
Using SMT engine to generate Symbolic
Automata?

Xudong Qin1,2 Simon Bliudze3 Eric Madelaine1 Min Zhang2

1 Université Côte d’Azur, Inria, CNRS, I3S, 06902 Sophia Antipolis, France
2 Shanghai Key Laboratory of Trustworthy Computing, ECNU, China

3 INRIA Lille – Nord Europe, 40 avenue Halley, 59650 Villeneuve d’Ascq, France

Abstract. Open pNets are used to model the behaviour of open sys-
tems, both synchronous or asynchronous, expressed in various calculi or
languages. They are endowed with a symbolic operational semantics in
terms of so-called “Open Automata”. This allows us to check properties
of such systems in a compositional manner. We implement an algorithm
computing these semantics, building predicates expressing the synchro-
nization conditions between the events of the pNet sub-systems. Check-
ing such predicates requires symbolic reasoning over first order logics,
but also over application-specific data. We use the Z3 SMT engine to
check satisfiability of the predicates, and prune the open automaton of
its unsatisfiable transitions. As an industrial oriented use-case, we use
so-called "architectures" for BIP systems, that have been used in the
framework of an ESA project and to specify the control software of a
nanosatellite at the EPFL Space Engineering Center. We use pNets to
encode a BIP architecture extended with explicit data, and compute its
open automaton semantics. This automaton may be used to prove be-
havioural properties; we give 2 examples, a safety and a liveness property.

1 Introduction

In the nineties, several works extended the basic behavioural models based on
labelled transition systems to address value-passing or parameterized systems,
using various symbolic encodings of the transitions [1,2,3,4]. In [4], H.M. Lin
addressed value-passing calculi, for which he developed a symbolic behavioural
semantics, and proved algebraic properties. Separately J. Rathke [5] defined an-
other symbolic semantics for a parameterized broadcast calculus, together with
strong and weak bisimulation equivalences, and developed a symbolic model-
checker based on a tableau method for these processes. Thirty years later, no
practical verification approach and no verification platform are using this kind of
approaches to provide proof methods for value-passing processes or open process
expressions.

Parameterized Networks of Synchronized Automata (pNets) were proposed to
give a behavioural specification formalism for distributed systems, synchronous,
? This work was partially funded by the Associated Team FM4CPS between INRIA
and ECNU, Shanghai

asynchronous, or heterogeneous. They are used in VerCors [6], a platform for
designing and verifying distributed systems, as the intermediate language for
various high-level languages. The high-level languages in VerCors formalize each
component of the distributed system and their composition. pNets provides the
core low-level semantic formalism for VerCors, and is made of a hierarchical com-
position of (value-passing) automata, called parameterized labelled transition
systems (pLTS), where each hierarchical level defines the possible synchroniza-
tion of the lower levels. Traditionally, pNets have been used to formalize fully
defined systems or softwares. But we want also to define and reason about incom-
pletely defined systems, like program skeletons, operators, or open expressions
of process calculi. The open pNet model addresses this problem, using "holes" as
process parameters, representing unspecified subsystems. The pNet model was
developed in a series of papers [7,8] in which many examples have been intro-
duced showing its ability to encode the operators from some other algebras or
program skeletons. The operational semantics of an (open) pNet is defined as an
Open Automaton in which Open Transitions contain logical predicates express-
ing the relations between the behaviour of the holes, and the global behaviour
of the system. In the previous publication, only a sketch of a procedure allowing
to compute these semantics was presented, together with a proof of finiteness of
the open automaton, under reasonable hypotheses on the pNet structure.

Implementing these semantics raised several challenges, in order:
– to get a tool that could be applied to pNets representing various languages,

in particular various actions algebras, with their specific decision theories,
– to separate clearly the algorithm generating the transitions of the open au-

tomaton from combination of all possible (symbolic) behaviours, from the
symbolic reasoning part, specifically here using an SMT engine to check the
satisfiability of the predicates generated by our algorithm,

– to build a prototype and validate the approach on our basic case-studies,
and understand the efficiency of the interaction with the SMT solver.
In the long term, we want to be able to check the equivalence between open

systems encoded as pNets. The equivalence between pNets is "FH-bisimulation"
[8], a dedicated version of symbolic bisimulation taking the predicate of the
open transitions into account when matching such open transitions. We foresee
that the interplay with the SMT solver that we use here for satisfiability of
open transitions will be similar with what we need when proving (symbolic)
equivalence between open transitions.

Contribution In the article we show how:
– We define the open automaton generation algorithm. We implemented a full

working prototype, within the VerCors platform. In the process, we improved
the semantics rules from [8], and add features in the algorithm to deal with
the full model, including management of variables and assignments.

– We implement the interaction between our algorithm and the Z3 SMT solver,
for checking satisfiability of the transitions generated by the algorithm.

2

– We show the interest of this approach on an industry-inspired case-study,
namely one architectural pattern extracted (and extended) from the BIP
specification of a nanosatellite on-board software.

Related work. Very few attempts were made to develop symbolic bisimulation
approaches for the value-passing process algebras and languages—our long-term
goals—especially, there is no algorithmic treatment of the symbolic systems de-
veloped by interacting with automatic theorem provers. The closest work is the
one already mentioned from J. Rathke [5], who developed the symbolic bisimu-
lation for a calculus of broadcasting system (CBS). CBS is similar with classic
process calculi such as CCS and CSP, but communicating by broadcasting values,
transmitting values without blocking. That makes the definition of the symbolic
semantic and bisimulation equivalence different from the classic works.

For other applications, such as the analysis of programming languages, there
exist dedicated platforms using external automatic theorem provers (ATP) or
automatic tactics from interactive theorem provers (ITP), to perform symbolic
reasoning, and for example to discharge some subgoals in the proofs. Tools like
Rodin [9,10] have already integrated several provers, like Z3, as modules for
proving the proof obligations generated from a user model. The prover we use,
which also happens to be Z3, is developed by Microsoft Research based on the
satisfiability modulo theories framework (SMT), is mainly applied in extended
static checking, test case generation, and predicate abstraction. In a similar
way, there are several ATPs/ITPs we could consider to use for result pruning
and bisimulation checking in our algorithm, as an alternative to Z3, such as
CVC4 [11], Coq [12] or others.

BIP (Behaviour-Interaction-Priority) [13] is a framework for the component-
based design of concurrent software and systems. In particular, the BIP tool-set
comprises compilers for generating C/C++ code, executable by linking with one
of the dedicated engines, which implement the BIP operational semantics [14].
This approach ensures that any property, shown to hold on a given BIP model,
will also hold by construction on the generated code. BIP Architectures [15]
formalise design patterns, which enforce global properties characterising the co-
ordination among the components of the system. They provide a compositional
approach, ensuring correctness by construction during the design of BIP mod-
els. In [15], it was shown that application of architectures is compositional w.r.t.
safety properties, i.e. when several architectures are applied, each enforcing a
safety property, the resulting system satisfies their conjunction.

But the interaction feature in architectures does not handle data-sensitive
interaction constraints. Using an encoding of architectures, extended with data-
dependant interactions, into open pNets was an interesting alternative to a direct
extension to the architecture semantics.

Structure. In section 2 we give a description and a formal definition of the pNet
model, as found in previous publications. Then in section 3 we present our use-
case, based on a BIP architecture from the nano-satellite case-study. Section
4 recalls briefly the operational semantics of pNet. Section 5 explains in details

3

the algorithm used to compute this semantics, including the interaction with Z3,
and shows the full result of the semantic computation on the running example.
Finally we conclude and discuss perspectives in Section 6.

2 Background: pNets definition

This section introduces pNets and the notations we will use in this paper. Then
it gives the formal definition of pNet structures, together with an operational
semantics for open pNets.

pNets are tree-like structures, where the leaves are either parameterized la-
belled transition systems (pLTSs), expressing the behaviour of basic processes,
or holes, used as placeholders for unknown processes, of which we only specify
their set of possible actions, named sort. Nodes of the tree (pNet nodes) are
synchronizing artifacts, using a set of synchronization vectors that express the
possible synchronization between the parameterized actions of a subset of the
sub-trees.

Notations. We extensively use indexed structures over some countable indexed
sets, which are equivalent to mappings over the countable set. ai∈Ii denotes a
family of elements ai indexed over the set I. When this is not ambiguous, we
shall use notations for sets, and typically write “indexed set over I” when formally
we should speak of multisets, and write x ∈ ai∈Ii to mean ∃i ∈ I. x = ai. An
empty family is denoted ∅. We denote classically a a family when the indexing
set is irrelevant.] is the disjoint union on indexed sets.

Term algebra. Our models rely on a notion of parameterized actions that are
symbolic expressions using data types and variables. As we want to encode the
low-level behaviour of possibly very different programming languages, we do not
want to impose one specific algebra for denoting actions, nor any specific com-
munication mechanism. So we leave unspecified the constructors of the algebra
that will allow building expressions and actions. Moreover, we use a generic ac-
tion interaction mechanism, based on unification between two or more action
expressions. This will be used in the semantics of synchronization vectors to
express various kinds of communication or synchronization mechanisms.

Formally, we assume the existence of a term algebra TΣ,V , where Σ is the
signature of the data and action constructors, and V a set of variables. Within
TΣ,V , we distinguish a set of data expressions EV , including a set of Boolean
expressions BV (BV ⊆ EV). On top of EV we build the action algebra AV , with
AV ⊆ TV , EV ∩ AV = ∅; naturally action terms will use data expressions as
sub-terms. The function vars(t) identifies the set of variables in a term t ∈ T .

pNets can encode naturally the notion of input actions as found, e.g. in
value-passing CCS [16] or of usual point-to-point message passing calculi, but it
also allows for more general mechanisms, like gate negotiation in Lotos [17], or
broadcast communications.

4

Table 1: Algebra Presentation: predefined Sorts and Operators
Sort Constructors Auxiliary Operators

Bool true, false ∧, ∨, ¬, =⇒ , =, 6=
Action Synchro, FUN
Int 0, {i,−i}i∈Nat −(unary), +, −(binary), ×, ÷ etc.
Extension for the BIP use-case of Fig. 2
Action FUN_Action_Bool, fail, resume, timeout, reset, start, tick, ask

Algebra presentations. In practice, the parameterization of the pNet model by
some specific action algebra is realized by the definition of a many-sorted “algebra
presentation”. It will be used to check the well-formedness of a pNet system,
and to define the translation of the pNet semantics into the SMT engine input
language ([18]).

Definition 1. An algebra presentation is a triple P = 〈Sorts,Constrs,Ops〉,
where
– Sorts is a set of data sorts
– Constrs is a set of constructor operators: for each Con ∈ Constrs, arity(Con) =
n ∈ N is its arity and ’Con : (sel1, sort1), . . . , (seln, sortn)→ sort ’ is its sig-
nature with the associated selectors. For each argument, the pair (sel i, sort i)
defines an auxiliary operator of name sel i with signature sel i : sort → sort i.

– Ops is a set of auxiliary operators, with their arity and signature, of the
form: Op : sort1, . . . , sortn → sort

– Constrs(sortname) and Sels(sortname) are, respectively, the sets of con-
structors and selectors of the sort sortname

Constructors of arity 0 are called constants, and denoted Consts(P).

Sorts Bool and Int are predefined with standard operators. Sort Action also,
with a constructor Synchro denoting a synchronized action, i.e. an “internal”
action that cannot be further synchronized with the environment. It also comes
with an overloaded FUN constructor, used to build actions with arguments, that
will be instantiated to the required sorts for a given pNet.

The definition of an Algebra Presentation, and a set of variables V fixes the
Term algebra elements TΣ,V ,BV ,AV .

2.1 The (open) pNets Core Model

A pLTS is a labelled transition system with variables, which can be manipulated,
defined, or accessed inside states, actions, guards, and assignments. Each state
has its set of variables called state variables, which can only be modified by the
assignment in transitions targeting this state. A global state variable of a pLTS
is a state variable defined in all states. Note that we make no assumptions on
finiteness of the set of states, nor on finite branching of the transition relation.

5

We first define the set of actions a pLTS can use. Let a range over action
labels, op are operators, and xi range over variable names. Action terms are:

α ∈ A ::= a(p1, . . . , pn) action terms
pi ::= Expr parameters

Expr ::= Value | x | op(Expr1, . . . ,Exprn) expressions

Definition 2 (pLTS). Given a term algebra TΣ,V , a pLTS is a tuple pLTS ,
〈〈S, s0,→〉〉 where:
• S is a set of states, with s0 ∈ S the initial state.
• →⊆ S ×L×S is the transition relation, with L the set of labels of the form
〈α, eb, (xj := ej)

j∈J〉, where α ∈ AV is a parameterized action, eb ∈ BV is a

guard, and expressions EV ∪AP are assigned to xj. If s
〈α, eb, (xj:=ej)

j∈J 〉−−−−−−−−−−−−−→ s′

then vars(eb)⊆vars(s)∪vars(α), and ∀j∈J. vars(ej)⊆vars(s)∧xj ∈vars(s′).

Now, we define pNet nodes as constructors for hierarchical structures. A pNet
node has a set of sub-pNets that can be either pNets or pLTSs, and a set of holes,
playing the role of process parameters (i.e. unknown in the environment).

A composite pNet consists of a set of sub-pNets, each exposing a set of ac-
tions. The relation between actions of a pNet and those of its sub-pNets are
given by synchronization vectors, which synchronize one or several internal ac-
tions, and expose a single resulting global action.

Definition 3 (pNets). A pNet is a hierarchical structure where leaves are
pLTSs and holes: pNet , pLTS | 〈〈pNeti∈Ii , J,SVk∈Kk 〉〉, with I, J,K potentialy
infinite, where
• pNeti∈Ii is the family of sub-pNets;
• J is a set of indexes, called holes. I and J are disjoint: I∩J = ∅, I∪J 6= ∅
• SVk∈Kk is a set of synchronisation vectors (K ∈ IV). ∀k∈K,SVk=αl∈Ik]Jkl →
α′k | gk, where α′k ∈ AV , Ik ⊆ I, Jk ⊆ J , and vars(α′k) ⊆

⋃
l∈Ik]Jk vars(αl).

The global action of a vector SVk is α′k. The Boolean expression gk, such
that vars(gk) ⊆

⋃
l∈Ik]Jk vars(αl), is a guard associated to the vector.

In Fig. 2, we show examples of these constructs, with two pLTSs, one hole
and one pNet node encoding our running example.

3 Running example

As a running example we use the Failure Monitor architecture from the Cu-
bETH nanosatellite on-board software case-study [19] realised using BIP. The
architecture-based design process in BIP takes as input a set of components pro-
viding basic functionality of the system and a set of temporal properties that
must be enforced in the final system. For each property, a corresponding archi-
tecture is identified and applied to the model, thereby potentially introducing
additional coordinator components and modifying the connectors that define
synchronisation patterns among ports of components.

6

fail

t :=t−1
[t>0]

t0 t1
s2

s1s0

fail

ti
m
eo
ut

resume

reset

Control

resume

start, t :=Max

timeout, [t=0]

B

start
tick

Timer

resetresumeresume

timeouttimeout

finish

fail

resume

tick

Fig. 1: The BIP specification of the Failure Monitor architecture

Figure 1 shows a refined version of the Failure Monitor architecture used
in [19]. Contrary to standard BIP models, architectures comprise one or several
operand components, whereof only the set of ports is given. Here, the operand
component is B and its interface consists of the ports finish, resume and fail.
The two coordinator components—Control and Timer—are standard BIP com-
ponents insofar as they also have their behaviour specified by finite automata
extended with local data variables. Transitions of these automata are labelled
with the ports of the corresponding components, Boolean guards and update
functions on local variables. For instance the loop transition t1

tick,[t>0],t:=t−1−−−−−−−−−−→ t1
in the Timer component is labeled by the port tick, it can be fired only when the
current value of the local variable t is greater than 0. Upon firing, this transition
decrements the value of t by 1. When omitted, the default guard (resp. update
function) is the constant predicate true (resp. the skip operator). The constant
Max, in t0

start,t:=Max−−−−−−−−→ t1, is a parameter of the architecture.
Connectors are hierarchical, tree-like structures with component ports at the

leaves. They define sets of interactions, based on the attributes of the connected
ports [20], which may be either trigger (triangles in Fig. 1) or synchron (bullets
in Fig. 1). If all sub-connectors of a connector are synchrons, then an interaction
may be executed by the connector only if each subconnector can contribute. If
at least one of the sub-connectors is a trigger, then any interaction consisting of
contributions of any set of sub-connectors, involving at least one of the triggers,
can be executed. For instance, the two ports Timer .start and Control .fail are
always synchronised, since they belong to the same binary sub-connector, where
they are both synchrons. In particular, this means that whenever the transition
s0

fail−−→ s1 is fired, so is the transition t0
start,t:=Max−−−−−−−−→ t1, initialising the timer. The

binary connector Timer .start •−−•Control .fail is a sub-connector of a hierarchical
connector, where the port B.fail is a trigger. Thus, the above interaction can
only happen together with B.fail, forming a ternary interaction. On the contrary,
being a trigger, the port B.fail can fire alone, forming a singleton interaction. The
composition semantics of BIP systems consists in firing exactly one interaction,
enabled through at least one of the top-level connectors, at each execution round.

Finally, priorities—defined by a strict partial order on the set of possible
interactions—narrow the choice among the enabled interactions at any given
round. The default priority is the so-called maximal progress, whereby among
any two interactions a ⊂ b (as sets of ports), b has higher priority than a.

7

s2

s0 s1

t0 t1

B

start(false)

SV5 <-, -, finish, -> → finish

SV4 <reset, -, -> → reset

SV3 <timeout, timeout, -> ask

SV2 <-, tick, -> → tick

SV1 <resume(b1), resume(b2), resume(b0)> → resume [b1 = b2 ∧ b1 ∨ b2 =⇒ b0]

SV0 <fail(b1), start(b2), fail(b0)> → fail [b1 = b2 ∧ b1 ∨ b2 =⇒ b0]

tick[t > 0]

{t := Max}

{t := t− 1}

Timer

t,Max : Int

Control

timeoutreset

fail(false)resume(false)

fail(false)

resume(true)

fail(true)

resume(false)

timeout[t = 0]

start(true)

resume(true)

resume(false)

Fig. 2: pNet encoding of the Failure Monitor architecture

For example, the port B.fail will never fire alone in a global state, where both
Timer .start and Control .fail are enabled.

Application of the Failure Monitor architecture ensures that, whenever a
failure is registered in the operand component, the system will be reset, unless
a resumption is registered within Max time units (more details in Sect. 5.4).

Figure 2 shows a pNet encoding of the above Failure Monitor architecture.
This encoding is structural: each coordinator component is encoded as a pLTS,
the operand component—as a hole; connectors of the BIP model are encoded as
synchronisation vectors. Each connector that does not involve triggers is triv-
ially encoded by a synchronisation vector comprising the same ports. In order to
encode the semantics of the connectors involving triggers, we 1) in the pLTS en-
coding the coordinator components, add loop transitions to ensure that all ports
involved in such connectors are enabled in all states, 2) associate a Boolean
value to each of these ports: the original transitions carry the value true (e.g.

s0
fail(true)−−−−−→ s1), the added loops carry the value false (e.g. s2

fail(false)−−−−−−→ s2), 3) add
to the corresponding synchronisation vectors the Boolean predicate encoding the
connector structure. For example, SV 0 encodes the connector discussed above:
the predicate (b1 = b2) ∧ (b1 ∨ b2 ⇒ b0) means that the “true” transitions
Control .fail and Timer .start can only fire together (b1 = b2) and whenever one
of them fires, B.fail must fire also (b1 ∨ b2⇒ b0). This encoding can be system-
atically obtained for any hierarchical BIP connector [21]. Although, for the sake
of brevity, we omit priorities from the encoding, this can be easily achieved, by
introducing additional Boolean variables for relevant ports [14].

4 Operational Semantics for Open pNets

The semantics of open pNets will be defined as an open automaton, that is an
automaton where each transition composes transitions of several LTSs with the
actions of some holes; the transition occurs if some predicates hold, and can

8

involve a set of state modifications. Each state of an open automaton has a set
of state variables that can be assigned by incoming transitions. Strictly speaking,
the LTSs at the leaves of the open automaton are a restricted form of pLTSs,
where labels are parametrised actions, but include no guard nor assignments.

Definition 4 (Open transitions). An open transition OT over a set 〈Si, s0i,→i

〉i∈I of LTSs, a set J of holes, and a set of states S is a structure of the form:

··
{si ai−→i s

′
i}i∈I , {

bj−→j}j∈J ,Pred ,Post
s
α−→ s′

,

where s, s′ ∈ S, the ai, bj , α are action expressions, si
ai−→is

′
i is a transition of the

LTS 〈Si, s0i,→i〉, bj is an action of the hole j, and α is the resulting action of
OT . Pred is a predicate over the variables of the terms, labels, and states si, bj,
s, α. Post is a set of equations that hold after the open transition, represented
as a substitution {xk ← ek}k∈K where xk are variables of s′ and s′i, whereas ek
are expressions over the other variables of the open transition.

Definition 5 (Open automaton). An open automaton is a structure
A = 〈LTS i∈Ii , J,S, s0, T 〉 where:
• I and J are sets of indices,
• LTSi∈Ii is a family of LTSs,
• S is a set of states and s0 ∈ S the initial state,
• T is a set of open transitions and, for each t ∈ T , there exist I ′, J ′ with
I ′ ⊆ I, J ′ ⊆ J , such that t is an open transition over LTSi∈I

′
i , J ′, and S.

The states and the shape of predicates in the transitions of an open automa-
ton representing the semantics of a pNet have the following specific structure.

States of open pNets. A state of an open pNet is a tuple of the states of its
leaves (in which we denote tuples in structured states as /). For any pNet p,
let Leaves = 〈〈Si, si0,→i〉〉i∈L be the set of pLTS at its leaves, then States(p) =
{/si∈Li . | ∀i ∈ L.si ∈ Si}. A pLTS being its own single leave: States(〈〈S, s0,→
〉〉) = {/s . | s ∈ S}. The initial state is defined as: InitState(p) = /si0

i∈L..

Predicates. Let 〈〈pNet, J,SVk∈Kk 〉〉 be a pNet. Consider a synchronization vector
SVk, for k ∈ K. We build a predicate MkPred relating the actions of the involved
sub-pNets and the resulting actions. This predicate verifies:

MkPred(SVk, ai∈Ii , bj∈Jj , v)⇐⇒ ∃(a′i)
i∈I
, (b′j)

j∈J
, v′.

SVk = (a′i)
i∈I
, (b′j)

j∈J → v′ ∧ ∀i ∈ I. ai = a′i ∧ ∀j ∈ J. bj = b′j ∧ v = v′

Example 1 (An open transition). This transition is generated by application of
the vector SV0, synchronizing the initial actions of pLTSs Control and Timer
(see Fig. 2), with an action of the hole B equal to fail. The local variable t of

9

the Timer is assigned to its initial value Max. A full output of the use-case is
provided in [22].

··
{s0 fail(true)−−−−−−→ s1, t0

start(true)−−−−−−−→ t1}{ hb−→}, hb = fail(true) ∧ v = fail , {t := Max}
/s0, t0.

v−→ /s1, t1.

Structural Semantic Rules: The semantics of pNet in term of open automata has
been defined in [8], in the form of 2 structural rules, one for pLTSs, one for pNet
nodes. These rules are slightly improved, adding guards in the synchronisation
vectors and syntax for universal quantifier in the guards (see [22]).

In [8] we also proved that a pNet with finitely many pLTSs, holes, and syn-
chronisation vectors, and with finite pLTSs, has a finite semantics. Remark that
all the elements of such pNets and open automata being symbolic, they can
represent many classes of unbounded systems.

5 Generation of Open Automata

In this section we describe the algorithm implementing the pNet semantics, the
interaction with the Z3 SMT solver, and we show the result on our example.

Algorithm 1 starts with an open pNet, and builds its set of open transitions.
Its main loop is a classical residual algorithm: starting from the initial global
state, it picks a state in an unexplored set, and computes all possible OTs, adding
their target states in the unexplored set, until this set is empty. As the set of
global states is finite (under the conditions above), this terminates.

Algorithm 1 Open Automaton Generation
Input: A pNet P (cannot be a hole)
1: Initialize sets U = {InitState(P)} and E = ∅, for unexplored and explored global

states, respectively; L = ∅ for the resulting OTs;
2: while !isEmpty(U) do
3: Choose S in U ; remove S from U , add S to E;
4: OTs = MakeTransitions(P, S);
5: for each OT ∈ OTs do Check satisfiability of OT using the SMT solver;
6: if SAT (OT) then
7: {Add OT to L;
8: Let S′ be the target global state of OT
9: if (S′ 6∈ U ∪ E) then Add S′ into U ; }
10: end for
11: end while
12: return OA = (InitState(P), L);

The inside loop (MakeTransitions method) applies recursively the semantic
rules following the structure of the pNet. When applied to a pLTSs at the leaves,

10

we simply take the pLTS transitions of the corresponding local state and use the
semantic rule to build the OT4. When applied to a pNet node we use two meth-
ods, combining and matching, to generate the open transitions in a hierarchical
manner, as shown in Alg. 2. This method directly manages the holes of the node,
so MakeTransitions is never called on a hole.

At the root of the pNet, the predicate of each OT is translated into SMTlib
assertions, and checked for satisfiability. The final open automaton includes all
satisfiable OTs, and the set of reachable global states.

Algorithm 2 MakeTransitions() for a pNet node

Input: a pNet node P with subnets sn and holes hole; a global state S.
1: Initialize empty list l and set L for sub-transitions and transitions, respectively;
2: for each Subnet in sn do \\ Recursively apply the semantic rules on the subnets
3: Store MakeTransitions(Subnet, S) in l;
4: end for
5: comb = Combining(l);
6: for each sv ∈ SV and each comb ∈ comb do
7: ot = Matching(sv, comb, hole);
8: if (ot is defined) then Store ot in L; \\ if Matching() succeeds
9: end for
10: return L;

Combining. The combining method enumerates all the possible behaviours of
the subnets as all the possible combinations of their open transitions. Assume
that there is a collection of n subnets. We denote oti the set of open transitions
of the i-th subnet (obtained in line 3 of the algorithm); “−” means that the
subnet is not involved. The combination comb, a set of n-tuples, is the cartesian
product: comb = ({−} ∪ ot1)× ({−} ∪ ot2)× · · · × ({−} ∪ otn).

Matching. The Matching method builds the OTs of a pNet node from those
of its subnets. For each synchronisation vector and each possible combination
of behaviours of the subnets, as generated by the Combining method, it builds
the corresponding open transition. Here, we only detail the construction of the
predicate. From a synchronization vector sv =

(
(a′i)

i∈I(b′j)
j∈J → v′

)
∈ SV and

its guard Gk; a tuple of open transitions C = (oti)
i∈[1,n] ∈ comb, such that, for

each i ∈ [1, n], either oti = −, or the result action of oti is ai; the hole behaviours
Hole = (bj)

j∈J ; and a fresh variable v, representing the result action of the OT
under construction, we build the predicate:

MkPred(sv, C, hole) =

(∀i ∈ I, ai = a′i) ∧ (∀j ∈ J, bj = b′j) ∧ (v = v′) ∧Gk.
4 We omit detailed presentation of this case for the sake of brevity.

11

ot = ··

{s0 fail(true)−−−−−−→ s0, t0
resume(false)−−−−−−−−−→ t0}, { hb−→}, fail(true) = fail(b1)

∧ resume(false) = start(b2) ∧ hb = fail(b0) ∧ v = fail ∧ b1 = b2
∧ (b1 ∨ b2)⇒ b0, {}
/s0, t0.

v−→ /s0, t0.

Fig. 3: One of the unsatisfiable open transitions in the Failure Monitor pNet

Filtering. While matching a vector with a combination tuple, Matching tries to
filter out some incompatibilities; there may be several reasons why the matching
would fail:
– if some subnet is marked as inactive in the vector, and the chosen combina-

tion has an active behaviour at this position,
– if some subnet action expression in the vector does not match (by pattern-

matching) the corresponding action expression in C,
– or if the whole set of active subnet actions in the vector cannot be matched

(by unification) with the corresponding action expressions on the tuple C.
Even when unification succeeds, it is still possible that the resulting predicate

would be unsatisfiable, because of some incompatibility involving the guards. In
our algorithm, we choose to apply only the simplest filter inside the Matching
method (before applying the predicate and OT construction). Matching and
unification will be checked later, together with the guards collected from syn-
chronisation vectors and from pLTS transtions, using the satisfiability check in
the SMT engine.

5.1 Management of state variable assignments

In a pLTS, there may be several incoming transitions that assign potentially
different values to a state variable. To handle such cases, the algorithm manages,
for each pLTS state, a list of expressions collected from the assignments of each
state variable. For a global state in the open automaton, the set of state variables
(which may be used in a transition) is the disjoint union of sets of state variables
of the individual pLTS states constituting this global state.

5.2 Pruning the unsatisfiable results

Our matching/filtering strategy builds some transitions where the predicates ex-
press incompatible constraints. Even if having an unsatisfiable (symbolic) tran-
sition would not be incorrect, we choose to minimize the open automaton (i.e.
its number of transitions and states), by checking the predicates for satisfia-
bility. In Fig. 3, we show an unsatisfiable open transition from the open au-
tomaton of our running example. It shows the case where the failure controller
performs a “fail” action, while the timer executes a “resume”. The chosen syn-
chronization vector (SV0 from Fig. 2) does not match with these actions, since
it expects Timer .start. This mismatch is materialised by the predicate fragment
“resume(false) = start(b2)”.

12

Fig. 4: The input of the Z3 solver in SMT-LIB language and the output result

Checking satisfiability requires some symbolic computation on the action
expressions and the predicates, which may depend on the specific theory of the
action algebra datatypes. The “Modulo Theory” part of SMT solvers is important
here, so that the solver can use specific properties of each action algebra.

5.3 Translation to SMTlib

We check the satisfiability of each open transitions using the SMT solver Z3. In
this section, we describe the translation of the algebra presentation, of assign-
ments, and of the predicates.

Our implementation submits satisfiability requests to Z3 using its JAVA API.
Here, for readability, we show the Z3 code using its SMT-LIB input language.
Note that in the previous sections, the OTs were displayed in a simplified, human
readable form. The input and output of our tool, and also the generated SMTlib
fragments, are slightly more difficult to read, in particular because of structured
names for the fresh variables generated by the algorithm, allowing tracability of
the result [22].

Figure 4 shows the translation of the transition of Fig. 3 in the SMTlib syntax.
It contains the declaration of the BIP action algebra sorts and constructors, then
the declaration of variables, and finally the predicate to be checked, encoded as a
set of assertions. Here we display also the diagnosis (“sat” or “unsat”) generated
by Z3;

Production of the SMT-lib code To build the input submitted to Z3 for each
OT, we translate the algebra presentation, the predicates and the variable as-
signments into Z3 (Java-API) calls.

Translation of action algebra presentation. In [22], we define the translation
of an algebra presentation into SMTlib declarations (declare-datatypes and
declare-fun). We also formalize a condition of well-formedness of pNets en-
sures that the generated code is correct, and will not raise runtime errors in the
SMT engine. Note that the declare-datatypes command comprises both the

13

ask [t = 0]

⊳s2, t0⊲

finish resume [hB = resume(b0)]

⊳s0, t0⊲
⊳s1, t1⊲

resume [hB = resume(true)]

finish finish

[hB = resume(b0)]
resume

fail [hB = fail(b0)]

tick [t 6= 0]
{t← t− 1}

fail [hB = fail(true)] {t←Max}

reset

Fig. 5: Open Automaton for the Failure Monitor architecture

action constructors from table 1 and also the constant action names from our
example. Additionally, we will include axiomatisation of any required functions
and predicates of the presentation data-types.

Translation of open transitions. In [22] we formally define all steps of the
translation of each open transition, including:
– collect all variables in the transition, and declare them (using declare-const)
– check well-formedness and correct typing of expressions,
– translate the predicate into a conjunction of assertions,
– if present in the source state, translate the state-variable assignments into a

disjunctive assertion.
This translation ensures that no runtime error will occur in the SMT engine.

Figure 4 shows the decomposition of the predicate into a set of asserts, each
encoding an elementary equality, inequality, or a guard. The result (sat or unsat)
of the final check-sat command in the translation () is then decoded.

5.4 Result for the running example

For this example, the tool builds 184 open transitions, whereof 173 are detected
unsatisfiable by Z3. The resulting open automaton, with 3 reachable global states
(out of the possible 6) and 11 open transitions, is shown in Fig. 5.

To improve the readability of this figure, we used the following conventions:
we omit the transitions of the two pLTS, and the set of “working” holes; and
we directly write the resulting action as first element of each OT, rather than
including it as an equality inside the predicate.

Failure Monitor enforces 1) the safety property “the system reset never hap-
pens, unless asked for by a timeout following a failure”, formalised in CTL by

ϕ ∧ AG(reset→ ϕ), where ϕ = A[¬reset W ask] ∧ A[¬ask W fail],

(W being the weak until operator) and 2) the liveness property “a reset will be fired
when asked for by a timeout”: AG(ask→ AF reset). The satisfaction of the safety
property could be established by applying symbolic model checking techniques.
However, in this example, it is obvious by inspection of the open automaton.
The satisfaction of the liveness property relies on the above observation that in
the state /s2, t0. only the reset transition involves Control . Therefore, under
resonable scheduling assumptions, reset will always be fired.

14

6 Conclusion and Discussion

The formal definitions and properties of the open pNets model were published
in [8]. In this new work we describe an implementation of the model and its
semantics construction, including its interaction with the Z3 SMT engine. The
implementation has two parts: the first is a finitary algorithm that builds all pos-
sible combinations of synchronisations through the pNet hierarchical structure.
The result is a so-called open-automaton, which transitions contains predicates
relating the actions of the pNet holes and controllers. Some of the open transi-
tions obtained at this step, may contain predicates which do not represent any
possible concrete instantiations. In the second part of the tool we use the SMT
solver Z3 for checking the satisfiability of the predicate in each open transition.
To this end, we encode into Z3 the representations of the action algebra and
the predicates before submitting them to the Z3 solver. In this paper, we used
a running example, based on a BIP architecture from an earlier nanosatellite
case study [19]. This example shows that open-automata-based semantics can
be instrumental in verifying the properties enforced by the architectures through
an encoding into open pNets. This encoding—which we intend to formalise and
prove correct in a separate paper—also opens the way for an extension of BIP
architectures with the transfer of data among variables of different components.
Indeed, such data transfer can be easily encoded using the predicates associ-
ated to synchronisation vectors in open pNets. The encoding of open transitions
into SMTlib and the availability of theories can guide the definition of such an
extension. Our case-studies show that our encoding successfully identifies the
unsatisfiable open transitions and that the resulting automata correctly reflect
the expected movements of the encoded process expressions.

Naturally, our next goals after the generation of the open automata will
be to model-check logical properties, and to check equivalence of pNets. While
model-checking open automata seems easy to define, equivalence checking is more
challenging. In [8], we have already found the FH-bisimulation, to be a suitable
definition. But weak equivalences, or refinements, will definitely be useful when
comparing different pNets with different structure. For bisimulation, we foresee
that SMT methods will be the basis for comparison of open transitions.

Scaling up. One important motivation of this work is to attack the complexity
of verification of realistic systems by a compositional and parametric approach.
Still one may wonder if the price for analysing our symbolic transitions will not
make the approach too expensive in term of computing time. We tried a slighly
bigger example, assembling 2 Failure controllers. In [22], we show that Z3 can
check the satisfiablility of a 90K open transitions in a couple of minutes.

References

1. De Simone, R.: Higher-level synchronising devices in MEIJE-SCCS. Theoretical
Computer Science 37 (1985) 245–267

2. Larsen, K.G.: A context dependent equivalence between processes. Theoretical
Computer Science 49 (1987) 184–215

15

3. Hennessy, M., Lin, H.: Symbolic bisimulations. Theoretical Computer Science
138(2) (1995) 353–389

4. Lin, H.: Symbolic transition graph with assignment. In Montanari, U., Sassone,
V., eds.: Concur’96. Volume 1119 of LNCS., Springer, Heidelberg (1996) 50–65

5. Hennessy, M., Rathke, J.: Bisimulations for a calculus of broadcasting systems.
Theoretical Computer Science 200(1-2) (1998) 225–260

6. Henrio, L., Kulankhina, O., Liu, D., Madelaine, E.: Verifying the correct composi-
tion of distributed components: Formalisation and Tool. In: FOCLASA. Number
175 in EPTCS, Rome, Italy (2014)

7. Henrio, L., Madelaine, E., Zhang, M.: pNets: an Expressive Model for Parame-
terised Networks of Processes. In: 23rd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing (PDP’15)

8. Henrio, L., Madelaine, E., Zhang, M.: A Theory for the Composition of Concur-
rent Processes. In: Formal Techniques for Distributed Objects, Components, and
Systems (FORTE). Volume LNCS-9688., Heraklion, Greece (2016)

9. Déharbe, D.: Integration of smt-solvers in b and event-b development environ-
ments. Science of Computer Programming 78(3) (2013) 310–326

10. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: Integrating smt solvers in rodin.
Science of Computer Programming 94 (2014) 130–143

11. Barrett, C., Conway, C., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: Cvc4. In: Computer aided verification, Springer (2011)

12. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular
integration of sat/smt solvers to coq through proof witnesses. In: International
Conference on Certified Programs and Proofs, Springer (2011) 135–150

13. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H., Sifakis,
J.: Rigorous component-based system design using the BIP framework. IEEE
Software 28(3) (2011) 41–48

14. Baranov, E., Bliudze, S.: Offer semantics: Achieving compositionality, flattening
and full expressiveness for the glue operators in BIP. Science of Computer Pro-
gramming 109(0) (2015) 2–35

15. Attie, P., Baranov, E., Bliudze, S., Jaber, M., Sifakis, J.: A general framework for
architecture composability. Formal Aspects of Computing 18(2) (2016) 207–231

16. Milner, R.: Communication and Concurrency. Int. Series in Computer Science.
Prentice-Hall, Englewood Cliffs, New Jersey (1989) SU Fisher Research 511/24.

17. ISO: Information Processing Systems – Open Systems Interconnection – LOTOS –
A Formal Description Technique based on the Temporal Ordering of Observational
Behaviour. ISO/IEC 8807, International Organisation for Standardization, Geneva,
Switzerland (1989)

18. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech-
nical report, Department of Computer Science, The University of Iowa (2017)
Available at www.SMT-LIB.org.

19. Mavridou, A., Stachtiari, E., Bliudze, S., Ivanov, A., Katsaros, P., Sifakis, J.:
Architecture-based design: A satellite on-board software case study. In: 13th Int.
Conf. on Formal Aspects of Component Software (FACS 2016). (2016)

20. Bliudze, S., Sifakis, J.: The algebra of connectors—Structuring interaction in BIP.
IEEE Transactions on Computers 57(10) (2008) 1315–1330

21. Bliudze, S., Sifakis, J.: Causal semantics for the algebra of connectors. Formal
Methods in System Design 36(2) (2010) 167–194

22. Qin, X., Bliudze, S., Madelaine, E., Zhang, M.: Using SMT engine to generate
Symbolic Automata - extended version. Technical Report RR-9177, INRIA (June
2018)

16

	Using SMT engine to generate Symbolic Automata

