
How to upgrade ASP

for true dynamic modelling and solving?

Torsten Schaub∗

Inria, Rennes, France and University of Potsdam, Germany
torsten@cs.uni-potsdam.de

1 Motivation

The world is dynamic, and ASP is not! This is a provocative way to say that
ASP is not up to dealing with many complex real-world applications having
a dynamic nature, let alone transitions over states, not even mentioning more
fine-grained temporal structures.

Although ASP has already been applied in various domains in academia
and industry with remarkable success [8, 9], a closer look reveals that this
concerns mostly static or smaller dynamic domains. For example, ASP is
highly competitive in static domains such as timetabling [2] and workforce
management [19], whereas it lags behind when it comes to substantial dynamic
ones, as for instance robotic intra-logistics as discussed below. In fact, there is
still quite a chasm between its level of development for addressing static and
dynamic domains. This is because its modeling language as well as its grounding
and solving machinery aims almost exclusively at handling static knowledge,
while dynamic knowledge is usually indirectly dealt with via reductions to the
static case.

In order to overcome this barrier and to upgrade ASP to the next level,
dealing with complex dynamic problems, three areas appear to be relevant to
me.1

2 Modeling

The most popular languages for modeling dynamic systems in the realm of ASP
are temporal extensions of Equilibrium Logic [1], the host logic of ASP, and action
languages [14]. Although both constitute the main directions of non-monotonic
temporal systems, their prevalence lags way behind the usage of plain ASP for

∗Torsten Schaub has been supported by the German Science Foundation (DFG): projects
SCHA 550/9 and 11.

1This personal view comes with a lot of self references — sorry for that!

1



modeling dynamic domains. Hence, notwithstanding the meticulous modeling of
dynamics in ASP due to an explicit representation of time points, it seems that
its pragmatic advantages, such as its rich (static) modeling language and readily
available solvers, often seem to outweigh the firm logical foundations of both
dedicated approaches. Although the true reasons are arguably inscrutable, let
us discuss some possible causes.

The appeal of action languages lies in their elegant syntactic and semantic
simplicity: they usually consist of static and dynamic laws inducing a unique
transition system. Although most of them are implemented in ASP, their
simplicity denies the expressive modeling possibilities of ASP. Also, despite some
recent reconciliation [16], existing action languages lack the universality of ASP
as reflected by the variety of variants.

Temporal Equilibrium Logic (TEL; [1]) builds upon an extension of the logic
of Here-and-There [15] with Linear Temporal Logic (LTL; [18]). This results in
an expressive non-monotonic modal logic, which relies upon the general syntax
of LTL and possesses a computational complexity beyond LTL [3]. As in LTL,
a model in TEL is an infinite sequence of states, called a trace. This rules
out computation by ASP technology (and necessitates model checking) and is
somewhat unnatural for applications like planning, where plans amount to finite
prefixes of one or more (infinite) traces.

One proposal to overcome these issues is to restrict TEL to finite traces,
similar to the restriction of LTL to LTLf advocated in [5]. This is detailed in [4]
and accompanied with an extension of the ASP system clingo, dubbed telingo
and available at https://github.com/potassco/telingo. telingo extends the
full-fledged input language of clingo with temporal operators and computes
temporal models incrementally by multi-shot solving [11].

3 Encoding and Solving

The need for dedicated encoding and solving techniques for handling dynamic
domains stems from the necessity to implement fluents, that is, propositions
changing their value over time. In ASP, just as other constraint-based approaches
like CP or SAT, this amounts to creating a copy of each fluent and related rules
per time point. The reduction of the resulting redundancy is the primary target
of the aforementioned dedicated reasoning techniques.

First of all, we should realize that modeling and encoding a dynamic domain
may amount to quite different specifications, both being declarative but aiming
at different conceptions at distinct levels of the domain.2 The easiest way to
realize the difference between modeling and encoding is to consider a temporal
rule a(X)← •b(X) in which ‘•’ denotes the “previous” operator, or in telingo
syntax: a(X) :- ’b(X), that is finally encoded as a(X,t) :- b(X,t-1) where

2Another good example for this are (arithmetic) CSPs, nicely modeled by expressions like
x+ y < 7 but usually best implemented in ASP (and SAT) via an order encoding [23] treating
integer variables by inequalities like, x ≤ 1, x ≤ 2, . . . (rather than a direct encoding using
equalities x = 1, x = 2, . . .).

2



the parameter ‘t’ is handled by multi-shot solving [11]. Obviously, modeling is
ideally more abstract than encoding by dropping aspects like the implementation
of time by increasing integers. Also, the targeted implementation using parame-
ters ‘t’ (instead of variables ‘T’) remains hidden. But apart from this abstraction,
no real gain is obtained as regards the elimination of redundancy. Unlike this,
multi-shot solving cuts back redundancies by avoiding repeated grounding and
solving efforts.

Much more is possible. Encoding-wise an exemplar is the parallel representa-
tion of sequential plans which has been investigated in SAT planning [7, 21]. A
first attempt to transfer this to ASP is given in [6].3 Another example is multi-
path planning in logistics warehouses, where a two-step abstraction encoding
technique was used [17] to scale up to state of the art algorithms. Certainly,
many more such principled techniques exist but are no matter of common knowl-
edge. Solving-wise, the semantic links between the aforementioned fluent copies
need to be exploited. Again, SAT planning serves us as an exemplar, where
heuristics were used in [20] to provide such links. This idea has led to the
heuristic directives in clingo [12]. Another solving technique was put forward
in [10], where ground multi-state invariants are extracted and generalized in
order to be fed back into the solving process, thus extending their scope to all
similar state combinations.4 And much more can and needs to be done!

4 Benchmarking

The upgrade of ASP is moreover threatened by a lack of complex benchmark
scenarios mimicking the needs of dynamic real-world applications. In contrast
to many available benchmark suites, often supplied by automatic instance
generators, real-world applications are rarely disseminated, either because they
are classified or come only with a handful of instances. Another commonality
of existing benchmark suites is that they are kept simple, stick to basic ASP,
and usually feature at most a single specifics, so that they can be processed
by as many systems as possible. However, this is in contrast to many real-
world applications whose solution requires the integration of multiple types of
knowledge and forms of reasoning. Last but not least, a feature distinguishing
ASP from all other solving paradigms is its versatility, which is best put in
perspective by solving multi-faceted problems.

The fear is thus that the lack of complex benchmark scenarios becomes a
major bottleneck in ASP’s progression towards real-world applications, and hence
that more and more should be made available to our community. As a first step
to overcome this problem, we propose in [13] the domain of robotic intra-logistics,
a key domain in the context of the fourth industrial revolution, as witnessed
by Amazon’s Kiva, GreyOrange’s Butler, and Swisslog’s CarryPick systems.5

3This is implemented in the plasp system available at https://github.com/potassco/plasp.
4This is implemented in the ginkgo system available at https://github.com/potassco/

ginkgo.
5www.amazonrobotics.com, www.greyorange.com/products/butler, www.swisslog.com/

3



All of them aim at automatizing warehouse operations by using robot vehicles
that drive underneath mobile shelves and deliver them to picking stations. From
there, workers pick and place the requested items in shipping boxes. Apart
from the great significance of this real-world domain, our choice is motivated by
several aspects. First of all, the domain is highly dynamic. At the same time,
the warehouse layout is grid-based and thus provides a suitable abstraction for
modeling robot movements in ASP. Moreover, the domain offers a great variety of
manifold problem scenarios that can be put together in an increasingly complex
way. For instance, one may start with single or multi-robot path-finding scenarios
induced by a set of orders that are accomplished by using robots for transporting
shelves to picking stations. This can be extended in various ways, for example, by
adding shelf handling and delivery actions, considering order lines with multiple
product items, keeping track of the number of ordered and/or stored product
items, modeling energy consumption and charging actions, taking into account
order frequencies, supplies, and priorities, striving for effective layouts featuring
dedicated locations, like highways or storage areas, and so on. Finally, the domain
is extremely well-suited for producing scalable benchmarks by varying layouts,
robots, shelves, orders, product items, etc. Inspired by this, we have developed
the benchmark environment asprilo [13] consisting of four parts (i) a benchmark
generator, (ii) a solution checker, (iii) a benchmark and solution visualizer, and
(iv) a variety of reference encodings. The design of asprilo was driven by the
desire to create an easily configurable and extensible framework that allows
for generating scalable, standardized benchmark suites that can be visualized
with and without a corresponding solution. Correctness can be established via
a modular solution checker. The accompanying reference encodings may serve
as exemplary bases for extended encodings addressing more complex scenarios.
The asprilo framework is freely available at https://potassco.org/asprilo.

5 Summary

Many people well beyond our community get interested by the modeling and
solving capabilities of ASP, its elegance, succinctness, transparency, and last
but not least its effectiveness. We attract them by showcasing our exemplary
problems and solutions. But at the end of the day, if we want to keep them
interested in ASP, we have to solve their problems.

Acknowledgments I am grateful to Martin Gebser, Roland Kaminski, and
the four reviewers for their constructive comments ! As well, I would like to
mention that many aspects arose in very fruitful collaborations with Mutsunori
Banbara, Pedro Cabalar, Vladimir Lifschitz, Orkunt Sabuncu, and Tran Can
Son, not to mention the terrific Potassco people! Thank you all!!

carrypick

4



References

[1] F. Aguado, P. Cabalar, M. Diéguez, G. Pérez, and C. Vidal. Temporal
equilibrium logic: a survey. Journal of Applied Non-Classical Logics, 23(1-
2):2–24, 2013.

[2] M. Banbara, K. Inoue, B. Kaufmann, T. Okimoto, T. Schaub, T. Soh,
N. Tamura, and P. Wanko. teaspoon: Solving the curriculum-based course
timetabling problems with answer set programming. Annals of Operations
Research, 2018. To appear.

[3] L. Bozzelli and D. Pearce. On the complexity of temporal equilibrium logic.
In Proceedings of the Thirtieth Annual Symposium on Logic in Computer
Science (LICS’15), pages 645–656. IEEE Computer Society Press, 2015.

[4] P. Cabalar, R. Kaminski, T. Schaub, and A. Schuhmann. Temporal answer
set programming on finite traces. Theory and Practice of Logic Programming,
2018. To appear.

[5] G. De Giacomo and M. Vardi. Linear temporal logic and linear dynamic
logic on finite traces. In Rossi [22], pages 854–860.

[6] Y. Dimopoulos, M. Gebser, P. Lühne, J. Romero, and T. Schaub. plasp
3: Towards effective ASP planning. In M. Balduccini and T. Janhunen,
editors, Proceedings of the Fourteenth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’17), volume 10377
of Lecture Notes in Artificial Intelligence, pages 286–300. Springer-Verlag,
2017.

[7] Y. Dimopoulos, B. Nebel, and J. Köhler. Encoding planning problems in
nonmonotonic logic programs. In S. Steel and R. Alami, editors, Proceedings
of the Fourth European Conference on Planning, volume 1348 of Lecture
Notes in Artificial Intelligence, pages 169–181. Springer-Verlag, 1997.

[8] E. Erdem, M. Gelfond, and N. Leone. Applications of ASP. AI Magazine,
37(3):53–68, 2016.

[9] A. Falkner, G. Friedrich, K. Schekotihin, R. Taupe, and E. Teppan. Indus-
trial applications of answer set programming. Künstliche Intelligenz, 2018.
To appear.

[10] M. Gebser, R. Kaminski, B. Kaufmann, P. Lühne, J. Romero, and T. Schaub.
Answer set solving with generalized learned constraints. In M. Carro and
A. King, editors, Technical Communications of the Thirty-second Inter-
national Conference on Logic Programming (ICLP’16), volume 52, pages
9:1–9:15. Open Access Series in Informatics (OASIcs), 2016.

[11] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Multi-shot ASP
solving with clingo. Theory and Practice of Logic Programming, 2018. To
appear.

5



[12] M. Gebser, B. Kaufmann, R. Otero, J. Romero, T. Schaub, and P. Wanko.
Domain-specific heuristics in answer set programming. In M. desJardins and
M. Littman, editors, Proceedings of the Twenty-Seventh National Conference
on Artificial Intelligence (AAAI’13), pages 350–356. AAAI Press, 2013.

[13] M. Gebser, P. Obermeier, T. Otto, T. Schaub, O. Sabuncu, V. Nguyen, and
T. Son. Experimenting with robotic intra-logistics domains. Theory and
Practice of Logic Programming, 2018. To appear.

[14] M. Gelfond and V. Lifschitz. Action languages. Electronic Transactions on
Artificial Intelligence, 3(6):193–210, 1998.

[15] A. Heyting. Die formalen Regeln der intuitionistischen Logik. In Sitzungs-
berichte der Preussischen Akademie der Wissenschaften, page 42–56.
Deutsche Akademie der Wissenschaften zu Berlin, 1930. Reprint in
Logik-Texte: Kommentierte Auswahl zur Geschichte der Modernen Logik,
Akademie-Verlag, 1986.

[16] J. Lee, V. Lifschitz, and F. Yang. Action language BC: Preliminary report.
In Rossi [22], pages 983–989.

[17] V. Nguyen, P. Obermeier, T. Son, T. Schaub, and W. Yeoh. Generalized tar-
get assignment and path finding using answer set programming. In C. Sierra,
editor, Proceedings of the Twenty-sixth International Joint Conference on
Artificial Intelligence (IJCAI’17), pages 1216–1223. IJCAI/AAAI Press,
2017.

[18] A. Pnueli. The temporal logic of programs. In Proceedings of the Eight-
teenth Symposium on Foundations of Computer Science (FOCS’77), pages
46–57. IEEE Computer Society Press, 1977.

[19] F. Ricca, G. Grasso, M. Alviano, M. Manna, V. Lio, S. Iiritano, and
N. Leone. Team-building with answer set programming in the gioia-tauro
seaport. Theory and Practice of Logic Programming, 12(3):361–381, 2012.

[20] J. Rintanen. Planning as satisfiability: heuristics. Artificial Intelligence,
193:45–86, 2012.

[21] J. Rintanen, K. Heljanko, and I. Niemelä. Planning as satisfiability: parallel
plans and algorithms for plan search. Artificial Intelligence, 170(12-13):1031–
1080, 2006.

[22] F. Rossi, editor. Proceedings of the Twenty-third International Joint Con-
ference on Artificial Intelligence (IJCAI’13). IJCAI/AAAI Press, 2013.

[23] N. Tamura, A. Taga, S. Kitagawa, and M. Banbara. Compiling finite linear
CSP into SAT. Constraints, 14(2):254–272, 2009.

6


