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Deductive verification of software has not yet found its way into industry, as complexity and scal-
ability issues require highly specialized experts. The long-term perspective is, however, to develop
verification tools aiding industrial software developers to find bugs or bottlenecks in software sys-
tems faster and more easily. The KeY project constitutes a framework for specifying and verifying
software systems, aiming at making formal verification tools applicable for mainstream software
development. To help the developers of KeY, its users, and the deductive verification community, we
summarize our experiences with KeY 2.6.1 in specifying and verifying real-world Java code from a
users perspective. To this end, we concentrate on parts of the Collections-API of OpenJDK 6, where
an informal specification exists. While we describe how we bridged informal and formal specification,
we also exhibit accompanied challenges that we encountered. Our experiences are that (a) in principle,
deductive verification for API-like code bases is feasible, but requires high expertise, (b) developing
formal specifications for existing code bases is still notoriously hard, and (c) the under-specification
of certain language constructs in Java is challenging for tool builders. Our initial effort in specifying
parts of OpenJDK 6 constitutes a stepping stone towards a case study for future research.

1 Introduction

In particular for safety-critical systems, the main goal of formal methods is to increase confidence in
the correctness of a software system by providing means to mechanically reason about it [9, 13, 46, 47].
Driven by research, formal methods have experienced significant advancements over the last decades. Be-
sides lightweight methods like testing and code reviews, formal verification techniques, such as deductive
verification [2, 5, 11, 24, 49] or model checking [12, 44], can be used to ensure that a program behaves
correctly by proving that it adheres to a formal specification. Recent successes even show that verifying
large-scale software systems written in real-world programming languages is not only theoretically, but
indeed practically feasible [3], and that bugs in real-world software used by millions of devices can be
identified [18].

A downside is that formal verification has not yet found its way into industrial software develop-
ment. One reason is the substantial specification effort, which is particularly uneconomical for legacy
software systems [4]. In particular, there exist serious doubts about the cost-effectiveness (i.e., return of
investement) of formal methods [29]. Another reason is that developers regard most formal methods as
difficult to understand and apply, as full automation is often impossible due to the undecidability of the
halting problem [45]. During the verification phase, there is often a demand for user interaction, such as
providing loop invariants. User interaction, however, requires highly specialized expert knowledge, which
is unreasonable for typical software developers [2].

While most emphasis in the formal methods community is put on the scalability of the verification
phase, scalability of the specification phase has only gained momentum recently [3, 4]. Applying Design
by Contract, a methodology in the context of deductive verification based on Hoare triples [38], developers
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specify the behavior of methods with contracts comprising first-order preconditions and postconditions.
Contracts are typically annotations in source code close to the implementation [2, 15, 38]. The rationale
is whenever a caller guarantees the precondition, the method guarantees its postcondition. A caller can
then reason about its correctness with respect to its own contract.

However, even when applying Design by Contract in the industry, software developers typically
only assure the quality of a small subset of the code base by writing or modifying contracts alongside
their implementation. These developers are either not verifying their implementation at all or are at
least never in a position to verify that their contracts are sufficient for all callers, which is often done
by a different team focusing on the overall quality assurance. Consequently, a considerable amount of
insufficient contracts may emerge that must be adapted subsequently. Providing strong enough contracts
is error-prone and tedious [3] and, thus, cost-intensive.

We argue that, to become applicable in industrial software development, deductive verification includ-
ing the formal specification phase must be supported by easy-to-use tools with a high degree of automation,
such that typical software developers can already contribute significantly to the implementation’s quality.
To identify hurdles and challenges, experience reports are indispensible. Our observations are based on
software written in objected-oriented languages and specified with contracts. In particular, we draw our
experiences from a real-world case study, where we specify and verify parts of OpenJDK’s Collections-
API with the Java Modeling language (JML) [32]. For the verification phase, we use the state-of-the-art
verifier KeY version 2.6.1 [1], an interactive theorem prover with a high degree of automation and a large
community. Our long-term vision is to facilitate the development of specification and implementation
in concert for everyday software developers. Our work contributes to this goal by investigating usability
and applicability of KeY from a user’s persepective, as most studies in research about specification and
verification with KeY are indeed conducted by KeY developers themselves (e.g., [3, 6, 18]).

Our real-world case study exhibits that formal specification and automatic verification of APIs is in
principle feasible. It also shows that significant experience is necessary and, accordingly, that current
verification technology is not yet suitable for less experienced developers. In this sense, we believe that
a community effort is indispensable to specify widely used APIs such as OpenJDK, which would help
users tremendously to verify their own implementation against it. In summary, our main contributions are
the following.

• We describe our experiences on specifying parts of OpenJDK’s Collection-API with JML based
on its existing informal specification (i.e., JavaDoc) and verify it using the program verifier KeY in
version 2.6.1.

• We distribute OpenJDK’s source code together with our formal specification online with the goal
to extend it continuously.

• We discuss which characteristics impair automation in the verification phase and give examples.

• We encounter an incidence where KeY proves unsound behavior due to Java’s under-specification
of the maximal array length.

The paper is structured as follows. In Section 2, we provide the necessary background on contract-based
deductive verification of Java programs. In Section 3, we explain how we specified parts of OpenJDK’s
Collections-API and discuss challenges. In Section 4, we provide a detailed experience report in specifying
and verifying Java programs with KeY from a developer’s perspective. We discuss related work in
Section 5 and conclude this work in Section 6.
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class Account {
public �nal static int DAILY_LIMIT = 1000;
public int balance;
public int withdraw;
/∗@ requires withdraw < DAILY_LIMIT, amount !=0;
@ ensures (\result == (\old(withdraw) − amount < DAILY_LIMIT))
@ && (\result ==> withdraw == \old(withdraw) − amount)
@ && (\result ==> balance == \old(balance) + amount);
@ assignable withdraw, balance;
@/

boolean update(int amount) {...}
}

Listing 1: An Account Implementation with Contracts in JML

2 Formal Verification of Java Programs

Quality-assurance techniques, such as code reviews, testing, and formal methods, are critical for safety-
related software. A prominent approach that is part of many modern programming languages is to use
assertions [22], which are propositional formulas that should always be satisfied at given locations of
method execution. A generalization of assertions is the design-by-contract paradigm [35, 38, 39], which
comes with dedicated specification languages supporting flavors of first-order logic. Contracts decorate
methods of object-oriented code with preconditions ψ and postconditions φ , and classes with class
invariants. Preconditions describe what a method can assume and must be provided by callers of that
method. Postconditions describe what a method must guarantee if its preconditions are fulfilled. Invariants
must always hold (i.e., before and after method execution). While assertions are typically checked at
runtime, deductive reasoning, as applyed by theorem provers, is used to verify source code statically [48].
A program together with its specification (i.e., contracts) is translated into a flavor of dynamic logic.
The resulting logical formula for a method m is then proved to always hold by systematically applying
inference rules to it.

For specification, there exist numerous languages with support for contracts, such as Eiffel [39],
Spec# [2], and the Java Modeling Language (JML) [32]. For the purpose of this paper, we focus on JML,
a contract-supporting extension of Java for specification. The reason is that Java is far more widespread
than the other languages and highly applied in industry and research. In Listing 1, we give an example
of a concrete contract written in JML of a method update in a class Account. Method update manages
the transfer of money from and to respective accounts. The precondition is denoted by keyword requires
and states that callers of method update must ensure that (a) input amount is not equal to 0 and that (b)
value of field withdraw is less than the value of the field DAILY_LIMIT. The postcondition is denoted
by keyword ensures and states that method update guarantees to update withdraw and balance, whenever
the daily limit is still not reached. In a postcondition, keyword old refers to the state of the expression
before method execution and keyword result represents the return value. Moreover, the framing clause is
denoted by keyword assignable and describes which part of the memory is allowed to be changed by the
method’s implementation. If all classes are known, the framing clause is syntactic sugar and may also be
expressed in the postcondition by using old(v) == v for all locations v that should remain unmodified.

As can be seen in Listing 1, JML provides means to specify the intended behavior of a method close
to the implementation. Besides method contracts, JML also allows to specify invariants for fields, loops
with loop invariants, and even blocks (i.e., scoped statements in curly braces) with block contracts inside
an implementation. Additional specifications are often necessary to increase automation and decrease
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interaction in the verification phase.
To investigate the difficulties of specifying and verifying source code from a users perspective, we

focus on KeY [1], an interactive theorem prover for JML-specified Java programs with a highly active
community. KeY is a frequently used verification system for JML with the goal to bridge the gap between
research and industry. In particular, KeY translates specification and implementation to an extension of
dynamic logic called Java Dynamic Logic [1]. Resulting proof obligations are processed step-wise based
on a combination of symbolic execution [1] and weakest precondition calculus [27] and are either closed
automatically or remain open to be manually inspected by a user.

The goal of Design by Contract is to write implementations together with their contracts in con-
cert [38]. Despite the fact that most software developers are non-experts in formal verification, they
typically know all requirements that are important for the code they introduce or modify and, thus, should
be supported by the verification system in use to write concise and comprehensible formal specifications.
Moreover, to ease the process of specification and increase applicability of formal verification even into
the realm of mainstream software development, the verifying tool chain has to provide a high degree
of automation, which is in-line with the Spec# experience [2]. Besides the fact that KeY was initially
designed to be used interactively [1], it provides numerous means to automate the verification process.
For instance, KeY applies sophisticated built-in strategies to find proofs automatically. Developers may
even define and add their own strategies. Moreover, KeY offers a considerable amount of parameters
that control how the automatic proof search behaves. Setting the right parameters purposefully requires
expertise, but also allows a user to decrease the verification effort significantly [30].

3 Contract-Based Specification of the Collection-API

A challenge to address in formal verification is to formally specify a given implementation sufficiently,
such that it can be verified automatically – in particular when performed by less experienced developers.
To gain experiences in this regard and identify hurdles and challenges for typical software developers,
we carried out a real-world case study, for which we decided to specify parts of OpenJDK 6. Reasons
to use OpenJDK are manifold. One of our goals is to specify and verify widespread and highly applied
real-world software. Whereas building software from scratch was therefore not an option, OpenJDK
qualifies for these requirements and is also open source. Moreover, OpenJDK is free to distribute, even
when the source code is altered (e.g., adding JML contracts). Oracle’s JDK disqualifies for the very same
reason. Another point is that reconstructing a developers intention to develop a formal specification is
difficult (i.e., in case of legacy systems). However, OpenJDK already provides a comprehensive informal
specification in its JavaDoc, which eases the development of a formal specification.

3.1 Specifying the Java Collection-API

For specifying methods in Java programs with contracts, we use the Java Modeling Language (JML).
In Listing 2, we exemplify the process of specifying a method based on an informal specification on
the method copyOf for class Array. At the top we depict the informal specification provided in the
JavaDoc comments. In essence, the informal specification covers the following aspects if method copyOf
successfully terminates.

1. The result is a new array with given length newLength.

2. If newLength is less than the length of original, the resulting array is truncated.

3. If newLength is greater than the length of original, the resulting array is padded with null-elements.
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/∗∗
Copies the speci�ed array, truncating or padding with nulls (if necessary) so the copy
has the speci�ed length. For all indices that are valid in both the original array and
the copy, the two arrays will contain identical values. For any indices that are valid in
the copy but not the original, the copy will contain null. Such indices will exist if and
only if the speci�ed length is greater than that of the original array. The resulting
array is of exactly the same class as the original array.

@param original the array to be copied
@param newLength the length of the copy to be returned
@return a copy of the original array, truncated or padded with nulls
to obtain the speci�ed length
@throws NegativeArraySizeException if <tt>newLength</tt> is negative
@throws NullPointerException if <tt>original</tt> is null
@since 1.6
∗/
public static Object[] copyOf(Object[] original, int newLength)

/∗@
@ public exceptional_behavior
@ requires newLength < 0;
@ signals (NegativeArraySizeException e) true;
@
@ also public exceptional_behavior
@ requires original == null;
@ signals (NullPointerException e) true;
@
@ also public normal_behavior
@ requires original != null && newLength >= 0;
@ ensures \result != null && \fresh(\result) && \result != original
@ && \typeof(\result) == \typeof(original) && \result.length == newLength;
@ ensures (\forall int i; 0 <= i && i < \result.length &&
@ i < original.length; original[i] == \result[i]);
@ ensures (\forall int i; original.length <= i &&
@ i < newLength; \result[i] == null);
@∗/

public static /∗@ nullable pure@∗/ Object[] copyOf(/∗@ nullable @∗/
Object[] original, int newLength)

Listing 2: JavaDoc and Signature of Arrays.copyOf()

4. Values of all indices that are valid in original and the resulting array are identical.

5. Array original and the resulting array have the same type.

Below the JavaDoc comment, we present the JML contract that we derived for that informal specification.
In concert with the informal specification, the contract comprises three specification cases confined by
keyword also; in two cases, exceptions are thrown when newLength is negative or array original equals
null. The third specification case depicts the intended behavior as explained before.

The Java Collection-API provides an architecture to temporarily store and manipulate a group of ob-
jects. The interface java.util.Collection is the foundation for numerous data structures and is, for instance,
implemented by java.util.List and java.util.Set. In the specification process, we concentrated on a small
number of methods of the collection interface that we wanted to specify and verify. Some prominent
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methods of the collection interface we focused on are the following.

• int size(): returns the number of objects.

• boolean isEmpty(): informs whether the number of objects is zero.

• boolean contrains(Object): informs whether the collection holds a specific object.

• boolean add(Object): adds an object and returns true if the collection changed.

• boolean remove(Object): removes an object and returns true if the collection changed.

• void clear(): removes all objects.

• . . .

Here, we follow a bottom-up approach in specifying the implementation; we first specify and verify
less complex methods associated with a small call stack when executed. The rationale is that sufficient
contracts to automatically verify such a method should be easier to derive, as only a few dependencies
to called methods exist. Subsequently, we can specify and verify more complex methods associated
with larger call stacks when executed by relying on specifications of called methods we derived before.
Moreover, strong enough postconditions are in some cases easier to identfy compared to a top-down
approach, as the postcondition of a caller depends to a great extend on the postconditions of called
methods. However, as discussed in more detail elsewhere [3, 4], neither pure bottom-up nor pure top-
down approaches are always superior in general.

3.2 Lessons Learned in Formalizing Parts of OpenJDK

In this section, we elaborate on our process and gained experiences of specifying parts of the Collections-
API with JML. Our specifications can be found online and we invite other researchers to contribute to
that repository and extend it in the future.1

Behavioral Subtyping.

In the presence of subtyping, contracts of a type and its subtypes should follow behavoral subtyping [36].
If T and S are both types where S is subtype of T, behavioral subtyping states that T can be replaced by
S in any scenario where T is used without distorting a program’s behavior. For deductive verification,
this means that we can always use S.m() instead of T.m() and that their contracts must therefore be
in a compatible relation (e.g., preconditions of S.m() can only be strengthened, whereas postconditions
can only be weakened). The reason to follow this principle is that behavioral subtyping enables modular
reasoning [34], as, even in case of dynamic dispatching, the supertype can be used. In particular, JML
features a particular instance of behavioral subtyping called specification inheritance, which is enforced
by KeY. Specification cases of an overriding method are conjoined with the supertype’s specification
cases by employing keyword also.

The collection interface is highly generic and refers in its informal specification (i.e., JavaDoc) to
numerous properties that subclasses may either establish or not. An example for a property is whether a
subclass allows storing of duplicates. To follow behavioral subtyping, a considerable amount of methods
are directly specified by us in the collection interface and inherited by subclasses. Thus, we need to take
these properties into account when generally specifying a method. That is why we started to introduce
model fields in the collection interface, which allows us to parameterize contracts (i.e., parameters are

1http://github.com/AlexanderKnueppel/OpenJDKwithJML/tree/F-IDE18

http://github.com/AlexanderKnueppel/OpenJDKwithJML/tree/F-IDE18
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/∗@
@ public model boolean supportsDuplicates;
@ public model boolean supportsNull;
@ public model boolean isOrdered;
@
@ public model instance \bigint collectionSize;
@ public model instance nullable Object[] elements;
@
@ public model instance \locset changeable;
@∗/

Listing 3: Model Fields of the Java Collections Framework

used in contracts and instantiated in concrete subclasses individually). Model fields can only be used in
JML-annotations and represent states that are evaluated in the verification process.

In Listing 3, we illustrate all model fields that we use for the Collection-API. For example, some
implementations do not allow to hold duplicates (e.g., Set), which is why we specified a boolean variable
named supportsDuplicates for this purpose. Classes that do not allow to hold duplicates instantiate this
field with false.

Informal Specification is Often Imprecise.

OpenJDK already provides a comprehensive informal specification for most methods in form of JavaDoc
comments (cf. Listing 2). An inherited problem of an informal specification is, however, its imprecise na-
ture. A consequence is that imprecision impedes the direct translation to a formal specification. Moreover,
methods may depend on numerous other methods and in the process of software evolution specifications
can become outdated – especially if they are not verifiable.

We encountered that, in some cases, implicit behavior had to be made explicit, particularly for private
methods. For example, the insufficient informal specification of ArrayList.fastRemove is the following:
Private remove method that skips bounds checking and does not return the value removed. We also found
cases where an informal specification was not reasonable and had to be ignored. An example is the
size() method, where the informal specification states that whenever the current size of the collection
is greater than Integer.MAX_VALUE, value Integer.MAX_VALUE has to be returned. This, however,
is not compliant with the implementation. Based on our experience, informal specifications are often
to a great extent incomplete and erroneous. Defects even remain incognito for years or decades, which
consequently means that a direct translation from an informal specification is often impractical and has
to be taken with caution.

Missing Tool Support for Contract-Based Specification.

Ideally, the verification system provides means to support the specification phase as well as the verification
phase. For instance, early feedback is crucial to prevent unnecessary iterations in specification and re-
verification, which is time consuming and error prone. However, following a modular approach, most
currently active verification systems only focus on the method under verification and do not consider
callers of that method. For instance, when a user specifies a method, some feedback on whether the
contract is sufficient for callers would be helpful. Moreover, completely specifying a large code base is
unrealistic. Hence, when given a set of prime methods that need to be verified, a small set of additional
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/∗@ elementData != null;
@ invariant \typeof(elementData) == \typeof(Object[]);
@∗/
private transient Object[] /∗@ nullable @∗/ elementData;
...
/∗@ public normal_behavior
@ requires initialCapacity >= 0;
@ ensures elementData.length == initialCapacity;
@ assignable elementData;
@ also
@ public exceptional_behavior
@ requires initialCapacity < 0;
@ signals_only IllegalArgumentException;
@ signals (IllegalArgumentException e) true;
@∗/

public ArrayList(int initialCapacity) {
super();
//this.elementData = new Object[0]; //resolves the problem
if (initialCapacity < 0)
throw new IllegalArgumentException(" Illegal Capacity : "+
initialCapacity);

this.elementData = new Object[initialCapacity];
}

Listing 4: Specification of ArrayList(int)

specified methods may help to decrease the verification effort significantly. In the future, identifying those
methods becomes crucial to bridge the gap between research and industry.

To ease the process for industrial software developers, the hurdles of contract-based specification
must decrease through better tool support as well. Although a developer must know how to specify an
implementation with contracts, there is still room for improvements. For instance, there exist an enormous
amount of research on automatic inference of loop invariants or generating specification cases in case
of trivial implementations, but its practically remains to be investigated. Especially under change, when
specification or implementation are easily violated, automated reasoning and feedback for resolving such
violations (e.g., suggesting fixes) are needed to prevent the deployment of bugs or costly re-verification.

4 Contract-Based Verification with KeY

In the following, we exhibit our experiences and results of verifying parts of OpenJDK 6 with KeY
2.6.1 (cf. Section 4.1) and discuss challenges that software developers face when applying deductive
verification automatically (cf. Section 4.2).

4.1 Experiences Drawn from Verifying OpenJDK

Invariant Checking in Constructors

In Listing 4, we illustrate the normal and exceptional specification of ArrayList’s constructor. Whereas
the normal behavior is verifiable, the exceptional behavior is indeed not. The reason is that if an exception
is thrown, this.elementData will not be instantiated (i.e., remains null). However, this contradicts the
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invariant stating that this.elementData must not be equal to null. The question here is whether the invariant
should be checked even if object construction fails. We postpone the question to Section 4.2.

Resolution: To resolve this issue and prove the constructor’s correctness in the exceptional case, we
can modify the implementation and instantiate this.elementData with zero elements before an exception
can be thrown. However, checking the invariant in this specific case when object construction fails seems
to be unnecessary. Providing means – preferably though an extended specification – to hinder invariant
checking in specific cases would be desirable.

Indeed, there exists the possibility to explicitly declare the constructor as a helper method using the
keyword helper in front of the method’s name [33]. Helper methods exclude checking invariants in their
pre- and postconditions. In this specific example, however, using helper is not an appropriate solution.
First, we may only want to hinder checking invariants in particular specification cases (i.e., the exceptional
behavior). Second, the reference manual for JML states that helper methods and constructors need to be
declared as private.

Pure Methods without Specification

A different problem we encountered by specifying List.indexOf(Object) was that the method could not be
verified automatically due to the usage of Object.equals(Object). List.indexOf(Object) returns the lowest
index in a list where its element equals the input object or -1 if there is no such element. In its informal
specification, equality is based on the equals method of the respective object. Object.equals() is used in
the specification as well as the implementation, but does not have a specification itself. Thus, each call of it
is replaced by its implementation in the verification process. If we replace each call to Object.equals() in
the implementation with == manually (which is generally against the intention of List.indexOf(Object))
the method becomes verifiable. Replacing Object.equals(Object) in the specification with ==, however,
does not help.

Resolution: Our assumption is that pure methods called in the specification are treated differently than
in the implementation. In both cases, method calls where no contract exists should be replaced by its
implementation, which apparently only happened in the specification.

Underspecification of the Java Semantics (Maximal Array Length)

We experienced an issue with method ArrayList.toArray(), when we tried to verify it. KeY does not check
whether the length of an array is too big. In particular, there is no maximal array length specified in the
Java language specification and, thus, KeY, as well as other tools, have no obligation to provide a check
for it. Problematic is that developers of virtual machines can set their own maximal array length, which is
often around Integer.MAX_VALUE - 4 (i.e., specific bytes are reserved for header information), but also
may change from version to version. A typical user would expect the maximal array length to be equal to
the maximal integer value (i.e., according to the informal specification).

One goal of design by contract is to render defensive programming needless (i.e., checking in the
implementation that the input is in the right range), as it can be considered redundant to a formal specifi-
cation. Moreover, formal verification is a means to not only ensure safety properties but also to prevent
security-related problems. Both objectives are invalidated by this issue. In practice, an attacker could ex-
ploit this problem by providing an array as input of approximately 2GB in size, which would consequently
crash the program.
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Resolution: KeY and other tools could offer the possibility to dynamically set the maximum length of
an array in its front-end (i.e., this option would behave like a global invariant for all arrays). Otherwise,
users of KeY and possibly other verification systems must be aware of this problem and provide maximal
array lengths themselves.

Parameterization

A different challenge we faced is parameterization. In the front-end of KeY, a user can select numerous
options to control how KeY should try to automatically solve the current verification task. Some options
are trivial, such as method call treatment (i.e., whether the contract of a called method is used or the im-
plementation is inlined). Other options, however, are unclear to typical users and require deep knowledge
about KeY’s underlying theory and solving procedure. This is particularly a problem, as various options
and specific combinations thereof strongly influence provability and verification effort. Additionally, the
number of options rather increases with each new version [30]. Finding the right settings for the current
verification task is therefore indispensable. For instance, we faced a problem during the verification of
method ArrayList.add(Object), where it could only be verified if we ignore integer overflows (i.e., there
exists a specific parameter to either ignore or check for overflows, or directly rely on the Java semantics
for integers). This problem is connected with the unspecified length (i.e., field size) of a collection.

Resolution: One ad-hoc solution is to perform trial and error, which is exceptionally time consuming,
but consequently leads to a set of prime configurations for different verification tasks. A more sophisti-
cated approach was proposed in a complementing study [30], where we conducted an empirical study on
the influence of parameters with respect to provability and verification effort. Such experiments help to
derive a guideline that a user can follow to identify when to use which option. One can even consider
setting options automatically, when the implementation is easy enough to process by an algorithm, or at
least extended tool support by integrating a recommendation system.

Summary

In Table 1, we summarize all initially specified methods and respective proof results. On average, 71%
of all methods could be verified automatically. We wrote a total of 175 lines of JML specification in
the presented classes (excluding some inherited specification on the interface level) over the course of
four person months. In this process, we encountered numerous obstacles, which we either resolved (cf.
Section 4.1) or which may require additional effort by the community. Namely, these obstacles were
the problem of integer overflow, the problem of checking invariants when object construction fails, the
problem with equals(), the problem with too big arrays, and a problem with getClass(), which internally
depends on the .class field. .class, however, was not parsable by KeY. Based on these results, we conclude
that, in principle, verification of real library code is practically in reach, but the specification process is
extremely time-consuming.

A cumulated overview of lines of Java code, lines of JavaDoc, and written lines of JML specification
is depicted in Table 2. Field Other refers to any line that is neither associated with an invariant, a
precondition, nor a postcondition (e.g., keyword nullable or exception handling through signals). The
specification contains 50% more lines than the actual implementation.



A. Knüppel, C. I. Pardylla, T. Thüm, and I. Schaefer 11

Class Method # spec. cases Proof result
ArrayList add(Object) 6 Over�ow problem
ArrayList constructor() 1 Proven
ArrayList constructor(int) 2 Invariant problem
ArrayList clear() 2 Proven
ArrayList contains(Object) 3 Proven
ArrayList ensureCapacity(Object) 3 Proven
ArrayList fastRemove(int) 1 Proven
ArrayList indexOf(Object) 1 Works with ==, not with equals
ArrayList isEmpty() 1 Proven
ArrayList outOfBoundsMsg(int) 1 Proven
ArrayList rangeCheck(int) 1 Proven
ArrayList rangeCheckForAdd(int) 1 Proven
ArrayList remove(Object) 3 Works with ==, not with equals
ArrayList size() 1 Proven
ArrayList toArray() 1 Proven - but Array instantiation

problem.
ArrayList trimToSize() 1 Proven

Arrays copyOf(Object[], int) 3 Uses getClass()
Arrays copyOfRange(Object[],

int, int)
4 Uses getClass()

Math abs(int) 1 Proven
Math max(int, int) 1 Proven
Math min(int, int) 1 Proven

Table 1: Specified Methods and Proof Results of our Real-World Case Study

4.2 Misunderstandings from a User’s perspective

Occasionally, KeY acted differently than we expected. In the following, we want to highlight some of
these occurrences in more detail to give tool builders feedback with respect to practical application and
to help users who encounter the same situations.

Array Instantiation - Nullable

In Listing 5, we depict two identically implemented methods. The specification of the second method
is extended by keyword nullable for its return value. The second method is verifiable, whereas the first
method is not. The reason is that keyword nullable does not only affect the reference object itself but also
all of its elements. Indeed, the default behavior in JML enforces that all reference types must be non-null
and, thus, elements of the instantiated array must also be non-null. In case of arrSize>0 and non-primitive
data, however, both methods fill the array with null elements according to Java’s default behavior for
initializing reference types.

This trivial mistake was hard to spot for us in the first few attempts. The open proof goal in KeY and
he symbolic execution debugger did also not provide enough information to resolve this issue. In our
experience, developing techniques to infer trivial specifications from the code to at least give suggestions
and feedback to users about what may be missing is crucial in the future to speed up the specification
process.
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Lines of JML
Classes Methods Java lines JavaDoc lines Invariant Requires Ensures Other Total
ArrayList 16 96 57 11 30 29 46 116
Arrays 2 12 35 0 10 14 24 48
Math 3 6 23 0 0 7 4 11
Total 21 116 115 11 40 50 74 175

Table 2: Statistics on the Specified Part of OpenJDK

/∗@ public normal_behavior
@ requires arrSize >= 0;
@ ensures \result != null;
@ ensures \result.length == arrSize;
@∗/

private static Object[] cArrayNotWorking(int arrSize){
return new Object[arrSize];

}

/∗@ public normal_behavior
@ requires arrSize >= 0;
@ ensures \result != null;
@ ensures \result.length == arrSize;
@∗/

private static /∗@ nullable @∗/ Object[] cArrayWorking(int arrSize){
return new Object[arrSize];

}

Listing 5: Two Identical Methods with Almost Identical Specifications

public class ExceptionalConstructor {
public static �nal List<ExceptionalConstructor> created = new ArrayList<>();
public boolean initialized;

public ExceptionalConstructor(boolean throwing) {
super();
created.add(this);
if (throwing) {
throw new RuntimeException();

}
initialized = true;

}
}

Listing 6: Example of a Constructor that Saves the Reference in a Static Field

Invariants in Constructors

As mentioned before, invariants are checked in constructors even when object construction fails. De-
spite the fact that this behavior does not seem to be intuitive, we depict a minimal example in List-
ing 6, where we believe that this behavior is indeed reasonable. Although the custom constructor of
ExceptionalConstructor may fail, its reference is saved in a static field. In this case, the constructor of
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public class ArrayStoreValid{
/∗@ invariant arr != null;
@ invariant arr.length == 1;
@∗/

private transient /∗@ nullable @∗/ Object arr[];

/∗@ public normal_behavior
@ ensures true;
@∗/

public void set(Object o) {
arr[0] = o;

}
}

Listing 7: Minimal Example of an Array Access

ExceptionalConstructor would not return the reference, but saving the reference is possible, because,
according to Java’s semantics, the object is created even before the constructor and its superconstructors
are executed. The question is, again, whether all invariants must hold in any given scenario.

A solution would be to provide a new keyword for excluding invariants in specific cases or to use a
boolean ghost field (similar to a model field) which is set to true once the invariant is established. The
invariant can then be rewritten as an implication (i.e., \*@ invariant ghost ==> arr != null; @*\).

Array Access - Data Types

Given the specification of ArrayStoreValid.set(Object) illustrated in Listing 7, this method appears to be
easily verifiable. However, KeY fails to verify this method and provides an ArrayStoreException. The
reason is based on array arr’s type; arr can take on any subtype of Object[]. Moreover, arr can hold
elements of any subtype of Object. Both types may be incompatible, which is recognized by KeY. This
issue can be resolved by adding the invariant \*@ invariant \typeof(arr) == \type(Object[]);@*\ to
explicitly inform KeY that array arr will always be of type Object[]. However, again, resolving such
issues should be supported by additional tooling during the specification phase.

5 Related Work

In the following, we discuss differences to related research that also focuses on specification and verifica-
tion of software systems with contracts.

A survey on different languages for behavioral contracts was done by Hatcliff et al. [24]. Besides
JML, there exist alternatives for specifying Java source code, such as C4J [10] or Contract4J [51]. Other
examples for languages with support for contract are Eiffel [39] and Spec# [2]. We consider our results to
be generally applicable to other languages, as the specification and semantics of those contract languages
is similar to JML.

For the purpose of this paper, we chose KeY 2.6.1 [1] as the primary verification system. There are a
number of verifiers that have been used in substantial verification efforts. Dafny was employed in IronClad
and IronFleet [25, 26], Autoproof has been used in the development of a verified Eiffel library [23, 43],
and F* has been used in Microsoft’s project Everest [8]. For object-oriented programming in general,
there exist a number of alternatives. The KIV system [19] can be employed for the development of



14 Experience Report on Formally Verifying Parts of OpenJDK’s API with KeY

safety-related software, is also based on a dynamic logic, and primarily focuses on strong proof support.
ESC/Java2 [16] is a static checker that finds common runtime-errors in JML-specified programs. Other
systems are Krakatoa [21] for Java programs and Jesse [37] for C programs, which are both based on
the Why platform for deductive reasoning [52]. Both systems require high expertise, as proof scripts are
manually written by users and also appear to be highly brittle [50]. Typically, verification of imperative
languages following the design-by-contract paradigm are based on first-order logic, such as KeY that is
based on Java dynamic logic. Examples of interactive theorem provers for higher-order logic are Coq [7],
Isabelle/HOL [40], and PVS [41]. Nevertheless, for our real-world case study we chose KeY, because
none of these systems is directly designed to support verification of mainstream programming languages
by mainstream software developers.

Despite being a research topic for decades, formal methods are still not widely applied by industrial
software developers. An often in research overlooked challenge is the difficulty of formally specifying real-
world software. Thus, only a few publications exist that either discuss necessities for formal specifications
to become widely applicable or discuss real-world case studies. Beckert et al. [4] discuss strategies and
requirements for contract-based specification and post-hoc verification of imperative legacy code. They
draw their experience from two case studies, namely the PikeOS microkernel [28] verified with VCC [14]
and the sElect voting system [31] verified with KeY. Baumann et al. [3] report on their experience of
the verification tasks in the Verisoft XT project. They also verified the PikeOS microkernel using VCC
and discuss challenges they encountered in bridging informal and formal specification. Gouw et al. [18]
investigated the correctness of TimSort with KeY. They indeed discovered a bug in its implementation and
derived a bug-free implementation that was proven correct. Beckert et al. [6] conducted another case study
by formally specifying JDK’s dual pivot quick sort method with JML and proving it correct in KeY. Estler
et al. [20] present a study that investigates how contracts are used in the practice of software development.
They analyzed a total 21 projects in the programming languages Java, Eiffel, and C#, which all were
following the design-by-contract methodlogy to some extent. Pariente and Ledinot [42] conducted a case
study on formal verification of industrial C code using the verification system Frama-C [17]. Their results
are in-line with ours, as they vividly exhibit that deductive verification of industrial source code requires
considerable expertise.

6 Conclusion and Future Work

Driven by research, formal verification of highly complex software systems made considerable progress in
the last decades. Beyond its purpose to increase trust in the correctness of a program, it also prevents safety-
related bugs, where life or missions are at stake. Furthermore, better tool support and advanced automation
push contract-based verification even in the range of industrial software developers, which do not have
to be highly specialized to apply verification techniques. However, although scalability of verification
techniques is addressed significantly, scalability of the specification phase is seldom investigated and
discussed.

In our real-world case study, we specified parts of OpenJDK’s Collections-API with JML and verified
them with the deductive verification system KeY. Our approach was to take the perspective of an inexpe-
rienced user to gain insights about challenges that a typical software developer would face. We described
issues that occurred during the specification with JML and the verification with KeY and tried to present
ideas that would resolve them. Our vision here is to aid developers of deductive verification tools to make
them applicable to industrial software developers.

One disillusioning insight of this case study was that deductive verification still requires high expertise
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in the underlying proof theory. The reasons are manifold. First, if a proof cannot be closed, identifying
whether the problem lies in the specification or implementation was notoriously hard, even for simple
methods. Second, there exist a considerable amount of parameters to set for verification tools and particu-
larly for KeY, each with the possibility to influence provability and verification effort. However, finding
the right configuration without feedback and tool support is impractical. Third, based on Java’s under-
specification of the maximal array length, verification systems may verify a method that can also fail
when exploited by malicious software. This issue raises awareness of the fact that formal verification and
software testing should be applied in concert to increase trust in the correctness.

For deductive verification tools to become applicable by typical software developers, we believe that
raising awareness of the challenges in the specification and verification process is necessary. Hence, a
community effort is needed to specify widely-used APIs such as OpenJDK that users can verify their own
software against. There are several directions to extend this work.

• Besides specifying and verifying a larger part of OpenJDK to gain more experiences, it is necessary
to also employ other deductive verification systems, preferably for numerous programming and
specification languages. This allows us to generalize some of our findings and identify common
challenges in terms of scalability of the specification process and usability of the verification
environment.

• Accordingly, usability of the numerous IDEs should be investigated in experimental user studies.
For instance, success of verifiying source code often depends on a user-chosen parameterization,
but specific parameters are hard to understand and sometimes even negligible. Tool builders need
to be aware of the user’s challenges.

• Additionally, identifying reliable and scalable means for inferring specifications for API-like code
(semi)-automatically can ease the specification process. We identified that certain specification
aspects have to be spelled out explicitly that could also be synthesized from the code – either
statically or dynamically. In particular, APIs evolve and new methods for avoiding unneeded re-
verifications under change become crucial.
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