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Abstract

We propose a system design principle that explains how
to use declarative programming (logic and functional)
together with imperative programming. The advantages
of declarative programming are well known; they in-
clude ease of analysis, verification, testing, optimiza-
tion, maintenance, upgrading, and distributed imple-
mentation. We do not elaborate on the advantages here,
but rather focus on what part of the software system
should be written declaratively. We observe that declar-
ative programming cannot interact directly with the real
world while remaining declarative, since it does not sup-
port common real-world concepts such as physical time
and named state. It is important to distinguish reason-
ing about the real world from interacting with the real
world: declarative programming can do the first but not
the second. Other programming paradigms that sup-
port these concepts must be used, such as imperative
programming (which contains named state). To opti-
mize the system design, we propose that real-world con-
cepts should only be used where they cannot be avoided,
namely where the system interfaces with the real world.
It follows that a software system should be built com-
pletely declaratively except possibly where it interfaces
with the real world. We motivate this principle with
examples from our research and we outline a formal ar-
gument to justify it.

1 Introduction

The interplay between declarative (e.g., pure functional
or logic) programming and imperative programming
(which uses named mutable state) has long been a sub-
ject of debate in software design. Important questions
are which paradigm to use and when to use it; and when
and how to use the paradigms together. The book [1]
presents these paradigms in a uniform framework, each
with its kernel language, and carefully explains what
each can and cannot do. This shows that there is no
one paradigm that is uniformly better than the others.
Large programs will typically use different paradigms in
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different parts, just as building a house requires multiple
skills such as masonry, carpentry, plumbing, and elec-
tricity. But determining which paradigm to use where
is left unanswered. This position paper gives a design
principle that answers this question:

A software system should be built completely
with declarative programming except where it
interacts with the real world.

Section 2 gives two examples to motivate this principle.
Section 3 defines what we mean by interaction with the
real world and gives a formal argument to support the
principle. Section 4 discusses some ramifications of the
principle, and Section 5 presents a brief conclusion.

2 Motivation

2.1 Example 1: client/server

Consider a client/server application in its simplest form:
two clients communicating with one server. Each client
sends requests to the server and receives replies. To
satisfy liveness of each client, the server must accept
each incoming request and reply to it within a reasonable
delay. The server’s handling of a client request should
not be impeded because of what the other client does
or does not do. The order of the server’s handling of
requests cannot be determined in advance, because it
depends on the precise timing of the requests.

2.2 Example 2: convergent computation
(CRDTs and Lasp)

We give a more substantial example taken from our re-
search into synchronization-free programming for dis-
tributed systems, namely the Lasp programming sys-
tem [2]. A Lasp program consists of a dataflow graph
connecting data structures with functional and logical
operations (similar to SQL operations). The data struc-
tures and operations are both designed to do convergent
computation: each computation step adds information
monotonically. In fact, the data structures are CRDTs
(Conflict-free Replicated Data Type) [3]. To the pro-
grammer, Lasp executes as a functional/logic program
with a dataflow semantics, similar to the deterministic
dataflow of Chapter 4 in [1].



The data structures are replicated and information is
periodically disseminated between replicas. CRDTs are
designed so that the replicas are always converging to
the correct result. This is extremely resilient. Changing
the timing of the dissemination messages has no effect
on correctness. Dropped, delayed, or reordered mes-
sages have no effect on correctness. The only possible
effect is to slow down convergence. Node crashes have
two possible results: either the crash has no effect ex-
cept for slowing down convergence, or some information
disappears completely.

Lasp provides a functional semantics with a highly
resilient distributed implementation based on weak syn-
chronization. A Lasp program needs stronger synchro-
nization than periodic dissemination only when talking
to external clients (i.e., real-world interaction).

3 Formal definition

We have given two examples that show the principle in
action. We now outline a formal argument to justify
the principle and to define it precisely. For brevity, we
use the lambda calculus, but any other declarative ex-
ecution model that performs deduction from an initial
input could be used instead.

3.1 Functional programming

Consider the lambda calculus with a concurrent evalu-
ation strategy. Given an initial lambda expression, we
can reduce it to its normal form. Any reduction order
will lead to the same normal form, which is known as
the Church-Rosser property. The reduction may take
many steps. At any step in the reduction, there may be
several different positions in the lambda expression that
can be reduced next. By adding a scheduler to deter-
mine how to choose the position reduced at each step, we
can define a concurrent form of functional programming
very similar to the deterministic dataflow model given
in Chapter 4 of [1]. In this form, we can define deter-
ministic concurrent agents that communicate through
streams, similar to Kahn networks [4].

3.2 Real-world interaction requires ex-
tending this model with time

Real-world interaction requires that the computation
take into account input coming from the real world. If
there are several inputs, they need to be handled in some
order. This order is not known in advance; it becomes
known during the reduction. We are led to a sequence of
inputs, arriving one by one during the reduction process.

If all inputs would be known in advance, then they
could be considered part of the initial expression, and
the system would be purely declarative. However, a key
property of the real world is that they are not known
in advance. They arrive during the reduction process
because reduction steps take nonzero time. The arrival
order is determined by the precise timing with respect

to the reduction process. The order can affect the result.
For example, if the computation builds a list, the order
of its elements can depend on the timing. We conclude
that the new concept that must be added to determin-
istic dataflow to allow interaction with the real world is
time.

It may be that an expression is not reducible until
an input arrives, in which case we say the reduction is
suspended. When the input arrives, a reduction step
becomes possible. When this step is taken, we say the
reduction synchronizes with the input. On the other
hand, the expression may be reducible at several po-
sitions, and an arriving input creates another position
where a reduction is possible. In this case, the system
is active but can accept new input during execution.

4 Discussion

We claim that the design principle holds generally when-
ever a system interacts with the real world. The real-
world property “time” can appear in different guises
to the system, e.g., as nondeterminism (see above), as
physical wall-clock time (hardware clock), or as partial
failure.

Interaction with the real world happens not just at
the API, but everywhere that the real world has to be
taken into account. For example, MapReduce handles
a straggler (slow node) by speculatively running a copy
of its task on another node. Detecting the slowness of a
straggler depends on time, which is an interaction with
the real world.

5 Conclusions

This position paper presents a software design princi-
ple that is a result of the author’s study of the differ-
ences between declarative and imperative programming
for system building. We are working on a full paper
with a detailed formal justification of the principle and
its application to synchronization-free programming.
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