
Proof-Oriented Design of a Separation Kernel
with Minimal Trusted Computing Base

Narjes Jomaa, Paolo Torrini, David Nowak, Gilles Grimaud, and Samuel Hym

CRIStAL, CNRS & University of Lille, France

Abstract. The development of provably secure OS kernels represents
a fundamental step in the creation of safe and secure systems. To this
aim, we propose the notion of protokernel and an implementation — the
Pip protokernel — as a separation kernel whose trusted computing base
is reduced to its bare bones, essentially providing separation of tasks
in memory, on top of which non-influence can be proved. This proof-
oriented design allows us to formally prove separation properties on a
concrete executable model very close to its automatically extracted C
implementation. Our design is shown to be realistic as it can execute
isolated instances of a real-time embedded system that has moreover
been modified to isolate its own processes through the Pip services.

Keywords: protokernel, memory isolation, formal proof, Coq

1 Introduction

The development of provably secure kernels addresses the trusted computing
base (TCB) that has privileged access to the hardware, thus playing a funda-
mental role in the development of secure systems [1]. Making such development
manageable and cost-effective remains a major challenge in formal methods even
after major breakthroughs [2,3]. Memory management and isolation is at the core
of the functionalities of separation kernels [4,5], designed to ensure that users
can access resources and communicate with each other only according to a given
security policy.

The centrality of memory management and access control provides our moti-
vation for introducing the notion of protokernel, as a minimal separation kernel
that in fact provides only services related to virtual memory management and
context switching between applications. In this paper, we present the devel-
opment and verification of the Pip protokernel [6], relying on a comparatively
lightweight approach, yet providing an efficient, real-world application. We use
Coq, a proof assistant based on the Calculus of Constructions [7], to develop
the monadic, executable model of the services on top of a hardware abstraction
layer, and we prove security properties based on a low-level memory isolation
criterion, using Hoare logic [8]. The model is then automatically translated to a
small fragment of C.

Pip is used in industry as part of a European project1. Its development relies
on a proof-oriented design, narrowing the TCB needed to implement the kernel

1 This work was funded by the European Celtic-Plus Project ODSI C2014/2-12.

2

services in a machine independent way on top of the hardware abstraction layer.
This design, minimalistic yet efficient, is the result of a collaborative effort with
our colleagues from the operating system community (cf. [9] for benchmarks and
more details) to support on-demand secure isolation [10]. Crucially, Pip supports
efficient memory management and a dynamic notion of memory separation based
on a hierarchical TCB architecture, allowing for isolated partitions to be created
and removed after initialisation. The automated translation to C is implemented
in Haskell [11].

Contributions In this paper, we report the formal verification viewpoint of the
development of the Pip protokernel. We present: 1) a Coq model that includes
the relied-upon hardware components (memory and MMU), an executable spec-
ification of the memory manager supporting hierarchical TCB, and a highly
modular API consisting of ten services; 2) a low-level specification of memory
isolation; 3) an abstract information flow model which allows us to prove a non-
influence result; 4) a verification methodology based on a Hoare logic on top
of an enhanced state monad, designed to carry out modular proofs of memory
isolation on the executable model; 5) the application of this methodology to the
verification of three of the API services.

Related work The development of secure kernels has been a long-standing goal
in the formal methods community [5]. Memory separation in its basic form can
be characterised in terms of access control. Stronger notions of information flow
separation have been introduced with the noninterference property [12], ensuring
that events are not leaked [13], and the non-leakage property [14], ensuring
that data are not leaked. Early work on access control policies for the UCLA
security kernel [15] focused on the verification of an abstract model, stressing the
much higher cost of verifying executable code. The notion of separation kernel,
originally introduced by Rushby [4] to ensure information flow separation, is at
the basis of security-oriented MILS kernels [1] as well as of safety-oriented ones
[16].

SeL4 [2] is a microkernel of the L4 family formally verified in Isabelle-HOL.
It provides virtual memory management, thread scheduling, inter-process com-
munication and access control. High-level verification is carried out using Hoare
logic on a abstract model. An executable specification that refines the abstract
model is obtained by automatic translation from a Haskell prototype. The man-
ually written C implementation is proved to refine the executable specification
using an automatic translation of C to Isabelle based on the semantics in [17].
The refinement proofs are functional correctness ones, thus quite big, ensuring
that the abstract model provides a complete specification of the C behaviour.
Security properties are proved relying on the abstract model and functional cor-
rectness [18].

PROSPER is a separation kernel that supports dataflow functionalities of the
ARMv7 processor [19], including inter-partition communication, scheduling, and
in an extended version [20] direct memory access. Security properties have been

3

proved in HOL4. Bisimulation is used to carry over higher-level proofs based on
an abstract model inclusive of communication channels, to a concrete one based
on an intermediate language that represents the ARM instruction set [21].

CertiKOS [3] provides a certified programming method to formally develop
kernels in Coq, targeting an extension of CompCert Clight and assembly code
[22]. The specification approach is based on certified abstraction layers, corre-
sponding to Clight external functions, enhanced with a notion of abstract state,
to allow for functional correctness specifications in the code. CertiKOS supports
fine-grained layering of programming and verification, relying on a notion of
contextual refinement [23], and it has been also used to prove noninterference
results [24].

In [25] the PikeOS memory manager is verified at the C source code level
using an automated static verifier, proving that initialisation-time partitioning
of memory is preserved at runtime. In [26] a Xen-based paravirtualization-style
hypervisor is abstractly modelled in Coq and information flow separation is
proved. In [16] Isabelle-HOL is used to model abstractly the ARINC-653 channel-
based inter-partition communication for safety-oriented separation kernels. In
[27] an abstract model of the Nova kernel is formalised in Coq, data security
properties are proved, and program extraction is used to generate testing code. In
[28] an abstract security model is formalised in Isabelle-HOL to verify properties
of the XtratuM kernel using refinements.

Pip Our system relies on a notion of memory separation, on top of which non-
interference can be proved for isolated partitions. Inter-partition communication
and scheduling are not part of Pip, and therefore communication policies are
not part of the kernel TCB. On the other hand, Pip allows for partition recon-
figuration at runtime, and tree-like partitioning can naturally support any user
TCB hierarchy. The security proof we provide does not rely on any specific ar-
chitecture, and has been the driving factor in the development. The verification
of memory separation is comparatively lightweight, and this has been achieved
by avoiding to go through a full functional correctness proof. From the develop-
ment point of view, Pip relies on a separation of concerns between modelling and
verification on one side and translation to C on the other. Nonetheless, unlike
work based on abstract models, Pip provides an executable model of its services,
written in a shallow embedding of a small fragment of C. The translation of
the services to C source code is fully automated, and its verification, on which
the correctness of the model does not depend, is under way as an independent
workload.

Outline In Section 2 we present the design of Pip. In Section 3 we present
the Coq model, including hardware components and partitioning manager. In
Section 4 we present the security properties and the abstract information flow
model. In Section 5 we present the isolation proofs and the underlying method-
ology. Conclusions and further work are discussed in Section 6.

4

2 Proof-oriented design

Pip is a kind of security kernel conveniently described as a protokernel [6,9,29],
designed to minimize the TCB. The goal of such minimization is twofold: to
reduce the attack surface, and to increase the feasibility of a formal proof. Pip
only provides the hardware management that suffices to enforce security in the
form of memory separation: in this sense, we speak of proof-oriented design, em-
phasising the feedback of theorem-proving on the iterative development of the
system. Like exokernels [30], Pip does not offer any higher-level abstraction: in
particular, it offers neither threads, nor processes, nor a filesystem, nor a network
stack. Pip provides a runtime environment that is a kind of virtual machine and
that we call a partition. On top of that we can implement any high-level ab-
straction. Each partition allows configuring a virtual memory management unit
(MMU) and managing virtual interrupt request (IRQ) via dedicated Pip services
that form the Pip API. Using these configuration services, it is possible to port
on Pip a conventional kernel (e.g. Linux) as well as an embedded system (e.g.
FreeRTOS) or even a hypervisor (e.g. Xen). Little effort is needed to adapt one
of them to run as a partition (see [9] for details, including more than satisfying
benchmarks), relying on the paravirtualization approach [31].

Pip can be better described as protokernel rather than hypervisor because it
does not include multiplexing management, thus reducing the kernel TCB to its
bare bone. Indeed, in a sense Pip runs a single primary partition. This partition,
created at boot time, represents the whole and only real machine. Pip assigns to
it the entire address space (except for the memory used by Pip itself) and the
whole CPU time (except for the CPU time spent by Pip to handle real IRQs).

Nonetheless, Pip supports a hierarchical partitioning model, allowing each
partition to create its own subpartitions and split part of its own address space
between them. This recursively results in the creation of a partition tree whose
root is the primary one (henceforth the root partition). The management of
the partition tree takes place according to a recursive scheme. Pip does neither
multiplex interrupt requests nor share CPU time between distinct partitions. Pip
only deals with software interrupts that are system calls to its own API. Other
software interrupts are forwarded to the parent of the caller. On the other hand,
all the hardware interrupts are forwarded to the root. In this way, Pip delegates
multiplexing (i.e. determining the control flow between partitions) to the root,
which can implement any possible multiplexing policy, recursively allowing each
partition to share CPU time between its children.

Executing multiplexing in user mode allows us to cut drastically the size of
the kernel TCB. On the other hand, the hierarchical architecture allows each
partition to rely on the environment managed by its parent and to split its
environment between its children. This naturally induces a hierarchical charac-
terisation of the TCB associated with each partition, which can be expressed
in terms of a simple transitive policy: each partition only relies on its ancestors
and the kernel. The primary purpose of this design is to allow for a cost-effective
verification that this policy is enforced, by means of a memory isolation proof.

5

Partitioning model The physical memory of a computer is split between fixed-
size chunks called pages. Pages can be allocated, accessed and used to store
information. Whenever a partition is created, Pip associates it with a page which
we call its partition descriptor (PD), denoted by an identifier referred to as PDI.

The memory is initially split between primary kernel pages, assigned to the
kernel and solely owned by it, and usable pages, assigned to the root partition
and owned by it. When a partition creates a child partition, it reallocates some
of its owned pages to the child, it lends the sole ownership of them to the kernel
(for configuration purpose), and shares the ownership of some of its owned pages
with the child to extend its memory. When a child partition is deleted, its parent
gets back the ownership of all the pages it had reallocated to it (including the
child configuration pages lent to the kernel). We say that a partition can access
a page whenever it owns it. In general, the pages a partition can access are a
subset of those assigned to it. Therefore the user-accessible pages (i.e. the pages
owned by the root partition and shared with any of its descendants) are a subset
of the usable ones. We refer to the pages assigned to a partition together with
those used for its own configuration (which are always disjoint) as the pages
allocated for that partition.

The API of Pip is constituted of ten services that can be called by the execut-
ing partition, eight of which are for managing its memory space. createPartition
adds a new child to the caller. deletePartition deletes a child and gives all the
pages allocated for it back to the caller. addVaddr lends physical memory to
a child. removeVaddr removes a page from a child. mappedInChild returns the
child to which a given page is assigned. prepare gives pages to the kernel to man-
age a child’s configuration. pageCount computes the number of pages required
to configure a child. collect gives pages lent to the kernel back to the calling
partition. The remaining two services are for handling IRQs. dispatch notifies a
partition about a given interrupt. resume restores the context of a previously
interrupted partition.

While the parent partition can read and write in the memory owned by its
children (we call this property vertical sharing), it cannot access anymore to the
pages given to Pip (we obviously want to prevent a partition from messing up
Pip data structures, we call this property kernel isolation). Sibling partitions
(i.e. partitions that have the same parent) cannot access each other’s memory
(we call this property horizontal isolation). If siblings want to communicate,
they cannot do it through shared memory. Instead, their parent can use the
services of Pip to implement a communication protocol, for instance by flipping
a memory page between the siblings.

MMU The memory isolation property ensured by Pip is based on hardware
functionalities that control physical memory accesses. Partitions can not use
physical addresses in order to access information. Instead, they can only use
virtual addresses that will be converted to physical addresses using the Memory
Management Unit. Indeed, the MMU is invoked, on every user access, in order
to make the correct decision on authorising or rejecting access. To make these
decisions it relies on configuration pages, called page tables or indirections, which

6

have been configured by the kernel so as to allow translation of any given virtual
address to the corresponding physical address. In order to guarantee security,
MMU page tables should never be accessible by any entity except the kernel.
Pip satisfies this requirement by construction.

3 The executable specification

The development of Pip is based on a layered model formalised in Coq, as shown
in Fig. 1. At the top level, the service layer provides a source-code level executable
specification of architecture-independent system management functions. The ser-
vice layer consists of the kernel service API that allows for context switching and
partition tree management (PTM) which is the core of the Pip engine. The ser-
vice layer is implemented as an algorithmic model, using the shallow embedding
of a C-like fragment based on a monadic encoding, which can be automatically
translated to C code. The service layer is built on top of a harware abstraction
layer (HAL), inclusive of memory abstraction (MAL) and interrupt abstraction
(IAL). The MAL itself can be structured into two layers: hardware memory
abstraction (HMAL) and monadic memory abstraction (MMAL). The HMAL
provides an abstract model of the physical memory and the MMU. The IAL is
also structured into two layers: hardware interrupts abstraction layer (HIAL)
and monadic interrupts abstraction layer (MIAL) required to perform context
switching. The MMAL and MIAL provide high-level but executable specifica-
tions of low-level, architecture-dependent functions which have been manually
implemented in C and assembly. The executable model that can be actually run
in Coq thus includes the algorithmic model of the service layer as well as the
MMAL and MIAL.

MAL

Hardware

automated translation

Coq implementation C implementation

abstraction

HMAL+MMU

API (PTM)

MMAL

MAL IAL

IAL

API (PTM)

HIAL

MIAL

Fig. 1. The design of Pip

Hardware memory abstraction layer Memory size is determined in our
model by two architecture-dependent parameters, the positive integers pageSize

for memory page size and nmbPages for the number of pages. Pages are pointed
to by page identifiers of type page, which are natural numbers less than nmbPages,
modelled in Coq using dependent records and defined as {p :> nat; Hp: p < nmbPages}.
We use 0 as default value for the identifier that points to the null page. The

7

physical address of a memory cell consists of a page identifier and a position in
that page, given as an offset value called index. It is modelled by type paddr

and defined as (page * index). Also indices are typed as a subset of positive
integers index and defined as {i:> nat; Hi: i< pageSize}.

In general, the physical memory state of a computer can be modelled as an
association list which maps physical addresses to values. However, our model is
completely abstract with respect to the content of the user space. We only need
to model the partition tree, and thus we only provide the content of the kernel-
owned pages, from which the tree structure can be computed. The part of the
hardware state that is relevant to Pip consists of the partition descriptor of the
currently executing partition and of the parts of the physical memory where Pip
stores its own data (essentially related to the configuration and management
of the partition tree), as expressed by the record type state which is defined
as {currentPartition: page; memory: list(paddr * value)}. Direct memory ac-
cess is represented by a lookup function named select. The value datatype sums
up the types of values that can be stored by Pip.

Inductive value : Type:= |PE: Pentry → value |VE: Ventry → value

|PP: page → value |VA: vaddr → value |I: index → value.

Here Pentry stands for physical entry, Ventry for virtual entry, and vaddr for
virtual address. We prove that memory management is well-typed with respect
to these value types, as an invariant consistency property of our model. Physical
entries (PTEs) make it possible to associate page addresses with information
concerning whether each page is assigned to the current partition (present)
and whether it is owned by it (accessible). A physical entry is modelled by
type Pentry and defined as {pa: page; present: bool; accessible: bool}. A
page table is a configuration page that contains a set of values, including physical
entries.

Partition tree management The configuration of each partition in Pip is
stored in the memory assigned to (but not accessible by) its parent, and it is
defined by four entities. The first and principal one is the MMU configuration,
the other ones include two tree-like structures and a list-like one. Each partition
descriptor (PD) is a page that contains the addresses of four configuration en-
tities, as illustrated by Fig. 2. The PD together with its entities forms what we
call a configuration node.

The MMU configuration of the configured partition has a hierarchical struc-
ture which can be abstractly described as a graph where nodes are pages, each
being either a page table or a terminal page, and each terminal page being ei-
ther a page assigned to the configured partition or the null page. Each entry
in a page table points to another page, thus providing the arcs in the graph,
while providing accessibility information. The MMU structure has two funda-
mental properties which have been verified as invariant consistency properties
of our model. The first property ensures that the one and only physical en-
try marked as not present corresponds to the null page – in fact, the MMU
configuration only contains pages that are assigned to the parent partition.
The second property ensures that the subgraph formed by non-null pages has

8

SH1 SH2 LMMU

PDkernel pages

Fig. 2. Partition tree configuration

the structure of a tree, which we call the MMU tree. The tree depth is fixed
by the architecture-dependent natural parameter levelNum. Virtual addresses
are modelled by type vaddr as lists of indices of length levelNum+1 and de-
fined as {va:> list index; Hva: length va = levelNum+1}. Each virtual address
is translated either to the null address or to a physical address in a leaf, by in-
terpreting each index in the list as offset in the page table at the corresponding
level in the MMU tree. The last index in the list is the offset of the corresponding
physical address, which may be accessible or not to the partition, depending on
whether the page is owned or not, as specified by the last PTE.

Crucially, in Pip only the kernel can access directly physical addresses. Vir-
tual addresses are the objects provided by the MMU to user applications as indi-
rect references to the physical memory. Indirect access relies on the mmu_translate

function, which models the hardware mapping of virtual addresses to physical
ones, and which has been proved to respect the access policy.

Intuitively, non-null virtual addresses correspond to maximal branches in
the MMU tree (plus the final offset), and they include those pointing to the
descendants in the partition tree. In fact, the content of a virtual address (i.e.
the value of the physical address it gets translated to) can be the PDI of another
partition (indeed, this is the only kind of content Pip cares for). In this way
configuration nodes can be linked together. The resulting structure is a graph
which we prove to be a tree, and thus to represent the partition tree, as an
invariant consistency property of our model.

The partition tree management makes use of two auxiliary configuration enti-
ties, called shadows, that mirror the corresponding MMU tree. The first shadow
is used to find out which pages are assigned to children. It uses the type Ventry of
virtual entries which is defined using the following record {pd: bool; va: vaddr}.
The flag pd indicates if the associated physical address is the PDI of a child par-
tition. The second shadow is used to associate each partition descriptor to the
virtual address it has in its parent partition. The fourth auxiliary entity is a
linked list used to remember which pages have been lent to the kernel.

9

The monad In order to implement the Pip services imperatively in Coq as
sequential programs, we rely on a monadic approach. Monads [32,33] allow
threading effects through computations, and can be used to interpret seman-
tically imperative languages in purely functional ones. In our case, side effects
include the state, corresponding to the hardware state, and a notion of exception
corresponding to the possibility of undefined behaviours that we actually prove
to never happen. For example, any attempt by Pip to access a physical address
that is not defined in the memory state would result in an undefined behaviour.

We define our monad as an abstract datatype LLI A that wraps together
hardware state and undefined behaviours, following [32,33].

Definition LLI (A : Type) : Type := state → result (A * state).

Here result is an inductive type with two constructors: the first one corre-
sponds to a result of type A, and the second one to an undefined behaviour.

Inductive result (A : Type) : Type :=

|val: A → result A |undef: nat → state → result A.

We define the monadic operations ret and bind, which can be easily proved to
satisfy the monadic laws [32,33].

Definition ret : A → LLI A := fun a s ⇒ val (a, s).

Definition bind : LLI A → (A → LLI B) → LLI B :=

fun m f s ⇒ match m s with

|val (a, s’) ⇒ f a s’ |undef a s’ ⇒ undef a s’ end.

We write perform x := m in e for the monadic binding operation bind m (fun x ⇒ e),
which can also be written m ;; e when x is not used in e, to represent sequential
composition of the stateful actions m and e. The state monad ensures we can de-
fine the usual stateful functions, e.g. get and put to read and update the state.
We use the monadic functions to define the specific ones that form the MAL,
matching the corresponding architecture-dependent implementations in C and
assembly. Crucially, the Pip services are implemented so to access the state only
through the MMAL functions.

Monadic memory abstraction layer The MMAL specifies a C and assem-
bly library for the architecture-dependent part of Pip, which consists of kernel
atomic operations, such as reading and writing values in physical memory, and
performing simple computations and comparisons on them. This includes phys-
ical memory access operations needed to configure partitions, virtual memory
activation and a set of auxiliary operations. It mainly consists of bitwise opera-
tions of constant computational complexity.
The functions defined in the MMAL can be organized along four categories. The
first one is HAL_write. It allows the kernel to write values into physical memory
through physical addresses and includes the following primitives: writeVirtual,
writePhysical, writeVirEntry, writePhyEntry, writeAccessible, writePresent,
writePDflag, and writeIndex. For example, the writeVirtual primitive has the
following definition:

Definition writeVirtual (paddr: page)(idx: index) (va: vaddr): LLI unit:=

modify (fun s ⇒ {| currentPartition := s.(currentPartition);

10

memory := add paddr idx (VA va) s.(memory) beqPage beqIndex|}).

It stores a virtual address at the physical address given by a page and an index.
The monadic modify operation is used to modify the association list that repre-
sents the memory.
The second category is HAL_read. It is about reading values from physical memory
and includes the following primitives: readVirtual, readPhysical, readVirEntry,
readPhyEntry, readAccessible, readPresent, readPDflag, and readIndex. For ex-
ample, the readVirtual allows reading a virtual address from a physical location.

Definition readVirtual (p: page) (idx: index): LLI vaddr:=

perform s := get in match lookup p idx s.(memory) beqPage beqIndex with

|Some (VA v) ⇒ ret v |Some _ ⇒ undefined 3 |None ⇒ undefined 2 end.

This requires that there is a value of the right type at the given physical address.
If the condition is not met, the result is an undefined behaviour.
The third category (named HAL_op) allows the kernel to perform simple opera-
tions, including e.g. successor and equality comparison, on each value type. The
last category (named HAL_const) is about accessing global constants. Notice that
since Coq types are more discriminating than C ones, different MMAL functions
can actually be implemented by the same C function.

Linguistic aspects The program extraction capabilities of Coq made it possi-
ble to extract OCaml code which we used to test our model. However, such code
does not meet the runtime requirements of a realistic kernel. Garbage collection
as needed by functional programs stands in the way of a reliable runtime be-
haviour. Therefore, we need a translation to C. The monadic code we use in our
executable specification corresponds to a quite simple imperative language: es-
sentially, a first-order sequential language with call-by-value, primitive recursion
and mutable references. At a low level, the datastructures used by Pip, including
lists and trees, can be treated as linked lists. The abstract memory model in Coq
matches closely this low-level characterisation: the Pip datastructures are repre-
sented using an encoding of linked lists, given in terms of lists and access to the
monadic state, rather than as inductive datatypes, and then by proving invariant
consistency properties as appropriate to ensure that the low-level representation
is correct.

In fact, our monadic code corresponds to a shallow embedding of the deno-
tational semantics of a language, which matches closely a comparatively small
fragment of C (we use no arrays, neither structures nor unions, no loop in-
structions, no pointer arithmetics). We use a Haskell-implemented tool called
Digger [11] to generate automatically C code from the abstract syntax of the
monadic Coq code. The code generated by Digger from the executable model can
be compiled (we currently use GCC) together with the manually implemented
MAL functions. The executable model can also be automatically translated to a
deep embedding in Coq [34], which we plan to use as intermediate language for
a verified translation, currently work in progress.

Relying on low-level modelling of data structures has an additional drawback
in the development of the Pip functions: we cannot rely on structural recursion

11

on a corresponding inductive type. This can be a problem, as Coq requires
that we ensure termination. Nonetheless, we can easily deal with this problem,
relying on the fact that the number of recursive calls for any function in Pip is
always bounded. These bounds can be computed based on the parameters of the
hardware architecture such as the size of a memory page. Of course, this means
that we need to prove that the computed bound is large enough.

4 Security properties

Security in Pip relies on the MMU functionalities that control user access to
physical memory, as user access to physical memory is only allowed through
the MMU. Proved consistency properties ensure, for instance, that the MMU
is configured correctly, consistently with the partition tree, and that memory
access through the MMU is consistent with the access policy encoded in the
page tables. They are necessary to prove the security properties of Pip. We
now introduce the properties that define the Pip partitioning model, provably
preserved by the API services: horizontal isolation, kernel isolation, and vertical
sharing.

In a tree, two nodes are unrelated whenever neither of them is a descendant
of the other one. With respect to the partition tree, horizontal isolation means
that unrelated partitions cannot access each other’s memory. This is the case in
particular for sibling partitions.

Definition 1 (HI). Horizontal isolation holds for a state s whenever for all par-
tition descriptors m0,m1,m2 ∈ partition tree(s), with m1,m2 ∈ children(m0, s)
and pdi(m1) 6= pdi(m2), it holds that
allocated pages(m1, s) ∩ allocated pages(m2, s) = ∅.

where partition tree is the list of partition identifiers. We use consistency prop-
erties to ensure that partitions are organized into a tree-like structure.

Kernel isolation means that no partition can access the pages owned by the
kernel.

Definition 2 (KI). Kernel isolation holds for a state s whenever for each par-
tition descriptor m ∈ partition tree(s), it holds that
owned pages(m, s) ∩ kernel owned pages(s) = ∅.

Vertical sharing means that all the pages allocated for a partition are included
in the pages assigned to its ancestors, and therefore, owing to the access policy
implemented by the MMU, a partition has read and write access on all the
memory owned by its descendants.

Definition 3 (VS). Vertical sharing holds for a state s whenever for all parti-
tions m0,m1 ∈ partition tree(s), with m1 ∈ children(m0, s), it holds that
allocated pages(m1, s) ⊂ assigned pages(m0, s).

Relying on these invariants we can prove formally a non-influence property
for isolated partitions [35] (i.e. excluding inter-partition communication), relying

12

on an abstract information flow model. We call P-machine a state machine at
the level of physical memory, where transition steps are specified by the type
pstep (ls : list page) : state→ state . Here ls is the list of pages which can be
accessed in the execution of the physical action associated with the step. We can
define state equivalence with respect to a list of pages (where select returns the
value stored at a location).

s1 ∼ps s2 := ∀(p : page) (i : index), p ∈ ps→ select s1 p i = select s2 p i

We write s1 ∼ s2 for s1 ∼ps s2 when ps are all the pages, and s1 ∼p s2 for
s1 ∼[p] s2. We can specify the access requirement intended by pstep in terms of
two conditions. First, the read condition states that the step depends only on
the values read at locations in ps (i.e. the physical action depends only on its
accessible locations).

readCond (π : pstep) : Type :=
∀(ps : list page) (s1 s2 : state), s1 ∼ps s2 → π ps s1 ∼ps π ps s2

Second, the write condition states that the only locations possibly affected by the
step are those in ps (i.e. the physical action only affects its accessible locations).

writeCond (π : pstep) : Type :=
∀(ps : list page) (s : state) (p : page), ¬ p ∈ ps → s ∼p π ps s

Any state machine can be modelled as a P-machine. Runs can be modelled
as action sequences. We can now introduce V-machines as virtual-level state
machines which lift our information flow specification at the level of virtual
memory. We can define the notion of virtual step by lifting a physical step,
relying on the MMU translation function that represents virtual memory access
in the HAL. Here m is the executing partition and vs is the list of virtual
addresses accessed in the execution of the virtual action associated with the
step.

vstep (p : page) (π : pstep) (vs : list vaddr) (s : state) : state :=
let ps := map (mmu translate p) vs in π ps s

The fact that the MMU is configured to return physical addresses in the memory
owned by the executing partition, together with the access requirement on the P-
machine steps, makes it straightforward in Coq to prove non-influence (a notion
defined in [14]), with respect to a policy that excludes communication between
separated partitions.

We write @m to denote all the pages that are in a partition with address
m. We write s1 ∼m!ps s2 whenever s1 ∼ps s2, the executing PDI is m in both
states, and s1 ∼@m s2. We prove stepwise non-leakage, defined following [14].

s1 ∼a!as s2 → ∀pt vs, vstep a pt vs s1 ∼as vstep a pt vs s2

This property can be easily extended to action sequences. Similarly we can prove
a noninterference-related property (called local-respect in [13]).

¬ a ∈ @ax → ∀pt vs, vstep ax pt vs s ∼a s

13

This, together with non-leakage suffices to prove classical noninterference and
non-influence [13,14]. Our proof shows how the low-level invariants (HI, KI and
VS) can be used to prove a higher-level result. The extent of the result presented
here is comparatively limited, as we consider a definition of virtual step which is
very strict, ruling out the mechanism we need for inter-partition communication
(i.e. interrupts). On the other hand, this model could be extended to deal with
given user-level communication policies, by a reformulation of the write condition
that takes interrupts into account.

5 The verification approach

Hoare logic on top of a state monad Our verification targets the properties
KI, HI and VS, defined in Section 4, as well as the consistency properties (which
we will denote jointly by C in the following), with the goal of ensuring that
each system call to an API service preserves all of them. Thus our proofs consist
mainly of reasoning about invariants. We do this by using a Hoare logic which
we define on top of the LLI (Low Level Interface) monad. We use the syntax
{{ P }} m {{ Q }} for our Hoare triples, defined as follows.

Definition hoareTriple {A: Type} (P: state → Prop) (m: LLI A)

(Q: A → state → Prop): Prop := ∀ s, P s → match m s with |val (a,s’)

⇒ Q a s’ |undef _ _⇒ False end.

Here the unary predicate P gives the precondition and the binary predicate Q the
postcondition of running the computation m. If performing m yields an undefined
behavior, the triple does not hold, thus ensuring a basic functional correctness
property: the services of Pip never lead to an undefined behavior. We created a
library of general Hoare logic rules to reason about monadic programs. We also
created a specific library of Hoare triples (in general, either weakest preconditions
or strongest postconditions) for the MAL primitives that sequentially form each
of the API service. For example, the following has the weakest precondition
of readVirtual as precondition.

Lemma readVirtualWP table idx (P : vaddr → state → Prop) :

{{fun s⇒ exists e: vaddr, lookup table idx s.(memory) beqPage beqIndex =

Some (VA e) ∧ P e s}} MAL.readVirtual table idx {{P}}.

Our use of Hoare logic relies on the assumption that each system call is atomic:
it is required that interrupts are blocked during a system call. This is one of the
reasons the system calls were designed to be elementary. Moreover, our Hoare
logic deals only with the global state, therefore it is required that in multicore
architectures at most one core is executing a system call at any time. Concerning
the hardware, we naturally assume that the physical memory behaves correctly,
as specified (i.e. essentially it is not volatile), and so does the MMU component.
We also assume that the non-algorithmic MMAL is correctly implemented in
C and assembly, and that the system was booted in an isolated and consistent
state (as our proof is essentially a preservation one). The code of Pip has a
sequential character. Thus, verification can proceed backward, relying on weakest
precondition triples, or forward relying on strongest postcondition ones. The two

14

approaches are actually equivalent in our case, since we can ensure termination
and our triples rule out undefined behaviours. In our concrete proofs we found
it more convenient to move forward, following the actual execution flow.

The separation proof for addVaddr In the case of AddVaddr, the top level
invariant is the following:

Lemma addVaddrInvariant (src dst child: vaddr):

{{fun s ⇒ HI s ∧ KI s ∧ VS s ∧ C s}} addVaddr src dst child

{{fun _ s ⇒ HI s ∧ KI s ∧ VS s ∧ C s }}.

The AddVaddr service is called by the executing partition p0 to assign one of its
pages (further down denoted by srcp) to one of its children (child). Here src is
the virtual address of srcp in the address space of p0, whereas dst is the virtual
address that gets associated with srcp in the address space of child. The first
part of the service consists in making some checks, before making any update
to the state. These checks include consistency ones needed to avoid undefined
behaviours, and security ones on each of the given parameters. If any of the
security checks fails, the service will abort leaving the state unchanged. To ensure
that child is actually a child of p0, AddVaddr starts by checking if the PDI of
child is included in the first shadow of p0. Then it makes sure that srcp is already
assigned to p0 and owned by it, checking the control bits present and accessible
of the corresponding table entry in the MMU tree of p0. It checks that srcp is
not already assigned to any child using the flag pd stored in the first shadow
of p0. Finally it verifies that dst is not already associated to a physical page
by going through the MMU tree of child. This prevents overwriting data. These
properties gets propagated through the sequential execution until the last part,
where state updates take place. In fact, it is part of our design of the Pip services
to carry out state updates in a way that maximises invariant propagation without
compromising efficiency. In the case of AddVaddr state updates are confined to
the last three instructions, for which the following triple holds:

{{fun s ⇒ HI s ∧ KI s ∧ VS s ∧ C s ∧ isChild child s ∧ isPresent srcp s

∧ isAccessible srcp s ∧ notShared srcp s ∧ isEmpty dst s}}

writeVirtual shadow2TableDst dst src;;

writeVirEntry shodow1TableSrc dst child;;

writePhyEntry MMUtableDst dst srcp {{fun _ s ⇒ HI s ∧ KI s ∧ VS s ∧ C s}}.

writeVirtual modifies the second shadow of child, by storing src at dst (thus ensur-
ing that the page can be efficiently located in the parent address space when it
needs to get revoked). writeVirEntry starts the process of assigning the page asso-
ciated with src to the partition associated with child, by storing the address child
at src in the first shadow of p0. writePhyEntry concludes the process, by associat-
ing the physical page srcp to dst in the MMU tree of child. As a result of relying
on comparatively flat representations (e.g. our trees are represented as lists), a
significant part of the proof consists of ensuring that consistency properties are
preserved through sequential updates. This is particularly the case for the consis-
tency of the first shadow, a data structure which has been specifically put in place
to support isolation, by ensuring that a page cannot be assigned to distinct chil-

15

dren. Our policy of ordering steps to maximise propagation pays with respect
to several properties: for example accessibleChildPageIsAccessibleIntoParent, re-
quiring that each page assigned to a partition has a back-pointer in its second
shadow, is preserved by the fact of performing writeVirtual first. However, there
are some propagated properties that get temporarily broken and need to be
patched up with weaker ones. For example, the property notShared srcp s, stat-
ing that srcp is not marked as shared according to the kernel information stored
at p0, is no more valid after executing writeVirEntry. Luckily, a weaker property
that here we denote H holds. It states that srcp is not assigned to any child
according to MMU configuration, and suffices to prove the final triple:

{{fun s ⇒ HI s∧ KI s ∧ VS s ∧ C s ∧ isChild child s ∧ isPresent

srcp s ∧ isAccessible srcp s ∧ H srcp s ∧ isEmpty dst s}}

writePhyEntry MMUtableDst idx srcp

{{fun _ s ⇒ HI s ∧ KI s ∧ VS s ∧ C s}}.

In particular, proving HI s (as by definition 1) involves showing that srcp is
assigned to child and not assigned to any distinct sibling partition. Proving KI s
(as by definition 2) involves showing that srcp is not a kernel page. Finally
proving VS s (as by definition 3) involves showing that srcp is assigned to the
parent partition of child.

Overview of the development and the verification The top level exe-
cutable specification includes about 1300 lines of Gallina. We estimate 3 months
for kernel conception and 9 months for its development. We have currently ver-
ified three services: createPartition, addVaddr and mappedInChild. We started
from the proof of createPartition which introduced the majority of the consis-
tency properties resulting in about 60K lines of proof. The other two services
were proved relying largely on lemmas already proved for createPartition and
resulting in about 20K additional lines of proof. The current proof has required
about one person-year of verification time. Along the proof, we made several
changes to the code of the kernel. Most of time it is about fixing bugs such as
adding some missing checks or reordering instructions to simplify the proof.

6 Conclusions and further work

In this paper we have presented the formalization of the protokernel Pip which is
written in Coq and automatically translated to C code. It supports a hierarchical
partitioning model that only requires managing partition virtual spaces and
context switching. The main security property ensured by the kernel is memory
separation. Pip was designed with special attention to increasing the feasibility of
its verification. In this sense, not only the minimisation of the TCB, but also the
modular design of the API, the structuring of the configuration information, and
the modelling economy of the monadic encoding have played a role in allowing
for comparatively simple proofs.

16

Applications In order to show that our proof-oriented design is realistic, the
real-time embedded system FreeRTOS and Linux 4.10.4 have been ported to
Pip [9]. The porting consists essentially in removing privileged instructions and
other operations, replacing them with system calls to Pip, thus allowing for
isolating tasks by running them in isolated partitions.

Ongoing work The verification of the remaining services is currently under
way, and so is the verification of the translation to C. Concerning the latter, we
rely on a small intermediate language called DEC [34] which has been formalised
as a deep embedding to allow for a definition in Coq of a translation to CompCert
C [22]. Future work on the formal side will also involve extending the informa-
tion flow model to deal with user-level interpartition communication, and last
but not least, extending verification to the architecture-dependent part. Finally,
it is important to note that Pip was extended to support different multi-core
configurations without updating its current implementation. The modification
of existing proofs on the mono-core version to account this extension is still
under study.

References

1. Alves-Foss, J., Scott Harrison, W., Taylor, C.: The MILS architecture for high-
assurance embedded systems. International journal of embedded systems (2006)
239–247

2. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tich, H., Winwood,
S.: seL4: formal verification of an OS kernel. In: Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles. (2009) 207–220

3. Gu, R., Shao, Z., Chen, H., C., W.S., Kim, J., Sjoberg, V., Costanzo, D.: CertiKOS:
an extensible architecture for building certified concurrent OS kernels. In: OSDI.
(2016) 653–669

4. Rushby, J.: Design and verification of secure systems. ACM (1981)
5. Zhao, Y., Sanan, D., Zhang, F., Liu, Y.: High-assurance separation kernels: a

survey on formal methods. arXiv preprint arXiv:1701.01535 (2017)
6. The Pip Development Team: http://pip.univ-lille1.fr (2017)
7. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development.

Coq’Art: The Calculus of Inductive Constructions. Springer (2004)
8. The Pip Development Team: http://pip.univ-lille1.fr/doc/coq-doc/toc.

html (2017)
9. Bergougnoux, Q., Jomaa, N., Yaker, M., Cartigny, J., Grimaud, G., Hym, S.,

Nowak, D.: Proved memory isolation in real-time embedded systems through vir-
tualization (2018) Draft. http://www.cristal.univ-lille.fr/~nowakd/pip.pdf.

10. The ODSI Partners: http://celticplus-odsi.org (2017)
11. Hym, S., Oudjail, V.: Digger (2017) https://github.com/2xs/digger.
12. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE

Symposium on Security and Privacy. (1982) 11–11
13. Rushby, J.: Noninterference, transitiviy, and channel-control security policies. SRI

International, Computer Science Laboratory (1992)

http://pip.univ-lille1.fr
http://pip.univ-lille1.fr/doc/coq-doc/toc.html
http://pip.univ-lille1.fr/doc/coq-doc/toc.html
http://www.cristal.univ-lille.fr/~nowakd/pip.pdf
http://celticplus-odsi.org
https://github.com/2xs/digger

17

14. von Oheimb, D.: Information flow control revisited: Noninfluence = noninterference
+ nonleakage. In: Computer Security - ESORICS 2004, 9th European Symposium
on Research Computer Security, Sophia Antipolis, France, September 13-15, 2004,
Proceedings. (2004) 225–243

15. Walker, B.J., Kemmerer, R.A., Popek, G.J.: Specification and verification of the
UCLA Unix security kernel. Communications of the ACM (1980) 118–131

16. Zhao, Y., Sanan, D., Zhang, F., Liu, Y.: Reasoning about information flow security
of separation kernels with channel-based communication. In: International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
Springer (2016) 791–810

17. Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: Proceed-
ings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’07, ACM (2007) 97–108

18. Murray, T., Matichuk, D., Brassil, M., Bourke, T., Seefried, S., Lewis, C., Gao, X.,
Klein, G.: seL4: from general purpose to a proof of information flow enforcement.
In: IEEE Symposium on Security and Privacy (SP). (2013) 415–429

19. Dam, M., Guanciale, R., Khakpour, N., Nemati, H., Schwarz, O.: Formal verifi-
cation of information flow security for a simple ARM-based separation kernel. In:
Proceedings of the 2013 ACM SIGSAC Conference on Computer & Commu-
nications Security. CCS ’13, ACM (2013) 223–234

20. Schwarz, O., Dam, M.: Formal verification of secure user mode device execution
with DMA. In: Haifa Verification Conference, Springer (2014) 236–251

21. Fox, A.C.J., Myreen, M.: A trustworthy monadic formalization of the ARMv7
instruction set. Interactive Theorem Proving (2010) 243–258

22. S., B., Leroy, X.: Mechanized semantics for the Clight subset of the C language.
Journal of Automated Reasoning (2009) 263–288

23. Gu, R., Koenig, J., Ramananadro, T., Shao, Z., Wu, X.N., Weng, S.C., Zhang, H.,
Guo, Y.: Deep specifications and certified abstraction layers. In: Proceedings of the
42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’15, ACM (2015) 595–608

24. Costanzo, D., Shao, Z., Gu, R.: End-to-end verification of information-flow security
for C and assembly programs. ACM (2016) 648–664

25. Baumann, C., Bormer, T., Blasum, H., Tverdyshev, S.: Proving memory separa-
tion in a microkernel by code level verification. In: Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops (ISORCW), 2011 14th
IEEE International Symposium on. (2011) 25–32

26. Barthe, G., Betarte, G., Campo, J.D., Luna, C.: Formally verifying isolation and
availability in an idealized model of virtualization. FM (2011) 231–245

27. Becker, H., Crespo, J.M., Galowicz, J., Hensel, U., Hirai, Y., Nakata, K., Sacchini,
J.L., Tews, H., Tuerk, T.: Combining mechanised proofs and model-based testing
in the formal analysis of a hypervisor. In: FM 2016: Formal Methods: 21st In-
ternational Symposium, Limassol, Cyprus, November 9-11, 2016, Proceedings 21,
Springer (2016) 69–84

28. Sanan, D., Butterfield, A., Hinchey, M.: Separation kernel verification: the XtratuM
case study. In: Working Conference on Verified Software: Theories, Tools, and
Experiments, Springer (2014) 133–149

29. Bergougnoux, Q., Iguchi-Cartigny, J., Grimaud, G.: Pip, un proto-noyau fait pour
renforcer la sécurité dans les objets connectés. In: Conférence d’informatique
en Parallélisme, Architecture et Système (ComPAS), Jun 2017, Sophia Antipo-
lis, France. (2017) 8 pages.

18

30. Engler, D.R., Kaashoek, M.F., O’Toole, Jr., J.: Exokernel: An operating system
architecture for application-level resource management. SIGOPS Oper. Syst. Rev.
(1995)

31. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., H., A., Neugebauer, R.,
Pratt, I., Warfield, A.: Xen and the art of virtualization (2003)

32. Moggi, E.: Notions of computation and monads. Information and computation
(1991) 55–92

33. W., P.: Comprehending monads. Mathematical Structures in Computer Science
(1992) 461–493

34. Torrini, P., Nowak, D.: https://github.com/2xs/dec.git (2017)
35. The Pip Development Team: https://github.com/2xs/pipcore/tree/develop

(2017)

https://github.com/2xs/dec.git
https://github.com/2xs/pipcore/tree/develop

	Proof-Oriented Design of a Separation Kernel with Minimal Trusted Computing Base

