
Logic-based Methods for Software Engineers and
Business People

Joost Vennekens

KU Leuven, Dept. of Computer Science
Campus De Nayer, St-Katelijne-Waver, Belgium

Abstract. Both software engineers and business people tend to be re-
luctant to adopt logic-based methods. On the one hand, this may be due
to unfamiliarity with “scary” logical syntax. To ameliorate this, we de-
veloped an API for a state-of-the-art logic system, using only standard
Python syntax. On the other hand, logic-based methods might have more
impact if they could be used directly by business people. The recent DMN
standard that might help in this respect.

Logic-based methods have great potential to improve current software engineer-
ing practice. However, this potential is often not evident for people from in-
dustry. For instance, when demoing a state-of-the-art knowledge base system to
programmers, we typically get comments stating that, e.g., they can program
the same functionality with “a couple of for-loops”. To properly appreciate the
benefits of a logic-based approach (greater flexibility, modularity, reliability and
maintainability), it is necessary to understand in detail how the representation
works, at least in the context of a small example. Here, syntax often seems a
bottleneck, with programmers getting hung up on details they dislike.

To reduce this effect, we developed an API [3] that allows the state-of-the-
art IDP knowledge base system [1] to be used from the Python programming
language. Crucially, this API allows logic formulas to be added to the knowledge
base using standard Python syntax. For instance, suppose that a mapping from
users to roles is given by the following Python data structure, consisting of a list
of tuples, and that a list of access rights is given in a similar way:

InRole = [(’John’, ’Student’), (’Ann’, ’Admin’)] (1)

Allowed = [(’Student’, ’PublicData’), (’Admin’, ’Passwords’)] (2)

Suppose we now want to verify that certain users indeed have access to certain
resources, e.g., Access = [(’Ann’, ’Passwords’)]. The following Python expres-
sion then checks that Ann is indeed allowed to access the password data:

all(any((u,r) in InRole and (r,res) in Allowed for r in Role) for (u,res) in Access)

Our API accepts the same Python expression, but allows it to be used in dif-
ferent ways: for instance, if the programmer does not assign a value to InRole
herself (i.e., she omits statement (1)), then the IDP system will itself compute

an assignment of users to roles that ensures that all of the required accesses are
possible (i.e., Ann will be placed in the role Admin to ensure that she can access
the password data). In this way, the flexibility of a declarative approach can be
experienced without any new syntax. We therefore believe that this API may be
a useful tool to introduce programmers to the power of logic-based approaches.

In many contexts, however, not programmers need to be convinced, but busi-
ness people. Despite the significant technical differences between traditional soft-
ware engineering and knowledge-based methods, business users may simply see a
choice between either paying a programmer to deliver a piece of software or pay-
ing a knowledge engineer to deliver a piece of software. Here, we believe that the
unique selling proposition of knowledge-based methods is that they may allow
to “eliminate the middle man”, by giving ownership of the domain knowledge
back to the business instead of to an IT departement.

The recent Decision Model and Notation (DMN) standard1 published by
the Object Management Group has been developed specifically to allow domain
experts without any background in logic or computer science to construct a
formal model of a decision process. Using this notation, a business expert could
define the decision logic for access control by the following three tables:

C Input Output

User Role

“John” “Student”
“Ann” “Admin”
“Ann” “Student”

C Input Output

Role Resource

“Student” “PublicData”
“Admin” “PublicData”
“Admin” “Passwords”

U Input Output

Role AccessGranted
default: false

Request true

Here, the “C” in the top left of the first table represents the “Collect” hit
policy, meaning that a user belongs to all of the roles that are mentioned for her
in the table. The second table expresses that the user has access to all resources
that correspond to one of the roles to which she belongs. Finally, the third table
expresses that when a user requests a resource to which she has access, the access
should be granted, and otherwise it should not.

The tabular notation is not only intuitive for business people, it also allows
the completeness and correctness of the decision procedure to be easily checked.
Currently, most reasoning systems for DMN have evolved from rule-based expert
systems and they typically only allow forward propagation. However, since a
DMN model expresses a purely declarative piece of knowledge, there is no reason
why other inference tasks could not be applied to it, for instance, by translating
such a model to input for the IDP system, as done (currently still manually) in
[2]. We suspect that the DMN language might easily be extendable to allow more
complex kinds of knowledge to be expressed, while retaining the ease-of-use for
domain experts. In this way, more of the power of logic-based systems could be
put directly at the finger tips of domain experts and business decision makens,
eliminating the need for an intervening programmer or knowledge engineer.

1 https://www.omg.org/spec/DMN/

References

1. M. Bruynooghe, H. Blockeel, B. Bogaerts, B. De Cat, S. De Pooter, J. Jansen,
A. Labarre, J. Ramon, M. Denecker, and S. Verwer. Predicate logic as a modeling
language: modeling and solving some machine learning and data mining problems
with IDP3. Theory and Practice of Logic Programming, 15(6):783–817, 2015.

2. I. Dasseville, L. Janssens, G. Janssens, J. Vanthienen, and M. Denecker. Com-
bining dmn and the knowledge base paradigm for flexible decision enactment. In
Supplementary Proceedings of the RuleML 2016 Challenge. CEUR-WS. org, 2016.

3. J. Vennekens. Lowering the learning curve for declarative programming: A python
API for the IDP system. pages 86–102, 2016.

