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1 Introduction

Species of structures were first introduced by Joyal as a unified framework for the theory of generating
series in enumerative combinatorics. In 1988, Girard introduced normal functors as a model of pure
λ -calculus where terms are interpreted as infinite series with sets as coefficients (which correspond to a
special case of Joyal’s species). Fiore presented a generalized definition that both encompasses Joyal’s
species and constitutes a model of differential linear logic.

Since species encode families of labelled structures, much work has been done to investigate their
connection with algebraic data types (see [8], [2] and [7]). We want to explore an alternative viewpoint
of seeing them as terms in an extension of λ -calculus motivated by the relationship between species and
differential models of linear logic and use the combinatorial intuition as a guide in the design of the
syntax. The next step would be to study methods of resolution of differential equations in the setting of
generalized species with the ultimate goal being to establish in linear logic a combinatorial interpretation
of the obtained differential calculus.

2 Species of Structures

2.1 Combinatorial Species

A combinatorial species is a class of structures on arbitrary finite sets of labels which is invariant under
relabellings along bijections. Formally, a species is a functor F : B→ Set from the category of finite sets
and bijections B to the category Set. The functoriality of F means that labels do not matter. Species can
be added together, multiplied, differentiated, and substituted one into another to form new species from
given ones.

Species One Singleton Lists Cycles Sets
Definition 1 : B→ Set

U 7→

{
{?} if U = /0
/0 otherwise

X : B→ Set

U 7→

{
U if |U |= 1
/0 otherwise

L : B→ Set
U 7→ Bij(U ,U )

C : B→ Set

U 7→
{ f : U

∼−→U |
f is a cycle}

E : B→ Set
U 7→ {U }

Generating
series x 7→ 1 x 7→ x x 7→ ∑n∈N xn x 7→ ∑n∈N

xn

n x 7→ ∑n∈N
xn

n!

Figure 1: Examples of species

Definition 2.1. A species F is molecular if for all species G and H, F = G+H implies G = 0 or H = 0.
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Every species has a unique decomposition into a sum of molecular species and it is on the level of
molecular species that we construct integrals or solutions to differential equations in the combinatorial
setting, it is hence crucial to first generalize these notions to our context.

Theorem 2.2 (see [1]). Given a species F : B→ Set, the following are equivalent:

1. F is molecular
2. There exist an n ∈ N and H a subgroup of Sn such that F is isomophic to the species:

U ∈ B 7→ Bi j(n,U )/H where n := {0,1, . . . ,n−1}

3. F is transitive, i.e. for all n,n′ ∈ N, x ∈ F[n] and x′ ∈ F[n′], there exists f : n→ n′ such that
F[ f ](x) = x′.

If we restrict ourselves to species constituted only of molecular species where we quotient by the
trivial subgroup H, we obtain species that are called flat ant they are equivalent to the normal functor
model defined by Girard for which we have a notion of integration.

2.2 Generalized Species

In [4], Fiore et al. defined a more general notion of species as 1-cells in the co-Kleisli of the bicategory
of profunctors Prof based on the fact that a functor B→ Set is equivalent to a functor !1→ 1̂ where !1
is the free symmetric strict monoidal completion of the category 1 and 1̂ is the category of presheaves
on 1.

Definition 2.3. Given A and B two small categories, an (A,B)-generalized species of structures is a
profunctor F :!A−7−→ B (or equivalently a functor F :!A×Bop→ Set).

They also showed that it was also possible to define operations of addition, multiplication and com-
position compatible with the previous definitions on combinatorial species and that generalized species
are a model of differential linear logic. We want to interpret our extension of the simply typed λ -calculus
as generalized species in the bicategory of profunctors. In this setting, species are viewed as terms and
all the operations on species are term operations rather than operations on types.

3 Syntax

Types σ ,τ ::= ⊥ | σ → τ (as a first step to tackle the general problem, we will only work with the set
of simple types generated by a unique atomic type ⊥)

Terms t,s ::= ? | x | (t)s | λxσ .t | t + s | t · s | fixxσ · t | (D t)s

Γ,x : σ ` x : σ
AX

Γ ` ? :⊥
⊥ Γ ` t : σ Γ ` s : σ

Γ ` t + s : σ
SUM

Γ ` t : σ Γ ` s : σ

Γ ` t · s : σ
MULT

Γ,x : σ ` t : τ

Γ ` λxσ .t : σ → τ
LAM

Γ ` t : σ → τ Γ ` s : σ

Γ ` (t)s : τ
APP

Γ ` t : σ → σ

Γ ` fix(t) : σ
FIX

Γ ` t : σ → τ Γ ` s : σ

Γ ` (D t)s : σ → τ
DIFF

Figure 2: Typing rules4 Semantics

Interpretation of types To any type σ , we associate an object JσK in Prof as follows: J⊥K := 1 and
Jσ → τK :=!JσKop× JτK. To a typing context Γ = (x1 : σ1, . . . ,xn : σn), we set JΓK :=!Jσ1K⊗
·· ·⊗!JσnK.
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(λxσ .t)s→ t[s/x]
t→ t ′

(t)s→ (t ′)s
s→ s′

(t)s→ (t)s′
t→ t ′

t + s→ t ′+ s
t→ t ′

t · s→ t ′ · s fix(t)→ (t)fix(t)

Figure 3: Some reduction rules

Intepretation of typing rules Given a typing judgment Γ ` t : τ , we define inductively a profunctor
JtKΓ :!JΓK −7−→ JτK. We will only present a couple of examples for the interpretation due to lack of
space:

Variable: JxKΓ,x:σ :!JΓK×!JσK−7−→ JσK
((u,v),a) 7→Hom!JσK(〈a〉,v)

This profunctor will enable us to express a general-
ized version of the singleton species X

Bottom: J?KΓ :!JΓK−7−→ J⊥K
(u,?) 7→Hom!JΓK(〈〉,u)

This profunctor corresponds to a generalized version
of the one species 1

Recall that a (left) group action on a set can be seen as a (covariant) functor F : G→ Set where G
is the single object category corresponding to the group in question. By viewing generalized species as
groupoid actions (i.e. functors from a groupoid to Set), we are able to generalize both the notions of
molecular and flat species, they correspond respectively to transitive actions and free (or semi-regular)
actions.

Theorem 4.1. Given a species F :!A−7−→ B, the following are equivalent:

1. F is molecular i.e. for all species G and H, F = G+H implies G = 0 or H = 0;

2. F is a transitive groupoid action i.e. for all (u,b),(u′,b′) and x ∈ F(u,b), x′ ∈ F(u′,b′), there exists
f : u→ u′, g : b′→ b such that F( f ,g)(x) = x′;

3. There exists a unique connected component C of !A×Bop on which F is non-empty and there exists
(u0,b0) ∈ C and subgroups H1 ≤Hom!A(u0,u0),H2 ≤HomB(b0,b0) such that F is isomorphic to
the species

(u,b) 7→Hom!A(u0,u)×HomB(b0,b)/(H1×H2).

In our case, we can show that we obtain all generalized flat species and we can define integrals in the
semantics for all our terms but there are no corresponding terms in the syntax and solutions of differential
equations are usually constructed as formal infinite sums of molecular species. We hence first need to
add new primitives in the language in order to be able to express all generalized molecular species. To
do so, we need a finer understanding of what it means to take the quotient by a subgroup for the variables
in a λ -term.

Future Work

One preliminary direction to investigate is which new primitives we can add to our language of terms
in order to obtain all possible combinatorial species. Since we are now able to define species of higher
order, we hope to gain insight into the existing theory of combinatorial species as well as get new ways of
realizing these higher order species by enriching the theory. We also want to have a finer understanding
of reduction in this setting, i.e. what 2-cells can we obtain between the interpretation of two equivalent
terms?
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