
Analyzing Consistency of Formal Requirements?

Jan Steffen Becker

OFFIS – Institute for Information Technology
Oldenburg, Germany
becker@offis.de

Abstract. In the development of safety-critical embedded systems, re-
quirements-driven approaches are widely used. Expressing functional re-
quirements in formal languages enables reasoning and formal testing.
This paper proposes the Simplified Universal Pattern (SUP) as an easy
to use formalism and compares it to SPS, another commonly used speci-
fication pattern system. Consistency is an important property of require-
ments that can be checked already in early design phases. However, for-
mal definitions of consistency are rare in literature and tent to be either
too weak or computationally too complex to be applicable to industrial
systems. Therefore this work proposes a new formal consistency notion,
called partial consistency, for the SUP that is a trade-off between ex-
haustiveness and complexity. Partial consistency identifies critical cases
and verifies if these cause conflicts between requirements.

Keywords: Formal Methods, Requirements Engineering, Consistency
Analysis, Verification

1 Introduction

In designing safety critical embedded systems, requirements driven processes
are widely used. These processes usual start with a textual description of the
system requirements, that are further refined during the development process.
For illustration purposes, imagine the design of a car’s light system. Modern cars
have a feature called tip-blinking:

Req 1 If the pitman arm is moved down for less than 0.5s, left blinking shall
be active for 3s.

Req 2 If the pitman arm is moved up for less than 0.5s, right blinking shall be
active for 3s.

Furthermore we have normal blinking:

Req 3 If the pitman arm is moved down for at least 0.5s, left blinking shall be
active until the pitman arm leaves the down position.

? This work has been partially funded by the German Federal Ministry of Education
and Research (BMBF) under research grant 01IS15031H (ASSUME).

Req 4 If the pitman arm is moved up for at least 0.5s, right blinking shall be
active until the pitman arm leaves the up position.

And as a safety requirement:

Req 5 Left and right blinking must not be active together.

State of the art tool suites for embedded systems development, such as BTC
EmbeddedPlatform1, allow generating and executing test cases directly from re-
quirements. For this it is necessary to formalize the textual requirements, mean-
ing expressing them in a formal language that is understood by the testing tool.
Following the EmbeddedPlatform’s approach, the Simplified Universal Pattern
(SUP) is used in this paper. Pattern languages, such as SUP, are easier to use for
engineers than temporal languages such as LTL coming from theoretical com-
puter science. Pattern languages provide a limited set of templates (patterns)
with a fixed and well defined semantic. For formalizing a requirement, the engi-
neer picks a pattern and fills in the pattern parameters with simple expressions
describing states and events.

Since the requirements form the basis for designing models and test cases,
it is important to have high quality requirements. One quality indicator is con-
sistency of requirements [24]. Informally, a set of requirements is consistent if
it is free of contradictions. Having formalized requirements enables reasoning
about consistency of requirements. Of course, this requires a formal definition
of formal requirement consistency itself. This paper introduces a new formal
definition called partial consistency. Partial consistency focuses on requirements
expressing a trigger/action relation ship. Here, trigger and action specify behav-
iors where the action shall occur in response to the trigger. The basic idea is to
analyze requirements pairwise for critical cases where an ‘unfortunate’ timing of
the triggers causes a conflict between the actions.

The rest of the paper is as follows: In Section 2 the SUP is completely de-
scribed. It is compared to other pattern languages in Section 3 by sketching a
mapping between SUP and SPS, a popular pattern system proposed by Dwyer
et. al. [10] and extended by Konrad and Cheng [19]. In Section 4 existing defini-
tions of consistency are presented followed by partial consistency in Section 5. A
prototype implementation is described in Section 6 and evaluated in Section 7.
The paper closes with a brief outlook in Section 8.

2 Simplified Universal Pattern

The SUP has been designed for use in BTC EmbeddedPlatform to overcome
the difficulties for the engineer to learn the syntax and semantic of a complex
formal language, while providing a formalism that is expressive enough to for-
malize functional requirements for real-world embedded systems [8, 6]. The SUP
can be seen as a template for formal requirements with gaps, called parameters,
that are filled by the engineer with side-effect free C-like expressions over the

1 https://www.btc-es.de/

system variables. In our prototype implementation we restrict ourselves to mixed
boolean and linear arithmetic. The EmbeddedPlatform provides a graphical edi-
tor together with a methodology to guide the engineer through the formalization
process.

The SUP assumes discrete time with a fixed step size. An instance of the
SUP observes the inputs and outputs of the system and emits a failure signal if
the requirement is violated.

Fig. 1. SUP in the EmbeddedPlatform

This paper uses a mathematical notation of the SUP that is inspired by the
graphical representation in the EmbeddedPlatform (Figure 1). In fact it is an
extension of the notation found in [8]. We denote SUP instances by

(TSE, TC, TEE)[Tmin, Tmax] ! TEC
[Lmin,Lmax]−−−−−−−−−→

(ASE,AC,AEE)[Amin,Amax] !AEC .

The SUP consists of two parts, the trigger (TSE, TC, TEE)[Tmin, Tmax] !
TEC and the action (ASE,AC,AEE)[Amin,Amax]!AEC. Between trigger and
action is the local scope [Lmin, Lmax]. The semantics of the SUP is controlled by
the 15 parameters TSE, TC, . . . , AEC that are summarized in Table 1. The last
parameter, maxTime, is not used in the examples in this paper and therefore
not part of the arrow notation. Most of the parameters have a default value
(third column in Table 1), e.g. per default TSE = TEE = TC which allows
to omit the TSE and TEE parameters in the notation (see Section 2.1). Most
time parameters may be set to infinity (last column) to indicate an open time
bound.

Besides the parameters, behavior of the SUP is controlled by its interpreta-
tion, activation mode and startup phase. The arrow notation introduced above
is for the progress interpretation with startup phase immediate and activation
mode cyclic. In the progress interpretation every occurrence of the trigger must
be followed by the action. Because of the automata-based semantics however,
after the first observation of the trigger following occurrences are ignored until
the action is recognized. This is also called iterative observation [5]. In the inter-
pretation ordering, every action must be preceded by a trigger. In the following
we describe the progress interpretation. The interpretation invariant is a spe-

Parameter Abbrev. Type Default Inf

Trigger Start Event TSE Bool TC –
Trigger End Event TEE Bool TC –
Trigger Condition TC Bool true –
Trigger Exit Condition TEC Bool false –
Trigger Duration Min Tmin Time 0 3

Trigger Duration Max Tmax Time 0 3

Local Scope Min Lmin Time 0 7

Local Scope Max Lmax Time 0 3

Action Start Event ASE Bool AC –
Action End Event AEE Bool AC –
Action Condition AC Bool – –
Action Exit Condition AEC Bool false –
Action Duration Min Amin Time 0 3

Action Duration Max Amax Time 0 3

Global Scope MaxTime Time ∞ 3

Table 1. SUP parameters

cial case of the progress interpretation where all parameters except TC, AC and
maxTime are set to default values.

The startup phase determines the start of the first observation cycle of the
SUP. There are three startup phases defined

immediate The observation cycle starts immediately, i.e. in step 0.
after N steps The observation cycle starts in step N . Hence, N is a parameter

of type Time.
after reaching R The observation cycle starts in step following the first oc-

currence of R. Hence, R is a condition.

The activation mode controls if there are multiple observation cycles. There
are three activation modes init, first and cyclic that are explained in the following
together with the details of the SUP.

Trigger. The trigger starts with the first observation of the Trigger Start Event
(TSE). In activation mode initial, the TSE must occur exactly at the end of the
startup phase. The trigger phase ends with the first observation of the trigger
end event (TEE) in the interval tTSE + Tmin ≤ tTEE ≤ tTSE + Tmax, where
tTSE , tTEE are the time points at which the events are observed. Between TSE
and TEE, i.e. at tTSE < t < tTEE the Trigger Condition (TC) must hold.
If this interval exceeds without TEE being observed, or the TC is violated,
the observation cycle is aborted. In activation modes cyclic and first, a new
activation cycle starts by awaiting the next TSE.

Action. The action consisting of Action Start Event (ASE), Action Condition
(AC), Action End Event (AEE), and Action Duration [Amin,Amax] works anal-
ogous to the trigger, except that the observer stops with the failure signal on

violation of the AC or the bounds. If the AEE is successfully observed within
the specified interval, the observation cycle ends successfully (without emitting
failure). In activation mode cyclic, a new observation cycle is started; the TSE
of the next cycle may occur together with the last cycle’s AEE.

Local Scope. The Local Scope is a time interval [Lmin, Lmax] describing the
time window for the ASE, i.e. the first occurence tASE of ASE after TEE must
be located in the interval tTEE +Lmin ≤ tASE ≤ tTEE +Lmax. Otherwise, the
observer emits failure and stops.

Exit Conditions. If the Trigger Exit Condition (TEC) occurs before or at the
TEE, the current observation cycle is aborted. In activation mode cyclic, a new
observation cycle starts. The same occurs if the Action Exit Condition (AEC)
occurs between (or at) TEE and AEE. The exit conditions have preference over
success or failure of the SUP.

Global Scope. The SUP observation may be limited by the global scope. The
global scope is an additional time parameter maxTime. maxTime steps after
the startup phase, the observation ends without result.

Infinite Time Bounds. All time bounds except Lmin and the parameter N from
the startup phase after N steps may be set to infinity. This means the following:
Setting Lmax =∞ means that the ASE may occur any time (but at least Lmin
steps after TEE) in the future. Setting Amin =∞ means that the AC must be
true forever after ASE is observed, except the observation cycle is canceled by
the AEC.

Interpretation ordering. In the interpretation ordering, the local scope has only
a lower bound and the upper bound is always infinite. The above behavior is
modified as follows: If the ASE occurs earlier than Lmin steps after complete
observation of the trigger, i.e. on tASE < tTEE+Lmin, the observer emits failure.
If the AEE occurs too early or too late or the AC is violated, the observation
does not fail but the observer waits for another ASE.

2.1 Examples

In the remaining paper we omit parameters with default values in the SUP
notation. Intervals [`, `] with equal lower and upper bound are abbreviated. For
examplep→ q is a shorthand for

(p, p, p)[0, 0] ! false
[0,0]−−−→ (q, q, q)[0, 0] ! false

and p[5]→ (q, r, s)[0, inf) for

(p, p, p)[5, 5] ! false
[0,0]−−−→ (q, r, s)[0, inf) ! false .

In the following we formalize the example requirements from the introduction.
We model the pitman arm’s positions as two predicates up, down and left/right
blinking as left resp. right. We use a fixed step size of 0.1s.

Req 1 If the pitman arm is moved down for less than 0.5s, left blinking shall
be active for 3s.

(down, down,¬down)[0, 5]→ left[30]

Req 2 Right tip blinking analogous. (up, up,¬up)[0, 5]→ right[30]
Req 3 If the pitman arm is moved down for at least 0.5s, left blinking shall be

active until the pitman arm leaves the down position.

down[5]→ (left, left,¬down)[0,∞)

Req 4 Right blinking analogous. up[5]→ (right, right,¬up)[0,∞)
Req 5 Left and right blinking must not be active together.

true → ¬(left ∧ right)

2.2 Formal Semantics

In the EmbeddedPlatform, formal requirements are translated into observers.
Observers monitor executions of a system and indicate if a requirement is vi-
olated. In this paper, observers are modeled as finite automata with counters,
called counter automata2 [11], that operate on traces over the system variables.

Definition 1 (trace). An (infinite) trace over variables X is an (infinite) se-
quence σ = σ0σ1σ2 . . . where σi : X→ V assigns a value Xi ∈ Vtype(X) to every
variable X ∈ X in step i.

We denote the set of all infinite traces over X by T (X), and the set of finite
traces of length k by Tk(X). For Y ⊆ X we denote by σ ↓Y the restriction of σ
to variables in Y and by σ ↓n= σ0σ1 . . . σn−1 the prefix of length n ∈ N of σ.

Counter automata consist of finite sets of states, transitions and counter
variables. Every transition is labeled with a boolean expression over observed
system variables and counters, called guard. In every step a transition with
satisfied guard is taken and counters are either incremented, set to some integer
constant, or left unchanged.

Definition 2 (Counter automaton [11]). A counter automaton over a set
X of variables is a tuple A = 〈S,X,W, I, F, T 〉 with states S, integer counter
variables W, initial and failure state I, F ∈ S and a set T of transitions. A
transition 〈s, g, γ, s′〉 ∈ T consists of source and target states s, s′ ∈ S, a guard
g ∈ ExprB(X ∪W) (a boolean expression over X ∪W) and a function γ : W →
N ∪ {INC, STABLE}.

A trace σ over X∪W∪{s} with Vtype(s) = S is a run for A if s0 = I, c0 = 0
for c ∈ W and for all i ∈ N exists 〈s, g, γ, s′〉 ∈ T such that si = s, si+1 = s′,

2 Because transitions are labeled with expressions that also contain system variables,
the term extended counter automata might be more precise. We use the shorter term
counter automaton since it is used for the same type of automata in previous work
[11].

si |= g and ci+1 =

γ(c) if γ(c) ∈ N
ci + 1 if γ(c) = INC

ci if γ(c) = STABLE

for c ∈W. A run is accepting

if si 6= F for all i ∈ N.
We write σ |= A if there is an accepting run σ′ for A with σ′ ↓X= σ ↓X.

Here, σi |= g indicates satisfaction of g on σ in step i. We assume that the set
ExprB(X ∪W) allows at least boolean and linear integer arithmetic and com-
parison. Throughout this paper we require counter automata to be deterministic
and complete, i.e. in every step exactly one transition can be taken. Furthermore,
the failure state is a sink, meaning, once entered, the failure state is never left.

The formal semantics [23] that have been kindly provided by BTC Embed-
dedSystems to the author, use automata networks that are very close to counter
automata. Compared to counter automata, these automata

– synchronize with each other by events
– may perform arbitrary many steps during one global (i.e. system-level) step,

provided that each transition is taken at most once.

These automata networks can be translated to counter automata by constructing

1. the product of the single automata in the networkand
2. the transitive closure of the transitions possible during one global step.

Hence, we can use counter automata for the SUP semantics.

Proposition 1. For every instance R of the SUP we can construct a counter
automaton AO(R), called its observer automaton, that accepts the traces satis-
fying R.

Technically, we construct an automata scheme for each combination of interpre-
tation, startup phase, and activation mode of the SUP. An automata scheme is
a counter automaton over the SUP parameters instead of the system variables.
We derive AO(R) from the automata scheme by substituting the parameters
in the guards. Constructing the product and transitive closure of the automata
network as sketched above, results in a blow-up of the automaton. Therefore
we applied automata reduction techniques, such as unifying equivalent states,
during construction of the automata schemes. These transformations are com-
putationally expensive, but independent from the pattern parameters, so they
need to be performed only once and the resulting automata schemes are reused
for every instance of the SUP. In addition we apply some cheaper simplification
rules to the derived counter automata.

Example 1. Figure 2 shows an observer automaton for Req 1.

3 Other pattern languages

Since the SUP as a pattern language has limitted expressiveness compared to
more complex formal languages, we try in this section to give some evidence that

0

1

down	/	c 	:=	1 c 	>	5	∧	¬down

c 	>	5	∧	down	/	c	:=	1 c 	≤	5	∧	down	/	c	:=	c+1

2

c 	≤	5	∧	left	∧	¬down	/	c 	:=	1

3

c 	≤	5	∧	¬left	∧	¬down

c 	=	30	∧	left	∧	¬down

c 	=	30	∧	left	∧	down	/	c 	:=	1

c 	<	30	∧	left	/	c 	:=	c+1

4

c 	>	30	∨	¬lefttrue

true

Fig. 2. Counter automaton for Req 1. State 0 is the initial and 4 the failure state.

the SUP is expressive enough to model industrial use cases. There is a case study
at BOSCH [22] using a Specification Pattern System (SPS) originally proposed
by Dwyer et. al. [10] and extended by Konrad and Cheng [19]. SPS provides a
set of natural language patterns for specifying behavioral requirements with a
formal semantic given in Modular Temporal Logic (MTL) [3]. In the case study,
193 out of 245 requirements could be formalized within the SPS by Konrad
and Cheng. In the following we will demonstrate the usability of the SUP by
presenting a mapping from the SPS patterns used in the case study to the SUP.

Definition 3 (MTL). MTL formula over a set X of variables are inductively
defined as follows:

– A predicate over X is an MTL formula.
– If φ is an MTL formula so is Xφ.
– If φ1, φ2 are MTL formula, c ∈ T and ∼ ∈ {<,≤,=,≥, >} so is φ1 U∼c φ2.
– Boolean combinations of MTL formulas are MTL formulas.

Satisfaction of MTL is defined for traces σ ∈ T (X) and i ∈ N as follows:

– σ, i |= p if p is a predicate over X and σi |= p.
– σ, i |= Xφ if σ, i+ 1 |= φ.
– σ, i |= φ1 U∼c φ2 if exists d ∼ c, such that σ, i + d |= φ2 and σ, j |= φ1 for

all j ∈ N with i ≤ j < i+ d.
– Boolean connectives are defined as usual.

MTL defines the usual abbreviations from temporal logic: F∼cφ :⇔ true U∼c φ,
G∼cφ :⇔ ¬F∼c¬φ, φ1 W φ2 :⇔ φ1 U φ2 ∨ Gφ1.

The mapping from SPS to SUP is listed in Table 2. We use the reversed
arrow ← to indicate use of the ordering interpretation and keywords first and
initial to denote deviant activation modes. The last operator, that is supported

Pattern Name MTL semantics SUP

Absence G¬P true → (¬P)
Universality GP true → P

Existence FP init true
[0,∞)−−−→ P

Response G(P ⇒ FQ) P
[0,∞)−−−→ Q

Precedence (¬P) W Q first (Q ∧ ¬P)
[0,∞)←−−− P

Minimum duration G(P ∨ (¬P W G≤dP)) (¬P, P, P)→ P [d]

Maximum duration G(P ∨ (¬P W (P ∧ F≤d¬P))) (¬P, P, P)
[0,d]−−−→ (¬P)

Periodic category GF≤dP true
[0,d]−−−→ P

Bounded response G(P ⇒ F≤dQ) P
[0,d]−−−→ Q

Bounded invariance G(P ⇒ G≤dQ) (P,¬P,¬Q)[0, d]→ false

Precedence Chain 2:1 ¬P W (S ∧ ¬P ∧ X(¬P W T)) first (S, true, T)[1,∞)
[0,∞)←−−− last(P)

Table 2. Expressing SPS patterns in SUP

both in the EmbeddedPlatform as well as our analysis prototype, refers to the
value of P in the previous step. The MTL semantics of time-constrained SPS
patterns is taken from [4], for untimed patterns the original LTL semantic [10] is
used. In SPS, a requirement has some optional scope, meaning the requirement
applies only after some event P , until some event Q, or between P and Q. The
semantic in Table 2 is for the global scope, meaning without restriction by events.

We observe that the SUP does not have scopes ended by events, i.e. “between
P and Q” and “until Q”3 The global scope and “after P” directly correspond
to startup phases of the SUP. Taking into account these missing scopes, we can
formalize 90% of the SPS requirements from the BOSCH case study with the
SUP. Compared to the iterative semantics of the SUP where multiple occurrences
of the trigger before the action are ignored, in MTL every occurrence of the
trigger is handled. However, for the patterns presented above the SUP observers
precisely represent the discrete-time MTL semantics.

4 Existing Consistency Notions

Before we present partial consistency, we give a short summary of related work
on consistency of formal requirements.

One of the earliest attempts for specifying formal requirements is Software
Cost Reduction (SCR) [16, 14, 13]. In SCR a system is described as a state ma-
chine in tabular form. The consistency checker for SCR checks among others
for completeness and determinism of the specification. In contrast to other ap-
proaches, the consistency checker for SCR performs only static checks, but no

3 Please note that this is not a limitation of the automata-based approach behind the
SUP – introducing these missing scopes would be a simple extension.

reachebility analysis [15]. Similar methods are proposed for requirements state
machines [17].

While the checker for SCR checks consistency locally for every state of the
system, other approaches define consistency more globally. The most general
definition of consistency is that there exists at least one implementation for
the requirements [7]. In [11] existential consistency is presented. Here, a set of
requirements is called consistent, if there exists at least one trace that satisfies all
requirements. This notion is refined to bounded existential consistency that can
be checked using bounded model checking and triggered existential consistency
that further restricts accepted traces to those that represent the “intended”
meaning of the requirements and exclude trivial behavior that is not of practical
use. In a recent work [12] the authors use an encoding of TCTL [2] formulas
as SMT problems to check consistency of SPS requirements. They use a notion
of consistency that is comparable to existential consistency [11] sketched above:
TCTL specifications R1, . . . , Rn are consistent, if their conjunction is satisfiable,
i.e. there is a timed transition systemM |= R1 ∧ · · · ∧Rn. The authors claim to
exclude trivial behavior, but do not explain this in detail.

Some stronger notions of consistency take into account that the system shall
be able to handle every input from the environment. In [1] consistency is based
on the reachable states of the system. A state is called consistent if for every
input exists an output of the system such that all requirements are satisfied
and the next state is again consistent. The system is consistent if the initial
state is. This notion of consistency honors the fact that a component does not
have control over the inputs it receives. If the requirements are consistent there
exists an implementation that can deal with all inputs that are allowed by the
specification.

In [21] a consistency notion called rt-consistency is presented that requires
that every finite trace that satisfies all requirements can be extended to an
infinite one. Hence, if a set of requirements is rt-consistent there exists an imple-
mentation that guarantees liveness of the system. A similar notion of consistency
is implemented in the STIMULUS tool [18]. STIMULUS provides a consistency
analysis by simulating functional requirements, where local non-determinism is
resolved by linear constraint solving. If in some step no solution exists, STIMU-
LUS reports an inconsistency.

5 Partial Consistency

In the following we present the main contribution of this paper: A new con-
sistency notion for SUP called partial consistency. Partial consistency extends
triggered existential consistency [11]. Our experience shows that existential con-
sistency is not enough in practice, since it does not take combinations of triggers
into account. As an example, consider requirements Req 1, Req 2 and Req 5
from Section 2.1: They are existentially consistent, since, when requesting right
and left tip blinking with a delay of three seconds, all requirements are satisfied
in one run. But if the delay is shorter, one requirement is violated. Inconsisten-

cies of this kind are not found by existential consistency. The user expects that a
consistent set of requirement does not restrict the inputs of the system, meaning
that in every state every input has at least one possible output without violating
a requirement. This is very close to the definition of consistency in [1] or strong
consistency defined in [5].

In the following we denote, for some set R of SUPs over system variables X,
the set of satisfied traces by T (R) = {σ ∈ T (X) | σ |= AO(R) for R ∈ R}.
Definition 4 (strong consistency). A set R of requirements is strongly con-
sistent wrt. the system inputs IN ⊆ X if there exists Σ ⊆ T (R) such that

∀σ ∈ Σ, τ ∈ T (X), n ∈ N : σ↓n = τ↓n ⇒ ∃σ ∈ Σ : σ′↓n = τ↓n ∧ σ′↓IN = τ↓IN .

However, as seen in [1] a check for this form of consistency requires some kind of
quantifier nesting in the analysis. Although current solvers have limited support
for quantifiers, we consider using SMT with nested quantifiers impractical for
real-world examples. As a consequence, we try not to consider all possible input
traces, but try to characterize and check those ones that may cause conflicts.
Furthermore we don’t want to distinguish explicitly between inputs and outputs
of the system.

The partial consistency analysis focuses on those SUPs that we call reactive:
An SUP is reactive if it has interpretation invariant or progress but is not

of the form true
[0,0]−−−→ P . All other requirements are called invariant in the

following. We designed the partial consistency analysis with two ideas in mind:

1. The system cannot influence when the triggers of reactive SUPs occur, since
they depend usually on inputs.

2. Conflicts are most likely caused by contradicting actions, that are forced (by
occurrence of the triggers) to occur at the same time.

The strategy for consistency analysis is to inspect the Lmin, Lmax and Amin
parameters of two reactive SUP instances and calculate a critical delay between
the triggers of the two requirements that may cause a conflict. We call this partial
consistency because this strategy will of course only discover conflicts between
pairs of requirements. For two SUPs R1, R2 the actions must occur at the same
time if, for the time points t1, t2 marking completion of the trigger phases,

∀l1 ∈ LSR1
∀a1 ∈ ADR1

∀l2 ∈ LSR2
∀a2 ∈ ADR2

:

[t1 + l1, t1 + l1 + a1] ∩ [t2 + l2, t2 + l2 + a2] 6= ∅

where LSR = [LminR, LmaxR] is the local scope and ADR = [AminR, AmaxR]
is the action duration of an SUP. Eliminating the quantifiers leads to

LmaxR2 − LminR1 −AminR1 ≤ t1 − t2 ≤ LminR2 +AminR2 − LmaxR1 .

Example 2. For requirements Req 1 and Req 2 (see Section 2.1) this leads to

0− 0− 30 = −30 ≤ t1 − t2 ≤ 0 + 30− 0 = 30

meaning that right and left blinking overlaps if both right and left tip blinking
is requested within 30 steps (= 3s).

In the following, we denote this property as Interfere(R1,R2)(t1, t2). We as-
sume that the Lmin, Lmax and Amin parameters are constants4. We follow
the approach of [11] to construct for some requirement R an observer automa-
ton AO(R), and some trigger automaton AT (R). A trigger automaton has an
accepting state instead of a failure state that is entered when R is triggered for
the first time.

Definition 5 (trigger automaton). A trigger automaton AT = (S,X,W, δ, I, F)
is defined analogously to a counter automaton, except that F is an accepting
state. Runs for trigger automata are analogously defined to runs of counter au-
tomata except that σ is an accepting run if si = F at some time point i.

Definition 6 (partial consistency). For requirements R1, R2, R define

TriggerAtR(σ, i) :⇔ σ↓i 6|= AT (R) ∧ σ↓i+1 |= AT (R)

Trigger{R1,R2},k(σ) :⇔ ∃i, j ∈ N : i ≤ k ∧ j ≤ k ∧ TriggerAtR1
(σ, i)

∧ TriggerAtR2
(σ, j) ∧ Interfere(R1,R2)(i, j)

NoExitR(σ) :⇔ ∀i : σ↓i |= AT (R)⇒ σi 6|= AECR

Cond{R1,R2},k(σ) :⇔ Trigger{R1,R2},k(σ) ∧ NoExitR1
(σ) ∧ NoExitR2

(σ)

Two reactive requirements R1, R2 and a set Rinv of invariant requirements are
partially consistent if

∀k ∈ N : (∃σ ∈ T (Rinv ∪ {R1}) : Cond{R1,R2},k(σ)

∧ ∃σ ∈ T (Rinv ∪ {R2}) : Cond{R1,R2},k(σ)

⇒ ∃σ ∈ T (Rinv ∪ {R1, R2}) : Cond{R1,R2},k(σ)) . (1)

In the definition, the condition TriggerAtR(σ, i) is true if the trigger of R is
completed in the trace σ at step i + 1. So Trigger{R1,R2},k(σ) returns true if
R1 and R2 are triggered in σ before step k such that the Interfere condition is
satisfied. Since we assume that the action exit condition is an external event, we
are interested only in traces, where the action is not aborted. This is encoded
in NoExitR(σ), which ensures that the AEC does not occur after triggering R.
We check all pairs of reactive requirements: If we can satisfy each requirement
separately while triggering both requirements, can we satisfy both requirements
at once? In both the premise and the consequence, the delay between triggers
must lie in the interval calculated above, and we are only interested in cases
where all invariant requirements are satisfied.

Our implementation uses bounded model checking (BMC) [9]. BMC decides
if some property can be reached within n steps in a transition system by un-
rolling the transition relation n times. Therefore we cannot check infinite traces.
Instead we try to find finite prefixes satisfying a weaker resp. stronger acceptance
criterion.

4 Note that the EmbeddedPlatform allows expressions over system variables here.

Bounded acceptance We restrict ourselves to finite traces satisfying the re-
quirements, i.e. Tk := {σ ∈ Tk(X) | σ |= AO(R) for R ∈ R}.

Searching for a loop [11] We introduce a modified acceptance relation |=loop(i,j)

with i < j ∈ N: For some finite trace σ, σ |=loop(i,j) A if there is a finite
accepting run σ′ of length j for A such that σ↓X = σ′↓X and σ′i = σ′j . We
use this notions analogously for (sets of) SUP instances, i.e. T(i,j) = {σ ∈
Tj(X) | σ |=loop(i,j) AO(R) for R ∈ R}.

Since the failure state of a counter automaton is a sink, acceptance clearly implies
bounded acceptance. The idea behind acceptance with a loop is that the system
state at start of the loop is indistinguishable from the state at the end of the
loop. Hence, every prefix with a loop can be extended to an infinite trace by
infinitely repeating the loop. For details see [11].

Definition 7 (Bounded partial consistency). Two reactive requirements
R1, R2 and a set Rinv of invariant requirements are (α, β)-bounded partially
consistent if

∀k ∈ N, k ≤ α : (∃i < j < k, σ ∈ T(i,j)(Rinv ∪ {R1}) : Cond{R1,R2},i(σ)

∧ ∃i < j < k, σ ∈ T(i,j)(Rinv ∪ {R2}) : Cond{R1,R2},i(σ)

⇒ ∃σ ∈ Tk+β(Rinv ∪ {R1, R2}) : Cond{R1,R2},k(σ)) .

Bounded partial consistency is a sound, but not complete, over-approximation
of partial consistency.

Corollary 1. Partial consistency implies bounded partial consistency.

Proof. Assume the left-hand side of the implication sign (⇒) in Definition 7
holds for some k ∈ N. Because acceptance with a loop implies acceptance and,
by definition, Cond{R1,R2},i(σ) implies Cond{R1,R2},k(σ) for i < k. Hence the
left-hand side of the implication in eq. (1) also holds. Assuming partial consis-
tency holds, also the right-hand side of eq. (1) holds with some trace σ. Since
acceptance implies bounded acceptance, and α + β > k, the right-hand side of
Definition 7 holds with the prefix σ ↓α+β as well.

Theorem 1. If the trigger automata of R1, R2 depend only on input variables
X ∈ IN , then strong consistency implies partial consistency.

Proof. Assume the premise of partial consistency holds, i.e. for some k ∈ N there
exists some trace τ such that

τ |= Rinv ∪ {R1} ∧ Cond{R1,R2},k(τ) .

By the definition of strong consistency, there is some σ |= R such that σ ↓IN=
τ ↓IN (note that σ′ ↓0= τ ↓0 holds for arbitrary σ′ ∈ Σ). Because the trigger au-
tomata for R1, R2 depend on IN only, Cond{R1,R2},k(σ) holds. As a consequence,
the requirements are partially consistent.

Although partial consistency is based on triggered existential consistency, they
are incomparable. The example from the introduction is existentially consistent
but not partially consistent, as shown in the next section. On the other hand,
the running example from [11] is partially consistent but not triggered existen-
tially consistent. Note also that bounded triggered consistency implies triggered
consistency while it is the other way round for partial consistency.

6 Implementation

We implemented a prototype of the partial consistency using the general-purpose
SMT solver Z3 [20] as a backend. We widely reuse the implementation from [11]
and extend it with the Interfere condition. Checking a pair of requirements for
bounded partial consistency results in three BMC problems: Two for the premise
(the left-hand side of the implication sign ⇒) and one for the consequence (the
right hand side of ⇒) in Definition 7.

A BMC problem consists of three conditions over the system state X in
the current and the next step, denoted by X ′: The initial condition I(X), the
transition relation T (X,X ′) and the target F (X). To check if F can be reached
within n steps we introduce n+ 1 copies X0, . . . , Xn of the system variables X
and check if

I(X0) ∧
n∧
i=1

T (Xi−1, Xi) ∧ F (Xn)

is satisfiable. The size of the resulting SMT problems for the pair (R1, R2) and
bound k is in O(k(|AT (R1)|+ |AT (R2)|+

∑
R∈Rinv∪{R1,R2} |AO(R)|)).Since by

definition Cond{R1,R2},k(σ) implies Cond{R1,R2},k+1(σ), we have to check the
consequence for the smallest k for that both parts of the premise are satisfiable
only.

The encoding choosen in [11] introduces for every observer or trigger automa-
ton A a boolean variable failA resp. fairA that is true if the automaton is in
its failure resp. accepting state in the current step. We found a trace satisfying
some set R of requirements if failAO(R) = false in the last step. To encode
Trigger{R1,R2},k, we introduce a variable tR for R ∈ {R1, R2} that is set to the
current step index at the time fairAT (R) becomes true and remains stable in
the rest of the trace. Then we encode Trigger{R1,R2},k in the target as

fairAT (R1) ∧ fairAT (R2) ∧ tR1 < k ∧ tR2 < k ∧ Interfere(R1,R2)(tR1 , tR2) .

We enforce NoExitR by adding fairAT (R) ⇒ ¬AECR to the transition relation.
We encode satisfiability with a loop by introducing a copy sstore for each

state variable s. Here the state variables for some automaton are the variable s
holding the current state and the counters. We let the BMC solver “guess” the
beginning of the loop by setting a boolean variable loop to true in some arbitrary
step. When setting loop, the current state is stored into the copy variables that
remain stable to the end of the trace. We reached a loop in the last step if the
state variables again equal the copy variables.

Set Premise 1 Premise 2 Consequence

Req 1, Req 2 19.46s 21.90s 7.86s
Req 1, Req 3 18.51s 0.37s 2.26s
Req 1, Req 4 18.73s 0.32s 5.66s
Req 2, Req 3 17.95s 0.31s 4.53s
Req 2, Req 4 16.85s 0.35s 2.25s
Req 3, Req 4 4.45s – –

Table 3. Solver run times for the analysis

7 Evaluation

We evaluate the partial consistency on the example from the introduction. Since
it is physically impossible to move the pitman arm up and down at the same
time, we add a further invariant requirement:

Req 6 true → ¬(up ∧ down)

The analysis finds three inconsistent pairs in the example: {Req 1,Req 2},
{Req 1,Req 4}, and {Req 2,Req 3}. The run times for the Z3 (divided into
the two premises and the consequence for each pair) are listed in Table 3. For the
pair {Req 3,Req 4}, the first premise is unsatisfiable, and therefor the BMC
problems for the second promise and consequence have been skipped (indicated
by a dash in Table 3). For the remaining four pairs, both premise and conse-
quence hold. We choose as bounds α = 40 and β = 20. The test has been run
on a Windows 7 PC with an Intel Core i5-2400@3.10GHz using Z3 4.6.0 as a
backend.

It turned out that the BMC unrolling depth is the crucial factor influenc-
ing performance. Therefore we repeated our experiments using symbolic time,
meaning we contract multiple steps into one if only counter values change. This
allows us to get the same results as above with only 25 unrolling steps. As an-
other evaluation, using symbolic time we are able to check consistency of the
industrial example from [6] in 80s. However, at time writing this paper we are
not able to preserve the formal soundness results from Section 5 for symbolic
time although we did not encounter any false findings of the analysis so far.

Compared to bounded existential consistency, bounded partial consistency
does not produce false inconsistencies. In contrast to [11, 12], more complex in-
consistencies are found. Unfortunately in [12] no performance results are given,
but we assume our approach being comparable in performance. Simulation, as
in the ArgoSim5 STIMULUS tool [18] is another promising and interesting ap-
proach. In this example, a simulation engine is able to find the same inconsis-
tencies as our approach. However, simulation-based techniques are less powerful
in resolving non-determinism. As our notion of consistency is designed for high
level requirements, these may have a high amount of non-determinism.

5 https://argosim.com/

8 Conclusion and Future Work

In this paper, partial consistency has been introduced. Partial consistency is an
extension of existential consistency that checks pairs of reactive SUPs, under the
assumption that they interfere with each other. Interference of SUPs means that
they are triggered in a way such that their actions must occur at the same time.
We skip pairs, where interference is not possible. Partial consistency finds more
true conflicts between requirements than existential consistency alone. However,
there are cases that are not recognized by partial consistency, for example

– Conflicts that involve more than two reactive requirements
– Cases where the conflict is not between the actions of two requirements but

between e.g. an action and the local scope. This means that one requirement
causes the action of another requirement to occur too early.

It is ongoing work to make the interference relation more generic in order to
analyze a wider range of conflicts. This will also allow to adopt partial consistency
for other pattern languages, for example SPS or RSL [5]. In this paper we propose
a mapping from SPS to SUP instead.

References

1. Aichernig, B.K., Hörmaier, K., Lorber, F., Ničković, D., Tiran, S.: Require, test and
trace IT. In: Formal Methods for Industrial Critical Systems - 20th International
Workshop, FMICS 2015, Proceedings. LNCS, vol. 9128, pp. 113–127. Springer
(2015)

2. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Information
and computation 104(1), 2–34 (1993)

3. Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Infor-
mation and Computation 104(1), 35–77 (1993)

4. Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualitative,
real-time, and probabilistic property specification patterns using a structured en-
glish grammar. IEEE Transactions on Software Engineering 41(7), 620–638 (2015)

5. Baumgart, A., Böde, E., Büker, M., Werner Damm, G.E., Gezgin, T.,
Henkler, S., Hungar, H., Josko, B., Oertel, M., Peikenkamp, T., Reinke-
meier, P., Stierand, I., Weber, R.: Architecture modeling. Tech. rep., OFFIS
(3 2011), http://ses.informatik.uni–oldenburg.de/download/bib/paper/OFFIS–
TR2011 ArchitectureModeling.pdf

6. Becker, J.S., Bertram, V., Bienmüller, T., Brockmeyer, U., Dörr, H., Peikenkamp,
T., Teige, T.: Interoperable toolchain for requirements-driven model-based devel-
opment. In: ERTS 2018 (2018)

7. Benveniste, A., et al.: Contracts for system design. Foundations and Trends in
Electronic Design Automation 12(2-3), 124–400 (2018)

8. Bienmüller, T., Teige, T., Eggers, A., Stasch, M.: Modeling requirements for quan-
titative consistency analysis and automatic test case generation. In: FM&MDD
2016. Computing Science Technical Report Series, vol. CS-TR-1503. Newcastle
University (2016)

9. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bdds.
In: International conference on tools and algorithms for the construction and anal-
ysis of systems. pp. 193–207. Springer (1999)

10. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications
for finite-state verification. In: Proceedings of the 21st international conference on
Software engineering. pp. 411–420. ACM (1999)

11. Ellen, C., Sieverding, S., Hungar, H.: Detecting consistencies and inconsistencies of
pattern-based functional requirements. In: Formal Methods for Industrial Critical
Systems - 19th International Conference, FMICS 2014. pp. 155–169 (2014)

12. Filipovikj, P., Rodriguez-Navas, G., Nyberg, M., Seceleanu, C.: Smt-based consis-
tency analysis of industrial systems requirements. In: Proceedings of the Sympo-
sium on Applied Computing. pp. 1272–1279. ACM (2017)

13. Heitmeyer, C., Archer, M., Bharadwaj, R., Jeffords, R.: Tools for constructing
requirements specification: the scr toolset at the age of ten. Tech. rep., Naval
Research Lab Washington DC Center for High Assurance Computing Systems
(CHACS) (2005)

14. Heitmeyer, C., Kirby, J., Labaw, B.: Tools for formal specification, verification, and
validation of requirements. In: Computer Assurance, 1997. COMPASS’97. Are We
Making Progress Towards Computer Assurance? Proceedings of the 12th Annual
Conference on. pp. 35–47. IEEE (1997)

15. Heitmeyer, C.L.: Formal methods for specifying, validating, and verifying require-
ments. Journal of Universal Computer Science 13(5), 607–618 (2007)

16. Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated consistency checking
of requirements specifications. ACM Transactions on Software Engineering and
Methodology (TOSEM) 5(3), 231–261 (1996)

17. Jaffe, M.S., Leveson, N.G., Heimdahl, M.P.E., Melhart, B.E.: Software require-
ments analysis for real-time process-control systems. IEEE transactions on software
engineering 17(3), 241–258 (1991)

18. Jeannet, B., Gaucher, F.: Debugging embedded systems requirements with stimu-
lus: an automotive case-study. In: 8th European Congress on Embedded Real Time
Software and Systems (ERTS 2016) (2016)

19. Konrad, S., Cheng, B.H.: Real-time specification patterns. In: Proceedings of the
27th international conference on Software engineering. pp. 372–381. ACM (2005)

20. de Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Tools and Algorithms for
the Construction and Analysis of Systems: 14th International Conference, TACAS
2008. Proceedings. pp. 337–340. Springer (2008)

21. Post, A., Hoenicke, J., Podelski, A.: rt-inconsistency: A new property for real-
time requirements. In: Fundamental Approaches to Software Engineering - 14th
International Conference, FASE 2011. Proceedings. pp. 34–49 (2011)

22. Post, A., Menzel, I., Hoenicke, J., Podelski, A.: Automotive behavioral require-
ments expressed in a specification pattern system: a case study at bosch. Require-
ments Engineering 17(1), 19–33 (2012)

23. Teige, T.: Simplified Universal Pattern Syntax and Semantics. BTC EmbeddedSys-
tems (06 2017), confidential

24. Zowghi, D., Gervasi, V.: On the interplay between consistency, completeness, and
correctness in requirements evolution. Information & Software Technology 45(14),
993–1009 (2003)

