Completeness

Test
Vectors

D.Bhatt, A.Murugesan, B.Hall, H.Ren & Y.Jeppu 3

Figure[I|shows our overall approach and tool-suite that starts with requirements authored in CLEAR. We
are currently working on an Eclipse-based comprehensive requirements editor tool that will help author-
ing requirements in CLEAR notation. The tool provides requirement templates, notation suggestions,
and interface to back-end analysis tools, and display results of analysis with just the push of a button.

Once authored in CLEAR, an in-house tool called 7ext27est, that we specifically developed for this pur-
pose, parses the requirements for syntax and basic semantics. The parsed requirements are then converted
into a data-flow synthesis model that specifies the input conditions of the requirements as controlling the
assignment of expressions to outputs; with timing constructs as part of the data-flow nodes. Then, the
tool automatically interfaces with an existing Honeywell’s tool — HiLiTE [, 6] — to provide requirement-
based static analysis and test generation. Additionally, Text2Test utilizes public domain SMT Solvers
(e.g., Z3) to provide consistency and (limited) completeness analysis on the synthesis model. A variety
of arithmetic (including non-linear), logical, and time-based constructs are supported as part of these
capabilities to allow the tools to be used for large-scale industrial problems.

Further, an automated translation to Linear Temporal Logic (LTL) can be performed from the data-flow
synthesis model using the ForReq tool [4, [3]. This tool was developed by Honeywell to provide a
transparent interface to several model checkers including DiVinE and NuSMYV, and also to tools such as
Acacia for realizability analysis.

In summary, the CLEAR notation provides an “on-ramp” for integrating existing and emerging tools and
technologies in a way that is transparent to the engineers. Once requirements are authored, there is no
intervention required from the engineer during the analysis. Further, the formal representation of the
synthesis model allows automated back-end transformation between notations and seamless integration
among the tools.

3 CLEAR Notation

Central to our notation is the notion of requirements as a set of observable properties of the system under
specific conditions. To that end, we defined a set of structures and constructs to specify requirements
that have the expressiveness as natural-language as well as the required level of specificity to capture
properties of most Aerospace applications. The structures and constructs are influenced by several in-
dustry standard requirements notations as well as actual system requirements used in several Honeywell
Aerospace applications. This notation, we believe, fully enables the compliance with DO-178C and in
particular DO-331 for software high-level requirements.

System Glossary : A Glossary of terms such as nouns and verbs used in the requirements have to
be defined with basic information such as their name, units, data formats and operational ranges. This
not only helps avoid ambiguity and vagueness in requirements, but also helps automate analysis. We
have found that glossaries can be often automatically extracted from domain ontologies, dictionaries and
interface documents. For instance, several projects had text files, spreadsheets and interface definition
documents in which the glossary terms were specified in uniform manner. In other projects, the glossary
terms were present in databases with a certain structure. By creating a small file read/write utility script,
we were able to easily extract the glossary into a format suitable for CLEAR.

Requirements Structure: Conforming to a simple, consistent structure when writing requirements
helps enhance the requirements’ quality. To that end, as shown in Table 1, CLEAR provides basic
structures (influenced from EARS) and advanced structures (typically used to specify avionic systems),
that provide a high-level framework to precisely organize clauses within requirements.

The CLEAR Way To Transparent Formal Methods

Table 1: Types of Requirement Statements

Type Usage Example

Ubiquitous Unconditional property The engine_speed shall be 120 rpm

Event Driven System behaviour triggered | When display_off-button is ‘pressed’ then display

by events or conditions shall be switched off

State-based System’s behavior in a cer- | While the microwave_state is ‘ON’, the interlock

tain state shall be true

Abnormal Unwanted behavior If smoke_level > 5 then alarm shall be true

Feature-driven | Feature based system behav- | Where cruise_control is ‘installed’, cruise_status

ior shall be ‘displayed’

Complex Capture events, states and/or | While mode is ‘On’, When gear is ‘deployed’, then

features display shall be ‘enabled’

Tabular Behaviours pertaining to System shall compute output based upon

same output(s) in response TruthTable, inputl, input2, output
to mutually exclusive sets of | row, true, 5, 10
conditions row, false, 10, 20 ...end
Precedence Priority based Behaviours The value of led shall be per the precedence order
(Non-exclusive conditions) When alarm is ’enabled’, then led shall be ‘red’
When pause is True, then led shall be ‘blue’ ... end
Default Behaviour when conditions | When none of the conditions as per {Reql, Req2,
of a set of requirements are | Req3} are satisfied, then by default the display shall
not satisfied be ’normal operation’.

Alternate Alternate response When reservoir_volume is less than 5, then refill -
indicator shall be true, otherwise refill_indicator
shall be false

Initial Initial or startup behaviour Initially, the display shall be ‘disabled’.

Notation Constructs:

CLEAR notation provides a wide range of constructs to express logical, rela-

tional, temporal and arithmetic operations. The constructs can be expressed in both their mathematical
form as well as natural-language form such as is greater than or >, absolute value of or ||, etc. In addi-
tion to these common operation constructs, CLEAR also provides advanced constructs typically used in
aerospace system requirements such range limiting (upper/lower limited by), prioritized signal selection
(select with priority order), persistence (persistently be), state transitions (transitions from...to), signal
validity (valid, invalid), etc. While we have found that these special constructs have a standard interpre-
tation across most Honeywell aerospace applications, we also allow custom definitions depending upon
the need of the application domain. These special constructs were defined to allow the requirements
author focus on specifying the ‘intent’, without having to use long, descriptive text to explain it.

Further, CLEAR notation also allows mathematical expressions in both textual and equation form to be
captured as/within requirements as recommended in DO-178C. Equations or expressions can be written
using valid combinations of constants, variables, and arithmetic operations such as 4+, —, *, / and %. In
addition, to ease the expression of complex mathematical operations the notation provides a number of
utility functions such as trigonometric functions, rounding off, etc. For example, Cabin_Altitude shall be
(Cabin_Altitude /Altitude) * Altitude _Plane is a valid requirement in CLEAR.

D.Bhatt, A.Murugesan, B.Hall, H.Ren & Y.Jeppu 5

4 Verification Tool Chain

Starting with requirements written in CLEAR, various back-end tools for automated requirements analy-
ses, model checking, and test generation can be employed, as suitable to what works to reduce the defects
in a particular domain.

Data-Driven Requirement Synthesis : Text2Test parses the requirements authored in CLEAR and
creates a data-flow synthesis model. The condition-response structure of each requirement is converted to
a switch node at the back end — where the condition acts as a control trigger and the choices of responses
are selected based on the condition. Though most requirements are typically specified as a response to a
condition (when. .. then...), it is however, considered as a ‘partial’ behavioural description, since there
is no specified response for the condition not met. When such a “partial’ specification is encountered, a
specialized switch node that allows invalid value as the missing response is used in the model. Whenever
the condition of the switch node is false, the value invalid is propagated across the model. Further,
nodes for each clause within a requirement for every operation, such as comparisons, arithmetic, etc., are
automatically created and connected together to form the data-flow synthesis model. In formal terms,
an abstract syntax tree is internally created. Finally, the set of requirement statements that specifies
responses of the same output variable are aggregated into a specialized combiner node, that ensures if
the outputs are consistent and valid values can be propagated as outputs.

Requirements Analysis : Next, Text2Test performs requirement defect analysis over each output vari-
able using an SMT solver and reports the results in an easily readable HTML format. The following
defects are identified:

1. Consistency check loops through each priority level of an output variable. Let {< cond! , resp} >
,...,< cond} respl >} be the set of condition-response pairs specified for the variable v at the
same priority level p. Without loss of generality, we assume all responses are unique, then the
consistency check is formulated as

(@(condf, ... cond?)) vV (ﬁ\/(condf, ...,cond?))

where the first disjunctive clause uses the xor operator () to ensure that one and only one condi-
tion holds at a time and the second clause relaxes that logic to allow the case when no condition
holds. An SMT formulation of the above is constructed by backward search from the combiner
over the model [13]].

2. Domain coverage check examines the completeness of the input space of an output variable. Let
{< condy,resp) >,...,< condy,resp, >} be the set of condition-response pairs for a variable v
at all priority levels. The SMT formulation for this analysis is:

\/(cond1 yeveyCONdy).

3. Incomplete output range check is performed by comparing the specified output variable range and
the range propagated by HiLiTE. Currently this is done for Boolean or Enumeration variables.

4. Default requirement check performs a group of correctness checks against the default requirement.
Default requirements are checked for redundancies (covered by other requirements), incorrect ref-
erences to requirements, and duplication (multiple default requirements).

6 The CLEAR Way To Transparent Formal Methods

An illustrative example of requirement is given below and its requirements analysis report is shown in
Figure [2

Example: The following requirements are specified on the output variable LedColor with input variables
comp_state, power_button, and power_button. All the variables in this example are of Enumeration type
with enumeration values are specified separately (omitted here).

e ExceptionReq: If comp_state is ‘abnormal’, then LedColor shall be ‘Red’
o StateReq: While comp_state is ‘idle’, LedColor shall be ‘Yellow’
e NormalReq: When power_button is ‘ON’, then LedColor shall be ‘Green’

e DefaultReq: When none of the conditions as per requirements { ExceptionReq, StateReq, Normal-
Req} are satisfied, then by default LedColor shall be ‘White’

Cutput Variable : LedColor
Requirements . ExceptionReq, StateReq NormalReq DefauliReq
Errors in Default Requirements
DefaultReq Reference requirements are not specified correctly
Inadquate Domain Coverage
Ser 1
comp_state dynamic
power_button OFF
Ser 2
comp_state static
power_button OFF
Ser 3
comp_state enroute
power_button OFF
Requirements Inconsistency
Set: 1
StateReq Yellow
NormalReq Green

Figure 2: Defect report from Text2Test

4.1 Requirement-Based Test Generation

The synthesis model of requirements is then sent to the HiLiTE tool for automated test generation.
HiLiTE generates specific tests at the model level for each block embedded in the model, using either
heuristic test case templates via backward propagation, or the formal specification of equivalence class
via SMT-solving [13]. In the former approach, each equivalence class of a block’s behavior (test require-
ment) is associated with a set of test case templates heuristically selected as a specific combination of
values for the input(s) and output(s) of the block under test (BUT). Backward and forward propagation
search through the computations of upstream and downstream blocks generates a test vector in terms of

D.Bhatt, A.Murugesan, B.Hall, H.Ren & Y.Jeppu 7

model inputs and outputs to ensure controllability of the BUT inputs and observability of the expected
BUT output. In the later approach, SMT-solving embodies formulating test case generation constraints
from both equivalence class rules of the BUT and the blocks within its upstream sub-graph, as well as
the connectivity, into an SMT problem. Therefore, constraints can be solved together to find a satisfying
solution which excludes any conflicts. The formal specification of equivalence classes enables the search
on a complete solution domain, empowered by the capability of SMT-solving on scenarios involving
mixed data-types, linear/nonlinear computation, and complex model structure.

5 Discussion

We have successfully performed several proof of concepts on industrial case studies within Honeywell
Aerospace using CLEAR notation and the associated tool chain. While there has been positive feedback
from engineers and willingness to deploy it in more applications, some challenges and issues surfaced. At
first, engineers felt that it was an overhead to capture requirements with the level of specificity required by
CLEAR since domain experts seems to have the ‘tribal knowledge’ to interpret requirements without the
level of detail. However, in the process of writing in CLEAR notation and the analysis feedback obtained
from the tools, they were convinced of why capturing those details will save their time later in the
development process. While most requirements were expressible in CLEAR, some applications required
newer clauses. However, the extendibility of the notation allowed us to easily add them. Another major
concern in large organization like Honeywell is that the developments are often enhancements to legacy
applications rather than green-field. When we applied our approach in such applications, the specificity
and format of the newly written requirements in CLEAR did not match with the legacy ones. Also,
those legacy requirements could not be compositionally analyzed using our tools. We are discussing
with such teams to see if they can standardize their requirements in a way that is parsable by the tools.
Further, to help engineers with authoring the requirements in CLEAR, we are developing an authoring
tool with ‘intellisense’ that suggests structures, clauses and terms. Hence, at Honeywell Aerospace,
CLEAR notation has paved ways for transparently including formal method based analysis and tools
with minimal disruption to the existing workflow.

References

[1] (2017 (accessed December 13, 2017)): D-RisQ software systems. http://www.drisq.com/\
[2] (2017 (accessed December 13, 2017)): QRA. https://qracorp.com/.

[3] Jiti Barnat, Petr Bauch, Nikola Benes, Lubos Brim, Jan Beran & Tomds Kratochvila (2016): Analysing sanity
of requirements for avionics systems. Formal Aspects of Computing, pp. pp—1.

[4] Jiti Barnat, Jan Beran, Lubo§ Brim, Tom4§ Kratochvila & Petr Rockai (2012): Tool Chain to Support Auto-
mated Formal Verification of Avionics Simulink Designs. In: Formal Methods for Industrial Critical Systems,
Springer, pp. 78-92.

[5] D. Bhatt, S. Hickman, K. Schloegel & D. Oglesby (2007): An Approach and Tool for Test Generation from
Model-based Functional Requirements. In: Proc. 1st International Workshop on Aerospace Software Engi-
neering.

[6] Devesh Bhatt, Gabor Madl, David Oglesby & Kirk Schloegel (2010): Towards scalable verification of com-
mercial avionics software. In: Proceedings of the AIAA Infotech@ Aerospace Conference.

[7] Ronald S Carson (2015): Implementing structured requirements to improve requirements quality. In: IN-
COSE International Symposium, 25, Wiley Online Library, pp. 54-67.

http://www.drisq.com/
https://qracorp.com/

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

The CLEAR Way To Transparent Formal Methods

Jennifer A Davis, Matthew Clark, Darren Cofer, Aaron Fifarek, Jacob Hinchman, Jonathan Hoffman, Brian
Hulbert, Steven P Miller & Lucas Wagner (2013): Study on the barriers to the industrial adoption of formal
methods. In: International Workshop on Formal Methods for Industrial Critical Systems, Springer, pp. 63—77.

RTCA Inc. (2011): RTCA DO-178C, Software Considerations in Airborne Systems and Equipment Certifi-
cation.

Graham Jolliffe (2010): Cost-efficient methods and processes for safety relevant embedded systems
(CESAR)-an objective overview. Making Systems Safer, pp. 37-50.

Alistair Mavin, Philip Wilkinson, Adrian Harwood & Mark Novak (2009): Easy approach to requirements
syntax (EARS). In: Requirements Engineering Conference, 2009. RE’09. 17th IEEE International, IEEE, pp.
317-322.

Patrice Micouin (2008): Toward a property based requirements theory: System requirements structured as a
semilattice. Systems engineering 11(3), pp. 235-245.

Hao Ren, Devesh Bhatt & Jan Hvozdovic (2016): Improving an Industrial Test Generation Tool Using SMT
Solver. In: NASA Formal Methods Symposium, Springer, pp. 100-106.

Natarajan Shankar & Wilfried Steiner (2016): ARSENAL: Automatic Requirements Specification Extraction
Jfrom Natural Language. In: NASA Formal Methods: 8th International Symposium, NFM 2016, Minneapolis,
MN, USA, June 7-9, 2016, Proceedings, 9690, Springer, p. 41.

Roopak Sinha, Sandeep Patil, Cheng Pang, Valeriy Vyatkin & Barry Dowdeswell (2015): Requirements
engineering of industrial automation systems: Adapting the CESAR requirements meta model for safety-
critical smart grid software. In: Industrial Electronics Society, IECON 2015-41st Annual Conference of the
IEEE, IEEE, pp. 002172-002177.

	Introduction
	Overall Approach
	CLEAR Notation
	Verification Tool Chain
	Requirement-Based Test Generation

	Discussion

