
Backward reachability analysis
for timed automata with data variables

Rebeka Farkas1,2, Tamás Tóth1?, Ákos Hajdu1,2, and András Vörös1,2

1 Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

Budapest, Hungary
{farkasr,totht,hajdua,vori}@mit.bme.hu

2 MTA-BME Lendület Cyber-Physical Systems Research Group

Abstract. Efficient techniques for reachability analysis of timed auto-
mata are zone-based methods that explore the reachable state space from
the initial state, and SMT-based methods that perform backward search
from the target states. It is also possible to perform backward exploration
based on zones, but calculating predecessor states for systems with data
variables is computationally expensive, prohibiting the successful appli-
cation of this approach so far. In this paper we overcome this problem by
combining the zone-based backward exploration algorithm with the we-
akest precondition operation for data variables. This combination allows
us to handle diagonal constraints efficiently as opposed to zone-based
forward search where most approaches require additional operations to
ensure correctness. We demonstrate the applicability and compare the
efficiency of the algorithm to existing forward exploration approaches by
measurements performed on industrial case studies. We show that data
variables can be handled by the weakest precondition operation but the
large number of target states often prevents successful verification.

Keywords: Timed automata · Reachability analysis · Backward explo-
ration · Weakest precondition.

1 Introduction

The ubiquity of real-time safety-critical systems makes it desirable to model
and verify time-dependent behaviour. One of the most common formalisms for
this purpose is the timed automaton, introduced by Alur and Dill [1] which
extends the finite automaton with real-valued variables called clock variables
that represent the elapse of time. This makes it a suitable formalism for modelling
time-dependent behaviour of systems such as communication protocols [21] and
logical circuits with propagation delay [17].

State reachability has a prominent role in verification. Most reachability ana-
lysis algorithms perform forward search: they check if the set of states reachable

? This work was partially supported by Gedeon Richter’s Talentum Foundation
(Gyömrői út 19-21, 1103 Budapest, Hungary).

from the initial state contains the target state. Backward search can also be used
for checking reachability – in this case the algorithm explores set of states from
where the target state is reachable and checks if it contains the initial state [18].
The motivation behind backward search is that when the target state is unrea-
chable, the state space explored from the initial state is disjunct from the one
explored backwards from the target states and the latter might be smaller.

Reachability for timed automata is decidable, but the complexity is expo-
nential in the number of clock variables [1]. The most efficient techniques for
deciding reachability either rely on SMT solvers or abstract state space repre-
sentations. The key idea of SMT-based techniques is to transform the system
into a set of constraints that is satisfiable if the target state is reachable, and
then give it to an SMT solver. Although this technique is efficient for other
domains and there is an efficient first-order theory for the timed domain, called
difference logic [9], in practice solver-based techniques resulted more efficient
for other timed formalisms, such as the timeout automaton [11]. As for timed
automata, the most efficient algorithms rely on the zone abstract domain [10]
that is usually used for (forward) state space exploration [6].

While it is possible to perform zone-based backward state space exploration of
timed automata, the forward approach is preferred. The general reason behind
this is that in practice extensions of timed automata are used, such as timed
automata with data variables, and it is expensive to calculate predecessor states
for systems with data variables [8,6]. On the other hand, zone-based backward
exploration of timed automata would be desired, because for a class of timed
automata called timed automata with diagonal constraints backward exploration
is the only zone-based method that doesn’t introduce an additional exponential
factor to the complexity [8,7].

In our research we developed an algorithm for backward reachability analysis
of timed automata that combines zone abstraction for clock variables with the
weakest precondition operation for data variables. Using the operation we could
explore the state space of the data variables backwards. We also compared the
applicability and the efficiency of zone-based backward and forward exploration
by measurements performed on the XtaBenchmarkSuite presented in [12].

In this paper we present the algorithm we developed, and prove its correct-
ness. We also present the measurements we have performed and evaluate the
results. We show that data variables can be handled by the weakest precondi-
tion operation but the large number of target states often prevents successful
verification. We propose some possible improvements and other ideas about the
applicability of zone-based backward exploration algorithm for the verification
of timed automata.

The paper is organized as follows. Section 2 presents the related work, Section 3
provides some theoretical background on the reachability analysis of timed auto-
mata, our algorithm is explained in Section 4, Section 5 presents and evaluates
the performed measurements, and finally Section 6 concludes the paper.

2 Related work

To the best of our knowledge there is no zone-based backward reachability ana-
lysis algorithm for timed automata with data variables in the literature. On the
other hand, many zone-based algorithms have been proposed for forward explo-
ration [14] as well as SMT-based methods that perform backward search [19].
Backward exploration is also used for model checking CTL properties.

In [3] the core of the zone-based algorithm and the zone operations – inclu-
ding those we use for backward exploration – are defined. Over the years many
optimizations of zone abstraction have been defined. An optimal zone-based ab-
straction – that is, the weakest abstraction that is still safe – has been presented
in [15]. Zone-based techniques perform forward state space exploration in the
state space. They explore an abstract reachability graph whose nodes contain a
zone-based abstraction of the reachable states. In many cases, lazy abstraction
is used [15].

Usually, SMT-based methods can operate both forwards and backwards,
and they can be applied to systems with data variables as well as timed au-
tomata with diagonal constraints. However, despite the many advantages, in
practice SMT-based methods are less efficient for timed automata, than zone-
based techniques. One of the most efficient SMT-based methods for timed auto-
mata is presented in [19], where backward exploration is used, however, before
exploration the timed automaton is translated to another formalism called finite
state machine with time.

Backward exploration also has significance at CTL model checking. The tool
Kronos [25] performs backward exploration for model checking timed automata
against TCTL properties.

3 Preliminaries

This section presents the important aspects of modeling timed systems, the
extensions of timed automata used in practice, as well as the basics of zone-based
state space exploration. The weakest precondition operation is also defined.

3.1 Timed automata

Basic definitions Clock variables (or clocks, for short) are introduced to re-
present the elapse of time. The set of clock variables is denoted by C.

The most commonly used type of predicates over clocks is clock constraints.

Definition 1. A clock constraint is a conjunction of atomic clock constraints,
that can either be simple constraints of the form x ∼ n or diagonal constraints
of the form x− y ∼ n, where x, y ∈ C, ∼ ∈ {≤, <,=, >,≥} and n ∈ N. The set
of clock constraints is denoted by B(C).

In other words clock constraints define upper and lower bounds on the values
of clocks and the differences of clocks.

A timed automaton extends a finite automaton with clock variables.

Definition 2. A timed automaton A is a tuple 〈L, l0, E〉 where

– L is the set of locations (or control states),
– l0 ∈ L is the initial location,
– E ∈ L× B(C)× 2C × L is the set of edges. An edge is defined by the source

location, the guard (represented by a clock constraint), the set of clocks to
reset and the target location.

Note: It is usual to allow invariants on the locations of the automaton. In
this paper we omit them to keep the explanations simple. However, the presented
algorithms can be adjusted to handle invariants.

In the literature many algorithms are only defined for a subclass of timed
automata called diagonal-free timed automata.

Definition 3. A diagonal-free timed automaton is a timed automaton where all
appearing atomic clock constraints are simple constraints.

It is possible to transform a timed automaton containing diagonal constraints
to a diagonal-free timed automaton – i.e. the expressive power of diagonal-free
timed automata is the same as that of timed automata –, however, the number
of locations in the resulting automaton is exponential in the number of diagonal
constraints [7].

Operational semantics The values of the variables at a given moment is
described by a valuation.

Definition 4. Let us denote by dom(V) the set of possible values for a set of
variables V , i.e. the domain of V . A valuation is a function v : V → dom(V)
that assigns a value for each variable v ∈ V .

Accordingly, a clock valuation is a function vc : C → R≥0. In this paper
we denote clock valuations by vc. Valuations over other types of variables are
denoted by vd. We denote by v |= c if valuation v satisfies a constraint c. The
set of all valuations satisfying a constraint c is denoted by JcK.

Clock variables are initialized to 0 – that is, initially vc0(c) = 0 for all c ∈ C
–, and their value are constantly and steadily increasing (at the same pace for
all clocks).

The only operation on clock valuations is the operation reset, denoted by
[C ← 0]vc which set the value of a set C ⊆ C to 0, that is [C ← 0]vc(c) = 0
for c ∈ C and [C ← 0]vc(c) = vc(c) otherwise. It is an instantaneous operation,
after which the value of the clock will continue to increase.

The state of a timed automaton depends on the current location and the
values of the clocks. Formally, A state of A is a pair 〈l, vc〉 where l ∈ L(A) is a
location and vc is the current valuation.

Two kinds of operations are defined. The state 〈l, vc〉 has a discrete transition
to 〈l′, vc′〉 if there is an edge e = 〈l, g, r, l′〉 ∈ E in the automaton such that vc |= g
and vc′ = [r ← 0]vc. The state 〈l, vc〉 has a time transition to 〈l, vc′〉 if vc′ assigns
vc(c) + d for some non-negative d to each c ∈ C.

Definition 5. A run of A is a finite sequence of consecutive transitions R =

〈l0, vc0〉
t0−→ 〈l0, vc0′〉

d0−→ 〈l1, vc1〉
t1−→ 〈l1, vc1′〉 . . . 〈ln, vcn〉

tn−→ 〈ln, vcn′〉 where for all
1 ≤ i ≤ n, ti denotes a time transition and di denotes a discrete transition.

Extensions of timed automata In practice the low descriptive power of the
original timed automaton formalism makes it inefficient for modeling systems.
Over the years many extensions of the formalism have been invented to overcome
this issue. In this paper we are focusing on timed automata with data variables.

Data variables are variables whose value can only be changed by discrete
transitions, e.g. variables of types integer, bool, etc. They can appear in con-
straints to enable transitions (data guards) and can be modified by transitions
(update). However, clock variables are not allowed to appear in data guards or
updates. The extended formalism can be formally defined as follows.

Definition 6. A timed automaton with data variables is a tuple 〈L, l0, E, vd0〉
where

– L is the set of locations,
– l0 ∈ L is the initial location,
– E ∈ L × B(C) × PV × 2C × UV × L is the set of edges, where PV denotes

the set of first order predicates over a set of data variables V and U ∈ UV
is a sequence of assignments (updates) of the form v ← t where v ∈ V and
t is a term built from variables in V and function symbols interpreted over
dom(V).

– vd0 is the initial data valuation.
An edge is defined by the source location, the clock guard, the data guard,
the set of clocks to reset, the updates, and the target location.

The possible types of data variables and the expressions appearing in data
guards and updates may vary by model checker, however, for efficient verification
it is important, that the expressive power of the extended formalism is the same
as that of the original timed automaton. In many cases this is achieved by
restricting the set of possible values to a finite set (e.g. an interval for integers) –
this way, the model can be translated to a (simple) timed automaton by encoding
the values of data variables to locations. In this paper we denote the set of general
conditions on a set of variables V by cond(V).

The operational semantics are also modified. A state of the extended forma-
lism A over a set of clock variables C and a set of data variables V can be descri-
bed by a tuple 〈l, vd, vc〉 where l ∈ L is the current location, vd : V → dom(V)
is the current data valuation and vc : C → R≥0 is the clock valuation.

While the operational semantics of time transitions are not affected by data
variables, discrete transitions become more complex: data guards have to be
satisfied and updates have to be executed. Let us denote by U(vd) the data
valuation after executing the sequence of updates U on a system with the ini-
tial data valuation vd. Formally, the state 〈l, vd, vc〉 has a discrete transition to
〈l′, vd′, vc′〉 if there is an edge e = 〈l, g, p, r, U, l′〉 ∈ E in the automaton such
that vc |= g, vd |= p, vc′ = [r ← 0]vc and vd′ = U(vd).

Another popular extension of timed automata allows the decomposition of
the automaton to a network of automata. A network (A1| . . . |An) is a parallel
composition of a set of timed automata. Communication is possible by shared va-
riables or handshake synchronization using synchronization channels. A network
of timed automata can be transformed into a timed automaton by constructing
the product of the automata in the network. For formal definition, the interested
reader is referred to [2].

3.2 Verification of timed automata

In this section we present the basics of zone-based reachability analysis of timed
automata. SMT-based verification is beyond the scope of this paper.

In case of (simple) timed automata the reachability problem can be formali-
zed as follows.

Problem 1. Input: A timed automaton A, and a location ltrg ∈ L(A)
Question: Is there a run 〈l0, v0〉 → 〈ltrg, vn〉 for some vn in A?

Zone-based verification An introduction to the abstract domain zone can be
found in [3], along with the operations necessary for verification and an efficient
representation, called difference bound matrix (DBM).

Definition 7. A zone Z = {vc | vc |= g} is a set of clock valuations satisfying
some clock constraint g.

Many operations are defined on zones. In this paper the following notations
are used:

– [R← 0]Z denotes the result of operation reset(R), R ⊆ C on a zone Z:
[R← 0]Z = {vc | ∃vc′ ∈ Z : vc = [R← 0]vc′}

– [R← 0]−1Z,R ⊆ C denotes the inverse of the reset operation:
[R← 0]−1Z = {vc | [R← 0]vc ∈ Z}

– Z↑ denotes the set of valuations reachable from Z by time transitions:
Z↑ = {vc + t | vc ∈ Z, t ∈ N}, where vc + t = vc′ denotes a valuation where
vc′(c) = vc(c) + t for all c ∈ C

– Z↓ denotes the set of nonnegative valuations from where Z is reachable by
time transitions: Z↓ = {vc | ∃t ∈ N : vc + t ∈ Z}

The core of zone-based reachability analysis is to construct an abstract rea-
chability graph, that contains a location and a zone (or an abstraction of it) in
each node.

Definition 8. A zone graph is a finite graph containing 〈l, Z〉 pairs as nodes,
where l ∈ L is a location of the automaton and Z is a zone.

A node of the zone graph represents a set of states reachable from the initial
state (or a set of states from where the target states are reachable, in case of

backward exploration). Edges between nodes correspond to discrete transitions
through which those states are reachable.

The zone graph is constructed similarly to any kind of graph-based state
space exploration: starting from the initial node n0, new nodes are introduced
based on the outgoing (or incoming) edges of the automaton with a correspon-
ding edge. If all the states represented by a new node n are also represented by
an existing node n′ (i.e. n′ covers n), then instead of adding n to the graph, the
corresponding graph edge is introduced pointing to n′. The algorithm terminates
when the states represented by some n include the target (or the initial) state
(the state is reachable), or when the complete state space is explored and it does
not contain the desired state (the state is unreachable).

In case of timed automata this approach can be adjusted as follows.

– The initial node can be formalized as 〈l0(A), {vc0}↑〉 in case of forward ex-
ploration (it contains the states reachable from the initial state by time
transitions) and 〈ltrg, JtrueK〉 in case of backward exploration.

– The postimage of a zone based on an edge can be calculated by determi-
ning the maximal subzone that satisfies guard and resetting the given clocks
in the subzone. Time transitions are applied after the post (or pre) image

calculation. (Formally, Postg,R(Z) = ([R← 0](Z ∩ JgK))
↑

and accordingly

Preg,R(Z) = ([R← 0]−1Z ∩ JgK)
↓
.)

– Node 〈l, Z〉 is covered by 〈l′, Z ′〉 if l = l′ and Z ⊆ Z ′.
– The state is reachable if a node 〈ltrg, Z 6= ∅〉 (or 〈l0, Z〉 where v0 ∈ Z, in case

of backward exploration) is reached.

In case of backward exploration the graph explored with the presented ap-
proach is always finite, but this is not true for forward exploration, since using
loop-edges it is possible to create a timed automaton with a run of ever-increasing
clock valuations [3]. To ensure the termination of the algorithm, extrapolation
was introduced, however, later it turned out that in case of diagonal constraints
extrapolation may introduce false positive states to the state space [4].

Many approaches have been introduced to ensure correctness, including the
operation split that splits the zone to extrapolate to smaller zones so that the
extrapolation keeps the zone safe [3], and CEGAR-based methods where they
explore the state space with the original overapproximating algorithm and if
they find a spurious trace they refine the state space or the automaton [8],
but the complexity of these methods is exponential in the number of diagonal
constraints.

Due to the difficult nature of calculations with diagonal constraints, and the
fact that in practice they are infrequently used, in the recent years the research
has been focused on optimizing zone abstractions for forward exploration of
diagonal-free timed automata.

Verification of extended timed automata The reachability problem can be
adjusted for the extended formalisms. For instance, in case of timed automata
with data variables the target states can also depend on the data valuation.

Problem 2. Input: A timed automaton with data variables A, a location ltrg ∈
L(A), and a first order predicate Ptrg over the data variables of A
Question: Is there a run from the initial state 〈l0, vd0 , vc0〉 to some 〈l, vdn, vcn〉
where vdn |= P?

In case of networks of timed automata, instead of a single control location,
the state of the system depends on a configuration – that is, a set of locations
containing the current location of each automaton. However, usually reachabi-
lity criteria only determine the location for some of the automata (e.g. collision
detection only requires two out of an arbitrary number of stations to be trans-
mitting).

The extended reachability problems can be transformed to the original rea-
chability problem over (simple) timed automata, however, in practice it is more
efficient to apply the algorithms on timed automata to the extended formalisms.
For example, in case of forward exploration calculating the data variables is
straightforward based on the updates. On the other hand, in case of backward
exploration there can be more than one predecessor states. Since it is complica-
ted to calculate the possible previous values of data variables, in case of extended
timed automata forward exploration is preferred [6,8,5].

3.3 Weakest precondition

In our research we used the weakest precondition operation to calculate the
preimage of data variables. The weakest precondition can be defined many ways.
Here, we define it over predicates and updates.

Definition 9. Given a sequence of updates U ∈ UV and a predicate P ∈ PV

describing a postcondition, the weakest precondition, denoted by wp(P,U) is the
predicate describing the weakest constraint on the initial state ensuring that the
execution of U terminates in a state satisfying P :

wp : PV × UV → PV such that Jwp(P,U)K = {vd : V → dom(V) | U(vd) |= P}.

The weakest precondition of a sequence of updates can be calculated by
iterating backwards over the assignment statements and calculating the weakest
precondition one by one. Formally if U = [v1 ← t1; v2 ← t2], then wp(P,U) =
wp(wp(v2 ← t2, P), v1 ← t1).

The weakest precondition of a predicate P ∈ PV based on an update v ← t
can be calculated by replacing all occurrences of v in P with t.

Example 1. Let y < 5 be the postcondition of the assignment y ← x+ 3. Repla-
cing y with x+ 3 yields x+ 3 < 5 that can be automatically simplified to x < 2.
Therefore if U(vd) = vd′, where vd′(y) = vd(x) + 3 and vd′(v) = vd(v), v 6= y,
then wp(y < 5, U) = x < 2. In other words in order to ensure y < 5 after
assigning x + 3 to y, initially x < 2 must hold.

In practice the calculation of the weakest precondition is only efficient if the
sequences of assignments can be kept small and the assignments simple. For
more information on the weakest precondition operation the reader is referred
to [16].

4 Backward exploration using weakest precondition

In this section we present our algorithm and demonstrate it on an example. We
also provide a proof of its correctness.

4.1 Algorithm

Our approach starts from the target states and builds an abstract reachability
graph where the nodes are of the form 〈l, P, Z〉 where l is a location, P is a
predicate (over the data variables), and Z is a zone. For each incoming discrete
transition the preimage Z ′ of Z is calculated as described in Section 3.2, and if
Z ′ 6= ∅ the preimage of P is calculated using the weakest precondition operation.

The algorithm performs graph-based state space exploration as described in
Section 3.2. Here we explain the operations specific to our algorithm.

Initialization The initial node can be formalized as 〈ltrg, Ptrg, JtrueK〉.

Preimage computation For a node 〈l, P, Z〉 and incoming edge 〈l′, g, p, r, U, l〉 the
preimage 〈l′, P ′, Z ′〉 is calculated as follows.

– The preimage of the location is the source location l′ of the edge.
– The preimage of the zone can be calculated as presented in Section 3.2:

Z ′ = Preg,R(Z).
– P ′ is only calculated if Z ′ 6= ∅. In this case P ′ = wp(P,U) ∧ p ∧ cond(V). It

is important to check if P ′ is satisfiable.

Checking coverage A node 〈l, P, Z〉 is covered by another node 〈lc, P c, Zc〉 if
l = lc,Z ⊆ Zc and P =⇒ P c. There are many ways to check implication. In our
implementation we use a solver to determine whether P ∧ ¬P c is unsatisfiable.

Termination The algorithm terminates if there are no unexplored nodes in the
current graph or if it reached the initial state. The set of states represented by
a node n = 〈l, P, Z〉 contain the initial state if l = l0, vd0 |= P , and v0 ∈ Z.

4.2 Example

𝑙0 𝑙1

𝑥 == 10
𝑥 ≔ 0

𝑖 ≔ 𝑖 + 1

𝑖 ≔ 0

𝑙0

𝑙1

𝑥 ≔ 0
𝑦 ≔ 0

𝑥 == 10

𝑥 ≔ 0

𝑦 − 𝑥 > 0

𝑖 ≔ 𝑖 + 1𝑖 ≔ 0

𝑦 − 𝑥 > 0

𝑙1, 𝑖 ≤ 2, 𝑡𝑟𝑢𝑒

𝑙0, 𝑖 ≤ 2, 𝑦 − 𝑥 > 0

𝑙0, 𝑖 ≤ 1, 𝑥 ≤ 10

𝑙0, 𝑖 ≤ 0, 𝑥 ≤ 10

𝑙1, 𝑖 ≤ 2, 𝑡𝑟𝑢𝑒 𝑙0, 𝑖 ≤ 2, 𝑦 − 𝑥 > 0 𝑙0, 𝑖 ≤ 1, 𝑥 ≤ 10 𝑙0, 𝑖 ≤ 0, 𝑥 ≤ 10

𝑙1, 𝑖 ≤ 2, 𝑡𝑟𝑢𝑒

𝑙0, 𝑖 ≤ 2, 𝑦 − 𝑥 > 0 𝑙0, 𝑖 ≤ 1, 𝑥 ≤ 10

𝑙0, 𝑖 ≤ 0, 𝑥 ≤ 10

(a) Automaton

𝑙0 𝑙1

𝑥 == 10
𝑥 ≔ 0

𝑖 ≔ 𝑖 + 1

𝑖 ≔ 0

𝑙0

𝑙1

𝑥 ≔ 0
𝑦 ≔ 0

𝑥 == 10

𝑥 ≔ 0

𝑦 − 𝑥 > 0

𝑖 ≔ 𝑖 + 1𝑖 ≔ 0

𝑦 − 𝑥 > 0

𝑙1, 𝑖 ≤ 2, 𝑡𝑟𝑢𝑒

𝑙0, 𝑖 ≤ 2, 𝑦 − 𝑥 > 0

𝑙0, 𝑖 ≤ 1, 𝑥 ≤ 10

𝑙0, 𝑖 ≤ 0, 𝑥 ≤ 10

𝑙1, 𝑖 ≤ 2, 𝑡𝑟𝑢𝑒 𝑙0, 𝑖 ≤ 2, 𝑦 − 𝑥 > 0 𝑙0, 𝑖 ≤ 1, 𝑥 ≤ 10 𝑙0, 𝑖 ≤ 0, 𝑥 ≤ 10

𝑙1, 𝑖 ≤ 2, 𝑡𝑟𝑢𝑒

𝑙0, 𝑖 ≤ 2, 𝑦 − 𝑥 > 0 𝑙0, 𝑖 ≤ 1, 𝑥 ≤ 10

𝑙0, 𝑖 ≤ 0, 𝑥 ≤ 10

(b) Explored graph

Fig. 1: Example

This section demonstrates the operation of the proposed algorithm on the
automaton presented in Figure 1a and the target location l1 with predicate i ≤ 2.

In this automaton (which is a modified version of the one presented in [3]),
there are two clock variables x and y and a data variable i that serves as a loop
counter. The property to decide is whether l1 can be reached by taking the loop
transition less than 2 times.

Initially, clocks x and y are both initialized to 0, which means x = y will
hold as long as the system stays in l0. When the loop edge is taken (that can
first happen when x = y = 10) x is reset but the value of y continues to increase
from the same value – that is, taking the loop edge means increasing y − x by
10. The algorithm operates as follows.

The initial node is n0 = 〈l1, i ≤ 2, JtrueK〉. The only incoming edge does not
change the data valuation, but has a clock guard. Therefore the preimage of the
node is n1 = 〈l0, i ≤ 2, y − x > 0〉.

The preimage of the zone based on the loop edge is Prex==10,{x}(y−x > 0) =

= ([{x} ← 0]−1(y − x > 0) ∩ Jx == 10K)
↓

= (y > 0 ∩ Jx == 10K)
↓

= x ≤ 10,
and wp(i ≤ 2, i := i + 1) = i ≤ 1. The created node is n2 = 〈l0, i ≤ 1, x ≤ 10〉.
Notice, i = 0 |= i ≤ 1 and x = y = 0 |= x ≤ 10: n2 represents the initial state,
the property is evaluated to true.

The algorithm terminates, however, in order to demonstrate the operations
of the algorithm here we continue to explore the state space. The preimage based
on the loop edge is n3 = 〈l0, i ≤ 0, x ≤ 10〉. Since i ≤ 0 =⇒ i ≤ 1, n2 covers n3.
This means all the states represented by n3 are also represented by n2, so if n3

is reachable from a state, n2 is also reachable. Because of the coverage, node n3

does not need to be expanded further.
The explored graph can be seen in Figure 1b.

4.3 Proof of correctness

Claim: 〈l0, vd0 , vc0〉 is represented by one of the nodes of the abstract reachability
graph iff there is a run s0 = 〈l0, vd0 , vc0〉 → · · · → s′n = 〈ln, vdn, vcn′〉 of A where
ln = ltrg is the target location.

The proof is based on the fact, the values of clock and data variables are inde-
pendent of each other. Therefore, the computation of zones and (data) predicates
are also independent and if both of the calculations are correct, the complete
algorithm is also correct. Zone calculations are proven to be correct, and the
weakest precondition operation is defined to be correct.

Proof: (⇐) sn is represented by the initial node. Suppose a state of the run s′k
is represented by some nk = 〈Ck, Pk, Zk〉 in this case nk also represents sk since
the vck ∈ {vck′}↓.

Let ek−1 = 〈lk−1, g, p, r, U, lk〉 be the edge corresponding to the discrete tran-
sition sk−1 → sk.

In this case the following claims hold.

– vck−1 ∈ Preg,r({vck}), since the zone operations are correct

– vdk−1 |= wp(
∧

v∈V v = vdk(v), U), since the weakest precondition was defined
like that, therefore

– vdk−1 |= wp(P,U) for any P where vdk |= P

– vdk−1 |= p because the transition is enabled

– vdk−1 |= cond(V)

Therefore, there is also an edge of the graph representing e from nk to some
other node nk−1 that represents sk−1 and – by induction – there is also a node
representing s0.

(⇒) Let node n0 = 〈l0, P0, Z0〉 be a node of the graph, where l0 is the initial
location vc0 ∈ Z0 and v0d |= P0. If a node n of the abstract reachability graph
is not the initial node, then it was created along with an incoming edge e(n).

Find the path ni
e(ni−1)−−−−−→ ni−1 . . . n1

e(n0)−−−→ n0 where ni is the initial node.
Because of the way the edges are chosen, all states represented by a node nk are
a preimage of some state represented by nk+1 (other incoming edges might have
been introduced based on coverage and in that case, the preimage might be just a
subset of the states represented by nk+1). Therefore for all states sk represented
by nk there is a state sk+1 represented by nk+1 such that sk+1 is reachable
from sk by the edge corresponding to e(nk). By induction, ni represents a state
reachable from s0.

5 Comparison of backward and forward exploration

5.1 Measurements

To analyse the applicability and the efficiency of the algorithm we have im-
plemented it in the Theta verification framework [22] and run measurements
on the XtaBenchmarkSuite3, that is a set of test cases for benchmarking ti-
med automaton verification algorithms (we have presented an earlier version of
the benchmark suite in [12], but it has been improved since). To compare the
algorithm to forward exploration we also run measurements on the algorithm
presented in [15].

The benchmark suite contains networks of timed automata with data vari-
ables. As mentioned in Section 3.2, for some inputs the properties only define
the target location for a few of the automata in the network. In these cases, the
possible target configurations were manually collected – all possible combinati-
ons of the locations of the remaining automata were included. In many cases,
this resulted in a set of target configurations too large for efficient verification.
However, by observing the models, we could eliminate many of the configurati-
ons. To demonstrate the significance of describing a precise property, we run the
backward exploration algorithm on both the original and the modified property.
These modifications did not affect the forward exploration algorithms.

The measurements were executed on a virtual 64 bit Windows 7 operating
system with a 2 core CPU (2.50 GHz) with 1,5 GB of memory. Each algorithm

3 https://github.com//farkasrebus/XtaBenchmarkSuite

was run 10 times on each input, the longest and the shortest was eliminated and
the average of the remaining runtimes was taken. The timeout was 10 minutes.

5.2 Evaluation

The XtaBenchmarkSuite consists of more models than those mentioned here, but
we have excluded those that contain a model element that is not yet supported
by Theta (e.g. broadcast channels) and those where the property to check is
not a reachability property (e.g. liveness properties) or only constrains the data
variables. We have also excluded the models where both of the studied algorithms
timed out.

Table 1 describes the results of the benchmarks on diagonal-free timed au-
tomata. The column Name contains the name of the model in the XtaBench-
markSuite and in case of scalable models, the value of the parameter. The next
two columns contain the number of target configurations as described by the
original and – when we managed to refine it – the precise property. The re-
maining columns contain the runtime and the number of explored nodes by the
algorithms. The columns denoted by LU correspond to the algorithm presented
in [15], while the remaining columns correspond to the execution of our bac-
kward exploration algorithm on the model with the original and the modified
property.

Table 2 describes the results of the benchmarks on timed automata with dia-
gonal constraints. We did not manage to find an industrial case study containing
diagonal constraints, thus we use the models we found in the literature as exam-
ples. Model SPLIT was introduced in [3] to demonstrate the incorrectness of the
forward exploration algorithm and DIAG was used to demonstrate techniques
describes in [8]. We also run the algorithms on modified versions: we added new
edges to these examples to create cyclic models.

Weakest precondition One of our research goals was to find out if the weakest
precondition operation can be used to efficiently calculate data variables during
backward exploration of timed automata. Only a few models of the benchmark
suite contain data variables (protocols at most one per process, and inputs of
category system have integer variables, but their set of possible values is rather
small). A possible difficulty would have occurred if the abstract reachability
graph were deeper, but this was not the case as we used breadth-first search.
Out of these models ENGINE had the deepest reachability graph with a depth
of 63.

Furthermore, most algorithms calculate the values of data variables explicitly.
Weakest precondition makes it possible to use predicate abstraction on the data
variables. This also shows that the weakest precondition is useful for backward
exploration of timed automata.

Property definition One of the motivations for using backward exploration
is that the state space explored from the target states might be smaller than

Table 1: Results on diagonal-free systems

Name

Target configurations LU BW

original precise original precise

time (ms) nodes time (ms) nodes time (ms) nodes

EXSITH 1 - 1 4 - - 2 5

LATCH 1 - 2 7 - - 1 2

SRLATCH 4 1 0 6 5 28 4 16

ANDOR 4 1 11 9 42 39 13 21

ENGINE 288 - 35 674 3731 8783 - -

SIMOP 8960 128 72 325 9820 26271 800 1517

MALER 1 - 553 7157 - - 134127 53519

MUTEX 5 - 1248 5563 [TO] - - -

CRITICAL2 56 1 135 112 1631 1914 18 22

CRITICAL3 784 8 148 1632 [TO] - 599 811

CRITICAL4 10976 64 770 25202 [TO] - 233114 51488

CSMA2 4 - 23 18 16 26 - -

CSMA3 16 - 29 71 247 338 - -

CSMA4 64 - 55 262 16547 11306 - -

CSMA5 256 - 177 855 [TO] - - -

FISCHER2 1 - 14 18 19 11 - -

FISCHER3 4 - 11 65 93 78 - -

FISCHER4 16 - 59 220 476 594 - -

FISCHER5 64 - 79 727 10221 10426 - -

FISCHER6 256 - 366 2378 96102 93735 - -

FISCHER7 124 - 1913 7737 [TO] - - -

LYNCH2 1 - 20 38 18 33 - -

LYNCH3 9 - 32 125 656 821 - -

LYNCH4 81 - 47 380 35344 27523 - -

TRAIN2 64 - 14 44 156 380 - -

TRAIN3 256 - 37 165 694 1330 - -

TRAIN4 1024 - 315 1123 6886 10290 - -

TRAIN5 4096 - 3874 6488 66837 79892 - -

TRAIN6 16384 - 103455 60379 [TO] - - -

Table 2: Results on diagonal timed automata
LU BW

Name Transformation Algorithm Total

time (ms) time (ms) time (ms) Nodes Time (ms) Nodes

SPLIT (original) 4 4 8 9 3 4

SPLIT (modified) 27 16 43 10 4 4

DIAG (original) 14 6 20 22 8 8

DIAG (modified) 32 22 54 24 14 8

the reachable state space. However, in practice the properties describing the
target states are kept simple, only mentioning a few locations and variables of
the system. While this helps understandability, it also increases the size of the
explored state space.

Clocks and data variables can be handled with symbolic methods, but loca-
tions have to be explored explicitly. For instance, in case of mutual exclusion
protocols (that appears to be the most common area of applicability for timed
automata) the target state is any state where at least two processes are in the
critical section. In case of a system of n similar processes containing k locations
there are kn−2 possible control vectors that satisfy this property (on the other
hand, this could be the reason for the depths of the reachability graphs).

We believe this issue could be overcome in many cases, such as the CRITI-
CAL example, where the target location is only given for the Prod cell automata,
however it is easy to determine the current location of the corresponding Arbiter
automata. Therefore, we believe that some initial static analysis of the auto-
maton and the constraints (e.g. the forward exploration of the location graph)
could lower the number of initial states.

As it is seen in Table 1 adding details to the property increases the efficiency
of backward exploration.

Timed automata with diagonal constraints One of the key strengths of
backward exploration for timed automata is that it is correct for timed automata
with diagonal constraints. The transformation of a timed automaton containing
diagonal constraints to a diagonal-free automaton takes time and increases the
size of the automaton and thus makes verification less efficient–as demonstrated
in Table 2.

We were only able to perform these measurements on small examples from
the literature, since there are no public industrial case studies of timed automata
with diagonal constraints. We believe this is due to the fact that most analysis
tools do not support diagonal constraints and because of this the case studies
are stored in diagonal-free form.

General conclusions In case of timed automata with diagonal constraints,
backward exploration performs better on the small examples, however, we could
not find an industrial example with diagonal constraints to support this claim.

In case of diagonal-free timed automata forward exploration performs better
in most cases. However, for many small models backward exploration explored a
smaller state space, e.g. the LATCH circuit and protocols with a small number
of participants.

Forward and backward exploration are complementary techniques. Theta is
able to perform both, so it is possible chose the more appropriate one for a
certain model.

5.3 Possible improvements

One of the reasons why forward exploration performs better on the case studies
is that there are many optimizations for zone-based forward search. It would be
desired to apply these optimizations for backward exploration as well.

Backward exploration can also be combined with other techniques to improve
the efficiency of existing algorithms. A common application for backward explo-
ration is to run it in parallel with forward exploration – i.e. two-way search. This
way, if the target state is reachable, the explored state space becomes smaller
than a single search from any direction. The two algorithms can also increase
each others efficiency by exchanging information on the explored state space [24].
Two-way search for timed automata appears to be an area worth exploring.

6 Conclusions and future work

In this paper we have presented an algorithm that uses zone-based backward
exploration for the reachability analysis of timed automata. Unlike zone-based
forward exploration, this algorithm is also applicable for timed automata with
diagonal constraints. We have extended the algorithm to handle complex data:
the weakest precondition operation is suitable for calculating the values of data
variables. The combination of the two algorithms resulted and efficient procedure
for timed systems with data.

XtaBenchmarkSuite is a benchmark suite consisting of timed automata in-
cluding small examples and industrial case studies. XtaBenchmarkSuite was ex-
tended in this paper to evaluate the various timed algorithms more rigorously.
Measurements on the XtaBenchmarkSuite demonstrated the efficiency and the
applicability of our new approach. We have shown that while the algorithm
performs better on timed automata with diagonal constraints than forward ex-
ploration, some improvements and optimizations are necessary in order to be
applicable for industrial case studies. Our results provide a step towards the
efficient verification of real-time systems.

In the future we will improve the backward exploration algorithm to solve
complex industrial case studies. We will analyse the applicability of the impro-
vements of the forward exploration algorithm presented in [15,23] to our bac-
kward exploration approach. We will also combine backward and forward search
algorithms – as it was investigated that two-way search is efficient for SAT-
based algorithms in [24]. We will also investigate the combination of forward
and backward algorithms in the CEGAR framework as it was discussed in [20].

In order to further investigate the strengths and weaknesses of the timed
algorithms, we will extend the XtaBenchmarkSuite with more industrial case
studies (e.g. the FlexRay protocol [13]) and perform an exhaustive benchmark
on the existing approaches. Based on the results a – possibly automatic – process
can be derived for deciding which algorithm is expected to be the most efficient
for verifying a given system. Diagonal constraints represent one extension of
timed automata, which proved to be useful for a certain class of models. In the
future, we have to analyse other extensions from the verification point of view.

References

1. Alur, R., Dill, D.L.: The theory of timed automata. In: Proceedings of the
Real-Time: Theory in Practice, REX Workshop. pp. 45–73. Springer (1991).
https://doi.org/10.1007/BFb0031987

2. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a tool
suite for automatic verification of real-time systems. In: DIMACS/SYCON 1995.
pp. 232–243. Springer (1995). https://doi.org/10.1007/BFb0020949

3. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In:
ACPN 2003. pp. 87–124. Springer (2003). https://doi.org/10.1007/978-3-540-
27755-2 3

4. Bouyer, P.: Untameable timed automata! In: STACS 2003. pp. 620–631. Springer
(2003). https://doi.org/10.1007/3-540-36494-3 54

5. Bouyer, P.: Forward analysis of updatable timed automata.
Formal Methods in System Design 24(3), 281–320 (2004).
https://doi.org/10.1023/B:FORM.0000026093.21513.31

6. Bouyer, P.: An introduction to timed automata. ETR 2005 pp. 25–52 (2005)

7. Bouyer, P., Chevalier, F.: On conciseness of extensions of timed automata. Journal
of Automata, Languages and Combinatorics 10(4), 393–405 (2005)

8. Bouyer, P., Laroussinie, F., Reynier, P.: Diagonal constraints in timed automata:
Forward analysis of timed systems. In: FORMATS 2005. pp. 112–126. Springer
(2005). https://doi.org/10.1007/11603009 10

9. Bradley, A.R., Manna, Z.: The calculus of computation - decision procedures with
applications to verification. Springer (2007). https://doi.org/10.1007/978-3-540-
74113-8

10. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Proceedings of the International Workshop on Automatic Verification Methods
for Finite State Systems. pp. 197–212. Springer (1989). https://doi.org/10.1007/3-
540-52148-8 17

11. Dutertre, B., Sorea, M., et al.: Timed systems in SAL. Tech. rep., SRI International,
Computer Science Laboratory (2004)

12. Farkas, R., Bergmann, G.: Towards reliable benchmarks of timed automata. In:
Proceedings of the 25th PhD Mini-Symposium. pp. 20–23. Budapest University of
Technology and Economics, Department of Measurement and Information Systems
(2018)

13. Gerke, M., Ehlers, R., Finkbeiner, B., Peter, H.J.: Model checking the flexray
physical layer protocol. In: FMICS 2010. LNCS, vol. 6371, pp. ”132–147”. Springer
(2010). https://doi.org/10.1016/j.entcs.2005.04.014

14. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model
checking for real-time systems. In: LICS 1992. pp. 394–406. IEEE (1992).
https://doi.org/10.1109/LICS.1992.185551

15. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Lazy abstractions for timed auto-
mata. In: CAV 2013. pp. 990–1005. Springer (2013). https://doi.org/10.1007/978-
3-642-39799-8 71

16. Leino, K.R.M.: Efficient weakest preconditions. Inf. Process. Lett. 93(6), 281–288
(2005). https://doi.org/10.1016/j.ipl.2004.10.015

17. Maler, O., Pnueli, A.: Timing analysis of asynchronous circuits using
timed automata. In: CHARME 1995. pp. 189–205. Springer (1995).
https://doi.org/10.1007/3-540-60385-9 12

https://doi.org/10.1007/BFb0031987
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/3-540-36494-3_54
https://doi.org/10.1023/B:FORM.0000026093.21513.31
https://doi.org/10.1007/11603009_10
https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1016/j.entcs.2005.04.014
https://doi.org/10.1109/LICS.1992.185551
https://doi.org/10.1007/978-3-642-39799-8_71
https://doi.org/10.1007/978-3-642-39799-8_71
https://doi.org/10.1016/j.ipl.2004.10.015
https://doi.org/10.1007/3-540-60385-9_12

18. Mitchell, I.M.: Comparing forward and backward reachability as tools
for safety analysis. In: HSCC 2007. pp. 428–443. Springer (2007).
https://doi.org/10.1007/978-3-540-71493-4 34

19. Morbé, G., Pigorsch, F., Scholl, C.: Fully symbolic model checking for timed auto-
mata. In: CAV 2011. pp. 616–632. Springer (2011). https://doi.org/10.1007/978-
3-642-22110-1 50

20. Ranzato, F., Rossi-Doria, O., Tapparo, F.: A forward-backward abstraction
refinement algorithm. In: VMCAI 2008. pp. 248–262. Springer (2008).
https://doi.org/10.1007/978-3-540-78163-9 22

21. Ravn, A.P., Srba, J., Vighio, S.: A formal analysis of the web services atomic
transaction protocol with UPPAAL. In: ISoLA 2010. pp. 579–593. Springer (2010).
https://doi.org/10.1007/978-3-642-16558-0 47

22. Tóth, T., Hajdu, A., Vörös, A., Micskei, Z., Majzik, I.: Theta: a framework for ab-
straction refinement-based model checking. In: FMCAD 2017. pp. 176–179. IEEE
(2017). https://doi.org/10.23919/FMCAD.2017.8102257

23. Tóth, T., Majzik, I.: Lazy reachability checking for timed automata using inter-
polants. In: Formal Modelling and Analysis of Timed Systems, LNCS, vol. 10419,
pp. 264–280. Springer (2017). https://doi.org/10.1007/978-3-319-65765-3 15

24. Vizel, Y., Grumberg, O., Shoham, S.: Intertwined forward-backward reachabi-
lity analysis using interpolants. In: TACAS 2013. pp. 308–323. Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7 22

25. Yovine, S.: KRONOS: A verification tool for real-time systems. Internatio-
nal Journal on Software Tools for Technology Transfer 1(1-2), 123–133 (1997).
https://doi.org/10.1007/s100090050009

https://doi.org/10.1007/978-3-540-71493-4_34
https://doi.org/10.1007/978-3-642-22110-1_50
https://doi.org/10.1007/978-3-642-22110-1_50
https://doi.org/10.1007/978-3-540-78163-9_22
https://doi.org/10.1007/978-3-642-16558-0_47
https://doi.org/10.23919/FMCAD.2017.8102257
https://doi.org/10.1007/978-3-319-65765-3_15
https://doi.org/10.1007/978-3-642-36742-7_22
https://doi.org/10.1007/s100090050009

	Backward reachability analysis for timed automata with data variables

