A Rule-Based Tool for Analysis and Generation
of Graphs Applied to Mason’s Marks

Thom Frithwirth
Ulm University, Germany
http://www.informatik.uni-ulm.de/pm/fileadmin/pm/home/fruehwirth/

Abstract

We are developing a rule-based implementation of a tool to analyse and
generate graphs. It is used in the domain of mason’s marks. For thousands
of years, stonemasons have been inscribing these symbolic signs on dressed
stone. Geometrically, mason’s marks are line drawings. They consist of a
pattern of straight lines, sometimes circles and arcs. We represent mason’s
marks by connected planar graphs.

Our prototype tool for analysis and generation of graphs is imple-
mented in the rule-based declarative language Constraint Handling Rules
(CHR). It features

e a vertex-centric logical graph representation as constraints,

e derivation of properties and statistics from graphs,

e recognition of (sub)graphs and patterns in a graph,

e automatic generation of graphs from given constrained subgraphs,
e drawing graphs by visualization using svg graphics

We started to use the tool to classify and to invent mason’s marks.

1 Tool Description

Mason’s marks are symbols often found on dressed stone in historic buildings.
In Europe, they were common from the 12th century on [Fri32, Dav54]. There,
one can mainly find mason’s marks from the medieval ages, mostly in churches,
cathedrals and monasteries. In one such building, there may be a thousand
mason’s marks of hundred different designs. Mason’s marks tend to be simple
geometric symbols, usually constructed using rulers and compasses and precisely
cut with a chisel. In this way a distinctive sign consisting of straight lines and
curves could be produced with little effort.

Our prototype graph analysis and generation tool is currently implemented
using CHR in SWI Prolog [WDKTF14]. We assume some basic familiarity with
Prolog and Constraint Handling Rules (CHR) [Frii09, Friil5, Friil8a, FR18|.



1.1 Representation of Mason Marks as Graphs

We represent mason’s marks (currently without arcs) by connected planar straight-
line graphs, a drawing of planar graphs in the plane such that its edges are
straight line segments [Tam13]. A line (segment) has two nodes, two endpoints,
given by Cartesian coordinates. Each point is defined by a pair of numbers writ-
ten X-Y. For convenience of manipulation, we redundantly represent lines at the
same time by polar coordinates, which consist of a reference point (pole), which
is the first endpoint of the line, a line length (radius) and an angle (azimuth) in
degrees. This leads to the following line constraint:

line(EndPointl, EndPoint2, LineLength, Angle)

With polar coordinations, translation, rotation and scaling of lines is easy. With
Cartesian coordinates, visualization by translation into svg graphics is easy.

1.2 Analysis of Graphs

From a given graph, i.e. its line constraints, we can generate information using
propagation rules. For example, one can compute counts for the occurrences
of each value in the components of a line (points, lengths, angles) to collect
statistical information about the graph.

The constraint a(Type, Count, Value) can be considered as an array entry
that contains for each Value of a certain Type its Count of occurrences. Below,
the first rule adds such entries for the same Type,Value pair. The second rule
computes relevant information from a single line. (line is abbreviated to 1 in
the remainder of the paper.)

% add counts for two entries of the same T(ype), V(alue) pair
a(T,N1,V), a(T,N2,V) <=> N is N1+N2, a(T,N,V).

% compute statistical information about lines of a graph
% Types: l(ine)c(ount), n(ode), 1(ine )1l(ength), a(ngle)
1(P1,P2,L,A) ==> a(cl,1,1),a(n,1,P1),a(n,1,P2),a(11,1,L),a(a,1,A).

The first rule is a simplification rule. It replaces two matching a constraints by
a new one containing the sum. The second rule is a propagation rule that adds
a constraints when a line constraint is matched without removing it.

1.3 Pattern Matching of Graphs

We want to find patterns and recognize subgraphs in a graph. To account for
scaling and rotation, we introduce two Prolog predicates that we will use in the
guard of rules. Here are two examples: how to recognize parallel lines and the
subgraph depicted in Figure 1. We use a constraint recognized (What,NodeList)
to record what has been recognized for which nodes.



% two parallel lines have the same angle
1(A,B,L1,A), 1(C,D,L2,A) ==> recognized(parallel, [A,B,C,D]).

% recognize subgraph comprised of four lines given in Figure 1
1(A,B,L1,A1), 1(B,C,L2,A2), 1(E,C,L3,A3), 1(C,D,L4,A4) ==>
rotated([A1,A2,A3,A4],[90,0,90,90]),
scaled([L1,L2,L3,L4],[1,1,1,1]) |
recognized(y_sign, [A,B,C,D,E]).

-

Figure 3: Graph Figure 4: Graph
[2,90,1-1,90,2], [2-1,90,1,90,2],
[3,45,3-1,45,3] [3,45,3-1,45,3]

Figure 1: Y-Sign Figure 2: Graph
Graph [2,90,1,90,2]

1.4 Node-Centric Representation of Graphs by Half-Lines

Through exhaustive initial experiments we found that for the encoding and
generation of mason’s marks a node-centric (vertex-centric) representation of
their underlying connected planar straight-line graph is helpful. Each node is
at the center of several lines leaving it. We record the length of these lines and
the angle between neighboring lines in a list for each node of degree larger than
one. For example in node([2,90,1,90,2]), the line lengths are 2, 1, 2 and
the angles between the lines are 90, 90. This constraint represents a turnstile
symbol I, see Fig. 2.

In order to describe larger connected graphs, the node data structure rep-
resentation is extended to allow identifiers for lines. These identifiers are op-
tionally attached to the line-lengths. If such an identifier is shared between two
lines in different nodes it means that these lines are the same, with the two
nodes as endpoints. Such annotated lines we call half-lines, because one needs
a matching pair of them to form a valid line.

When the nodes are translated into line constraints, the subgraphs of the two
nodes connected by this common line are scaled and rotated such that the half-
lines become identical. For example node([2,90,1-1,90,2]) ,node([3,45,3-1,
45,3]) depicts the graph given in Fig. 3. In effect, the node([3,45,3-1,
45,3]) is rotated and scaled to meet the half-line identified by I in node ([1,45,
1-1,45,1]1). Contrast this with the situation in Figure 4, where the half line
of the first node has changed.



1.5 Exhaustive Generation of Arbitrary Graphs

We can exhaustively generate graphs from a given node-centric representation
consisting of node constraints containing half-lines with unique occurrences of
free unbound logical variables as identifiers. Different resulting graphs are pos-
sible, depending on which half-lines are identified by binding (aliasing) their
variable identifiers. Not all such matchings lead to a valid graph that is geo-
metrically possible.

The given graph in node-centric representation is translated into a conjunc-
tion of lines, where some of them are half-lines containing identifiers. Two
half-lines react with each other by the following rule that contains a disjunc-
tion from Prolog in its right hand side. Either the two half-line identifiers can
be made identical (I1=I2) or they must be different (which is enforced by the
constraint diff).

line(N1,N2,M1-I1,A1), line(N3,N4,M2-I2,A2) ==
(
I1=I2, % try identification
remove (1(N1,N2,M1-I1,A1)), % remove half-lines explicitly
remove (1 (N3,N4,M2-12,A2)),
alldiff([N1,N2,N3,N4]), % all nodes must be different
M is M1/M2, A is A1+180-A2, % compute scaling and rotation
update(N3,M,A), % scale and rotate N3 graph to fit N1 graph
N1=N4, N2=N3, % equate nodes of now identical half-lines
line(N1,N2,M1,A1) % merged line replaces the two half-lines

diff(I1,I2) % or otherwise half-lines must be different
).

Scaling and rotation is applied to the complete subgraph in which the sec-
ond half-line occurs using the constraint update (Node,Scaling,Rotation). Fi-
nally, the nodes of the two half lines are identified and a new proper full line
without identifier replaces the two merged half-lines. (At this point, the node
points are still unbound variables, their coordinates have no values yet.)

1.6 Random Generation of Graphs for Mason Marks

We have encoded a number of mason’s marks from [Rzi81] in our node-centric
representation, in particular for the Ulm Minster (see Figure 5). For random
generation of similarly shaped mason’s mark graphs we randomly choose node
constraints from these mason’s marks satisfying certain conditions. The result-
ing graph may not always be valid due to unmatched half-lines. Figure 6 shows
some examples of mason’s marks generated in this way. For more, see [Friil8b].



N y 1 % -
Figure 5: Mason’s Marks of Ulm Minster

e 3o

Figure 6: Randomly Generated Mason’s Marks derived from Ulm Minster Marks

2 Conclusions

We have shortly presented our prototype tool to analyse, generate and draw
straight-line graphs based on a novel node-centric representation of graphs using
constraints. We have applied the tool to the domain of stonemason’s marks
[Friil8b]. For a more complete coverage of mason’s marks, we need to add the
representation of arcs and other curves.

This application shows the power of declarative modeling, handling, anal-
ysis and generation of pictorial information using a logic-based programming
language that results in compact and concise code. In principle, our tool can
be applied to any problem domain that admits a modeling as graphs.

We thank the anonymous referees for their helpful comments.

References

[Dav54] Ralph Henry Carless Davis. A catalogue of masons’ marks as an
aid to architectural history. Journal of the British Archaeological
Association, 17(1):43-76, 1954.

[FR18] Thom Frithwirth and Frank Raiser. Constraint Handling Rules-
Compilation, Execution, and Analysis: Large Print Edition. BoD,
2018.

[Fri32] Karl Friedrich. Die Steinbearbeitung in threr Entwicklung vom 11.

bis zum 18. Jahrhundert. Filser, 1932. Reprint Aegis Ulm 1988.

[Frii09) Thom Frihwirth. Constraint handling rules. Cambridge Univer-
sity Press, 2009.



[Friil5]

[Friil8al

[Friil8b]

[Rzi81]

[Tam13]

[WDKTF14]

Thom Frithwirth. Constraint handling rules — what else? In
International Symposium on Rules and Rule Markup Languages
for the Semantic Web, pages 13-34. Springer, 2015.

Thom Frihwirth. The CHR Web Site -

www.constraint-handling-rules.org. Ulm University, 2018.

Thom Frithwirth. The Computer Art of Mason’s Mark Design.
BOD, to appear 2018.

Franz von Rziha. Studien diber Steinmetz-Zeichen. Kaiserlich-
Konigliche Hof-und Staatsdruckerei, 1881. Reprint Bau-Verlag
1989.

Roberto Tamassia. Handbook of graph drawing and visualization.
CRC press, 2013.

Jan Wielemaker, Leslie De Koninck, Markus Triska, and Thom
Frihwirth. SWI Prolog Reference Manual 7.1. BOD, 2014.



