On the Complexity of Pointer Arithmetic in
Separation Logic

James Brotherston! and Max Kanovich!2

! University College London, UK
2 National Research University Higher School of Economics, Russian Federation

Abstract. We investigate the complexity consequences of adding pointer
arithmetic to separation logic. Specifically, we study an extension of the
points-to fragment of symbolic-heap separation logic with sets of sim-
ple “difference constraints” of the form x < y + k, where z and y are
pointer variables and k is an integer offset. This extension can be con-
sidered a practically minimal language for separation logic with pointer
arithmetic.

Most significantly, we find that, even for this minimal language, polynomial-
time decidability is already impossible: satisfiability becomes NP-complete,
while quantifier-free entailment becomes coNP-complete and quantified
entailment becomes T4 -complete (where IT¥ is the second class in the
polynomial-time hierarchy).

However, the language does satisfy the small model property, meaning
that any satisfiable formula A has a model of size polynomial in A,
whereas this property fails when richer forms of arithmetical constraints
are permitted.

Keywords: Separation logic, pointer arithmetic, complexity.

1 Introduction

Separation logic (SL) [23] is a well-known and popular Hoare-style framework
for verifying the memory safety of heap-manipulating programs. Its power stems
from the use of separating conjunction in its assertion language, where A x B
denotes a portion of memory that can be split into two disjoint fragments satisfy-
ing A and B respectively. Using separating conjunction, the frame rule becomes
sound [27], capturing the fact that any valid Hoare triple can be extended with
the same separate memory in its pre- and postconditions and remain valid, which
empowers the framework to scale to large programs (see e.g. [26]). Indeed, sepa-
ration logic now forms the basis for verification tools used in industrial practice,
notably Facebook’s INFER [8] and Microsoft’s SLAYER [3].

Most separation logic analyses and tools restrict the form of assertions to a
simple propositional structure known as symbolic heaps [2]. Symbolic heaps are
(possibly existentially quantified) pairs of so-called “pure” and “spatial” asser-
tions, where pure assertions mention only equalities and disequalities between

variables and spatial formulas are *x-conjoined lists of pointer formulas z — ¥y
and data structure formulas typically describing segments of linked lists (Isx y)
or sometimes binary trees. This fragment of the logic enjoys decidability in poly-
nomial time [11] and is therefore highly suitable for use in large-scale analysers.
However, in recent years, various authors have investigated the computational
complexity of (and/or developed prototype analysers for) many other fragments
employing various different assertion constructs, including user-defined induc-
tive predicates [18,5,7,1,10], pointers with fractional permissions [22,13], ar-
rays [6,19], separating implication (—x) [9,4], reachability predicates [14] and
arithmetic [20, 21].

It is with this last feature, arithmetic, and more specifically pointer arith-
metic, with which we are concerned in this paper. Although most programming
languages do not allow the explicit use of pointer arithmetic (with the execption
of C, where it is nevertheless discouraged), it nevertheless occurs implicitly in
many programming situations, of which the most common are array indexing
and structure / union member selection. For example, a C expression like ptr [1]
implicitly generates an address expression of the form ptr+(sizeof (xptr)*i).
Thus a program analysis performing bounds checking for C arrays or strings, say,
must account for such implicit pointer arithmetic. We therefore set out by asking
the following question: How much pointer arithmetic can one add to separation
logic and remain within polynomial time?

Unfortunately, and perhaps surprisingly, the answer turns out to be: essen-
tially none at all.

We study the complexity of symbolic-heap separation logic with pointers, but
no other data structures, when pure formulas are extended by a minimal form
of pointer arithmetic. Specifically, we permit only conjunctions of “difference
constraints” x < y + k, where and y are pointer variables and k is an integer.
We certainly do not claim that this fragment is appropriate for practical pro-
gram verification; clearly, lacking constructs for lists or other data structures,
and using only a very weak form of arithmetic, it will be insufficiently expressive
for most purposes (although it might possibly be practical e.g. for some concur-
rent programs that deal only with shared memory buffers of a small fixed size).
The point is that any practical fragment of separation logic employing pointer
arithmetic will almost inevitably include our minimal language and thus inherit
its computational lower bounds.

We establish tight complexity bounds for the satisfiability and entailment
problems, in both quantified and quantifier-free forms, for our minimal SL pointer
arithmetic. Perhaps our most striking result is that the satisfiability problem is
already NP-complete; however, the language does at least enjoy the small model
property, meaning that any satisfiable symbolic heap A has a model of size poly-
nomial in A (a property that fails when richer forms of arithmetical constraints
are permitted in the language). In the case of the entailment problem, the prob-
lem becomes coNP-complete for quantifier-free entailments and I -complete for
entailments with existential quantifiers in the consequent (where ITZ is the sec-
ond class in the polynomial-time hierarchy [25]). In all cases, the lower bounds

follow by reduction from the 3-colourability problem or its 2-round variant [15].
The upper bounds are by straightforward encodings into Presburger arithmetic,
but the I1L upper bound for quantified entailments is not trivial, as it requires
us to show that all quantified variables in the resulting Presburger formula can
be polynomially bounded; again, a small model property.

The remainder of this paper is structured as follows. In Section 2 we define
symbolic-heap separation logic with minimal pointer arithmetic. Sections 3 and 4
study the satisfiability and quantifier-free entailment problems, respectively, for
this language, and Sections 5 and 6 establish the lower and upper complexity
bounds, respectively, for the general entailment problem. Section 7 concludes.

This is a workshop version of the paper, representing almost-finished work.
We apologise in advance for any remaining presentational inconsistencies.

2 Separation logic with minimal pointer arithmetic

Here, we introduce a minimal language for separation logic with pointer arith-
metic (SLmpa for short), a simple variant of the well-known “symbolic heap”
fragment over pointers [2].

Our choice of language is influenced primarily by the need to ‘balance’ the
arithmetical part of the language against the spatial part. To show lower com-
plexity bounds, we have to challenge the fact that X9 Presburger arithmetic is
already NP-hard by itself; thus, to reveal the true memory-related nature of the
problem, we restrict the language to a minimal form of pointer arithmetic, which
is simple enough that it can be processed in polynomial time. This leads us to
consider only conjunctions of “difference constraints” of the form x = y + k, and
x <y+k where z and y are variables and k is an integer (even disequality,
x’ # x is not permitted).

Definition 2.1 (Syntax). A symbolic heap is given by

dz. Il:

where z is a tuple of variables from an infinite set Var, and Il and F are respec-
tively pure and spatial formulas, defined along with terms t by:

te=x |x+k
Hu=zxz=t|a<t|HONI
Fi:=emp|t—t|t—nil| FxF

where x ranges over Var and k over integers Z. If II is empty in a symbolic heap
Jz. II: F, we omit the colon. We sometimes abbreviate x-conjunctions of spatial
formulas using “big star” notation:

:L:lAz =def Al...*An,

which is interpreted as emp if n < 1.

In our SLmpa, the pure part of a symbolic heap is a conjunction of ‘difference
constraints’ of the form x =y +k or x <y + k, where z and y are variables,
and k is a fixed offset in Z. Thus = < y + k can be encoded as < y + (k — 1),
x<y—kasz<y+(—k)and z+k <y as v < y—k; however, note that unlike
the conventional symbolic heap fragment in [2], we cannot express disequality
x # y. The satisfiability of such formulas can be decided in polynomial time;
see [12]. The crucial observation for polynomial-time decidability is:

Proposition 2.2. A ‘circular’ system of difference constraints x1 < xo + kia,
oy 1 < T+ km—1ms T < @1+ Kimer implies that vy —x1 < 3000 ki i1,
which is a contradiction iff the latter sum is negative.

Semantics. As usual, we interpret symbolic heaps in a stack-and-heap model; for
convenience we consider locations to be natural numbers, and values to be either
natural numbers or a non-addressable null value nil. Thus a stack is a function
s: Var — N U {nil}. We extend stacks to terms by s(nil) = nil and, insisting
that any pointer-offset sum should always be non-negative: s(z + k) = s(x) + k
if s(xz) 4+ k > 0, and undefined otherwise. If s is a stack, z € Var and v is a value,
we write s[z — | for the stack defined as s except that s[z — v](z) = v. We
extend stacks pointwise over term tuples.

A heap is a finite partial function h: N —;, NU {nil} mapping finitely many
locations to values; we write dom (h) for the domain of h, and e for the empty
heap that is undefined on all locations. We write o for composition of domain-
disjoint heaps: if h; and hs are heaps, then hy o hy is the union of h; and ho
when dom (h;) and dom (hs) are disjoint, and undefined otherwise.

Definition 2.3. The satisfaction relation s, h |= A, where s is a stack, h a heap
and A a symbolic heap, is defined by structural induction on A.

sshEx~y+ke s(x)~s(y)+k where ~ is= or <

sshiEIILZ ATy, & s,h =11 and s,h =11

s, h = emp & h=e

s,hi=ti =ty < dom(h) = {s(t1)} and h(s(t1)) = s(t2)
s,hiEFy«Fy < 3hy,he. h=hjohy and s,hy E Fy and s,hy = Fy
s,h =3z I1: F < 3m e NP2 s[z— m],h|=IT and s[z+— m],h = F

We remark that the satisfaction of pure formulas II does not depend on the heap,
which justifies writing s |= II rather than s, h |= II.

3 Satisfiability and the small model property

In this section we investigate the satisfiability problem for our SLypa, defined
formally as follows:

Satisfiability problem for SLypa. Given a symbolic heap A, decide whether
there is a stack s and heap h with s,h |= A. (Without loss of generality, we may
consider A to be quantifier-free.)

We establish three main results about this problem: (a) an NP upper bound;
(b) an NP lower bound; and (c) the small model property, meaning that any
satisfiable formula has a model of polynomial size.

In fact, the NP upper bound is fairly trivial; there is a simple encoding of the
satisfiability problem into XY Presburger arithmetic (as is also done for a more
complicated array separation logic in [6]). Nevertheless, we include the details
here, since they will be useful in setting up later results.

Definition 3.1. Presburger arithmetic (PbA) is defined as the first-order theory
of the natural numbers N over the signature (0, s, 4+, =), where s is the successor
function, and 0, 4+, = have their usual interpretations. The relations #, < and <
can be straightforwardly encoded (possibly introducing an existential quantifier).

Note that a stack is just a first-order valuation, and a pure formula in SLypa
is also a formula of PbA, with exactly the same interpretation. Thus we overload
= to include the standard first-order satisfaction relation of PbA.

Definition 3.2. Let A be a quantifier-free symbolic heap, of the general form
I *:il t; — u; .

We define a corresponding PbA formula va by enriching the pure part I with
the constraints that the allocated addresses t; must be distinct:

YA :dﬁfH A /\1§i<j§m ti 7& tj .

The above v4 can be easily rewritten as a Boolean combination of elementary
formulas of the form z < y + k where the ‘offset’ k is an integer.

Lemma 3.3. For any symbolic heap A in SLypa, we have
sshi=EA & skEva .

Proof. We assume A of the general form given by Definition 3.2.
(=) By assumption, we have s |= IT and dom (h) = {s(t1),...,s(tm)}, which
implies that all the ¢; are distinct. Hence s |= 4 as required.

(<) By assumption, we have s = II and all of s(t1),...,s(tm) are distinct.
Hence, defining a heap h by dom (h) = {s(t1),...,s(tm)} and h(s(t;)) = u; for
each i, we have s, h |= A as required. O

Proposition 3.4. Satisfiability for SLypa is in NP.

Proof. Follows from Lemma 3.3 and the fact that satisfiability for quantifier-free
Presburger arithmetic belongs to NP [24]. O

Next, we tackle the lower bound. Satisfiability is shown NP-hard by reduction
from the 3-colourability problem [15].

3-colourability problem. Given an undirected graph with n > 4 wvertices, de-
cide whether there is a “perfect” 3-colouring of the vertices, such that no two
adjacent vertices share the same colour.

Definition 3.5. Let G = (V, E) be a graph with n vertices vy, ..., v,. We encode
a perfect 3-colouring of G with the following symbolic heap Aq.

First, we introduce n variables ¢y, ..., c, to represent the colour (1, 2, or 3)
assigned to each vertex. The fact that no two adjacent vertices v; and v; share
the same colour will be encoded by allocating two cells with base address e;; € N
and offsets ¢; and c; respectively in Ag. To ensure that all such pairs of cells
are disjoint, the base addresses e;; are defined by:

eij=i-n+j-n (1<i<j<n) (1)
We then define Ag to be the following quantifier-free symbolic heap:

ANiila+1<c¢iNe<a+3): k (¢; + €5+ nil % ¢; + e + nil)

(viyv;)EE
where a is a “dummy” variable (ensuring that Ag adheres to the strict formatting
of pure assertions in SLyvpa).

The relevant fact concerning our definition of the base addresses e;; in Defi-
nition 3.5 is the following.

Proposition 3.6. For distinct pairs of numbers (i,7) and (¢,7), with 1 <
0,1, 7,7 <mn, we have |ey j» — e;;| > n.

Although for the present purposes we could have used a simpler definition of
the e;;, such that they are all spaced 4 cells apart, the definition by equation (1)
is convenient as it will be re-used later on; see Definition 5.1.)

Lemma 3.7. Let G be an instance of the 3-colouring problem. Then Ag from
Definition 3.5 is satisfiable iff there is a perfect 3-colouring of G.

Proof. Let G = (V, E) have vertices vy, ..., v,, where n > 4.

(<) Suppose G has a perfect 3-colouring given by assigning a colour b; to each
vertex v;, with each b; € {1,2,3}. We define a stack s by s(a) =0 and s(¢;) = b;
for each 1 < 4 < m. Note that since b; € {1,2,3} we have s(a + 1) < s(¢;) <
s(a+ 3) for each i, and so s satisfies the pure part of Ag. Now define heap h by

dom (h) =det U(u, ,0,)er ({s(ci) +eij} U{s(c;) + e5})

and h(¢) = nil for all £ € dom (h). Clearly, by construction, s,h = Ag pro-
vided that none of the singleton sets involved in the definition of dom (h) are
overlapping.

Since we have a perfect 3-colouring of G, for any edge (v;,v;) € E we have
s(c¢;) # s(c;), so the subsets {s(c;) + e;;} and {s(c;) + e;;} of dom (h) do not
overlap. Furthermore, by Proposition 3.6, for any two distinct edges (v;,v;) and

(v, vj) in E, the base addresses e;; and e;/; are at least 4 cells apart (because
n > 4). Since 1 < s(¢;) < 3 for any i, we cannot have s(¢;) + e;; = s(c¢ir) + et’y’
either. Thus all involved singleton sets are non-overlapping as required.

(=) Supposing that s, h = Ag, we define a 3-colouring of G by b; = s(¢;) — s(a)
for each 1 < i < mn. Since s Ea+1 < ¢; Ac¢; < a+ 3 by assumption, we have
b; € {1,2, 3} for each 4, so this is indeed a 3-colouring. To see that it is a perfect
3-colouring, let (v;,v;) € E. By construction, we have that s,h’ = ¢; +e;; —
nil « ¢; 4+ e;; — nil for some subheap b’ of h. Using the definition of *, this means
that s(c;) + ei; # s(c;) + eij, i.e. s(c;) # s(cj), and so b; # b; as required. [

Theorem 3.8. Satisfiability for SLympa is NP-hard.

Proof. From Lemma 3.7 and the fact that 3-colourability is NP-hard [15]. O
Corollary 3.9. Satisfiability in SLypa is NP-complete.

Proof. From Proposition 3.4 and Theorem 3.8. O

Finally, we tackle the small model property for SLypa; that is, any satisfiable
formula A has a model of size polynomial w.r.t. A (see e.g. [1]). But, before we
do, we point out that this property breaks if we increase the expressivity of our
system only slightly.

Remark 3.10. The small model property fails if we allow our symbolic heaps to

contain constraints of the form x < y + z where x, y and z are all variables. In
that case, we could define, e.g.,

—-1 .

Ap =det NIy Tit1 > T + @ k., @i~ nil

(Note that the constraint x;41; > x; + x; can be expressed in our syntax, e.g.,

as ©; < 11 — yi Ay; = x; + 1.) Then, for any model (s, h) of A,,, and for any

i < n, we have that s(z;41) > 2s(x;), which implies s(z;41) > 2¢7!. Thus, (the

distances between) at least half the addresses in h must be of exponential size.

In order to prove the small model property for our SLypa, we need a more
workable specification of y4:

Definition 3.11. Given a symbolic heap A , we rewrite the Presburger formula
va by replacing every formula v = y+ k by v <y+kAy<x—k, and every
formula t; #t; by t; <t; —1Vit; <t; — 1. Then ya can be viewed as

"yAEfA(Zl7Z2,...7Zm) (2)

where fa(z1,22,..,2m) is a Boolean function, and within (2) the Boolean vari-
able z; is substituted with a difference constraint Z; of the form x; < y; + k;
(where k; is an integer).

Proposition 3.12. Any model (s, h) for a symbolic heap A can be conceived of
as a non-negative integer solution to the system v, ¢ given by

......... : (3)

with an appropriate Boolean vector ¢ = (1, ..,(m such that fa(Ciy..,Cn) = T.

Proof. Given a model (s, h) of A, we can evaluate each of the Z;, and then
calculate the appropriate ¢ = (3, (s, .., (;n using the equations in (3). O

Definition 3.13. In its turn, the system 4 ¢, see (3), is encoded by a constraint

graph, éA,@ constructed as follows.

With each variable x;, we will associate the node labelled by T;.

In the case of Z; =(; =T, we depict the arrow from the node T; to the
node x; and label it with k;, with getting the edge: =7 Ky @l

In the case of Z; = (; = L, which means that “z; <z, —k; — 17, we depict

the opposite arrow from the node x) to the node &; and label it with the number

—k; — 1, with getting the edge: T it xA;
To provide the connectivity we need for models, we always add, if necessary,

a “mazimum node” Tq, with the constraint “r; < x¢” for all ;. Cf. Figure 1.

Ezample 3.14. Let A be a symbolic heap of the form: (y < z): z +— nil * y — nil,
with its y4 being of the form: (y <z)A((z <y—-1)V (y <z -1)).

Following Proposition 3.12, we rewrite y4 as: va(z,y) = fa(Zo, Z1, Z2),
where fa(20,21,22) = (20 A (21 V 22)), and Zj stands for “y < 2”7, and Z; stands
for “x <y —17, and Z3 means “y <z —17.

Since Z; and Zs are mutually exclusive, it suffices to consider the following two
Boolean vectors ¢ = (o, (1, Ca:

(a) ¢ =T,T, L. We denote the corresponding system of difference constraints’
Yae(,y) by 11(,y):

1(2,Y) =det Yac(@,y) = (y < 2) A (2 <y—1).
(b) (=T, L, T. We denote the corresponding system Ya,c(w,y) by y2(z,9):

Y2 (%, Y) =det Ya (T, y) = (Y <z)A(y <z —1).

In Figure 1 we show the constraint graphs for v; and ~s, resp. Notice that,
because of y < z, the node 7 is a “maximum node” in both cases.
In the case of (a), we have no solution. Namely, there is a negative cycle of

the form 7 —2» m i 7, which provides a contradictory x < x — 1.
In the case of (b), the minimal weighted path from Z to § is of the weight —1,
which guarantees that y = x — 1 is a model for 4 and thereby for A. O

0 0
—a —a
@ @ @ @
-1 —1

(@) n=w<a)A(z<y—1) 0 =y<z)A(y<z-1)

Fig. 1. The constraint graphs for v, and 2 from Example 3.14.

Theorem 3.15 (Small model property). Let A be a satisfiable symbolic
heap in minimal pointer arithmetic. Then we can find a model (s,h) for A in
which all values are bounded by M, here M =" (|k;| + 1), where k; ranges over
all occurrences of numbers occurred in A.

Proof. According to Proposition 3.12, there is a Boolean vector ¢ = (1, (s, .., Cm
such that the corresponding system, v, ¢, has a solution. Hence, the associated

constraint graph, G A,¢> has no negative cycles, see Proposition 2.2.

We define our small model with the following mapping s with providing an
evaluation (s(z1),..,s(z,)) which makes 4 true. First we define: s(xg) = M,
for the “maximum node” Zg. Then s(z;) is defined as: M + d;, where d; is the
minimal weighted path leading from Ty to #;. (d; never happens to be positive)
E.g., in Example 3.14 the small model is: s(z) = M, and s(y) = M — 1. O

Remark 3.16. In addition, the corresponding polytime sub-procedures are run-
ning as the shortest paths procedures with negative weights allowed (e.g., Bellman-
Ford algorithm), which provides polynomials of low degrees.

4 Quantifier-free Entailment

We now turn to the entailment problem for our SLypa, given as follows:

Entailment in SLypa. Given symbolic heaps A and B, decide whether s, h = A
implies s,h |= B for all stacks s and heaps h (we say A = B is valid).

Without loss of generality, A may be assumed quantifier-free, and any quan-
tified variables in B assumed disjoint from the free variables in A and B.

In this section, we focus on the case of quantifier-free entailments, for which
we establish both an upper and a lower bound of coNP.

Definition 4.1. Let A |= B be an SLupa entailment, where A and B are sym-
bolic heaps of the form

A= Iyu: >|<iZ byt

and B = TJy.1lgz: *ﬁl

. /‘
-1 Uj — u]

=1
We express validity of A = B, by means of the following PbA formula 4 p:
Vi (ya = 3y (v8 ANVt =g Atp=ui) NN V(uy =t Al =1)) - (4)

where v_ is given by Defn. 3.2, and T is the set of all free variables in A and B.

Lemma 4.2. A }= B is valid (in SLmpa) if and only if (A, B) is valid (in PbA).
Proof. Similar to Lemma 3.3. O

As an immediate consequence of Lemma 4.2, the general entailment problem
for SLypa is in II9 Presburger arithmetic, which corresponds to ITFXF in the
exponential-time hierarchy [17]. However, as it turns out, this bound is exponen-
tially overstated; as we show in Theorem 6.1, the problem also belongs to the
much smaller class ITY, the second class in the polynomial time hierarchy [25].
The crucial difference between Presburger I19 and polynomial IT2 is that, in the
latter, all variables must be polynomially bounded.

However, the construction above does yield an optimal upper bound for the
quantifier-free version of the problem.

Theorem 4.3. The quantifier-free entailment problem for SLypa is in coNP.

Proof. According to Lemma 4.2, deciding whether A = B is valid is equivalent
to deciding whether the PbA formula (A, B) is valid. Although (A4, B) is in
general a IT9 formula, it becomes a IT{ formula when B is quantifier-free; the
validity of such formulas can be decided in coNP time. O

We now turn to the small model property. We note that this property is
sensitive to the exact form of our arithmetical constraints, and, similar to Re-
mark 3.10, it fails when we allow the addition of two pointer variables.

Theorem 4.4 (Small model property). Suppose that the quantifier-free en-
tailment A |= B is not valid. Then we can find a counter-model (s, h) such that
(s,h) = A but (s, h) = B, in which all values are bounded by M =" .(|k;|+ 1),
where k; ranges over all occurrences of numbers in A and B.

Proof. (Sketch) The proof follows the structure of the small model property for
satisfiability (Theorem 3.15), noting first that we can rewrite the PbA formula
(A, B) as a I19 Boolean combination of difference constraints z < y +k, similar
to Defn. 3.11. O

As for the coNP lower bound, we use a construction similar to Definition 3.5,
based on the complement of 3-colourability.

Definition 4.5. Given a graph G with n vertices, and reusing notation from
Definition 3.5, we introduce a satisfiable symbolic heap Ay by:

ANjla+1<c¢Ae <d): *(v_v_ . ¢; + eij —> nil* ¢; + e — nil
iUj

)
and a satisfiable symbolic heap B, by d > a+4 N Ap.

Lemma 4.6. Let G be an instance of the 3-colouring problem, and let Ay, and
B¢, be given by Defn. 4.5 above. Then Ay, |= By, is not valid iff there is a perfect
3-colouring of G.

10

Proof. Let G = (V, E) have n vertices vy, ...,v,, where n > 4.

(<) Suppose G has a perfect 3-colouring given by assigning colours b; € {1,2,3}
to vertices v;. By the argument in the (<) case of the proof of Lemma 3.7, if we
define s(a) = 0, s(¢;) = b; and (new here) s(d) = 3 then there is a heap h such
that s,h = A{,. However, we do not have s,h = By, because s = d > a + 4.
Thus A, |= By, is not valid, as required.

(=) Conversely, suppose s, h = Ay, but s, h = B, for some (s, h). By construc-
tion of By, this implies that s = @ < d—4, which implies s(d) < s(a)+3. We can

then use this fact together with the fact that s, h = A{; to obtain a 3-colouring
of G exactly as in the (=) case of the proof of Lemma 3.7. O

Theorem 4.7. The quantifier-free entailment problem for SLympa is coNP-hard,
even when both symbolic heaps are satisfiable.

Proof. Lemma 4.6 gives a reduction from the complement of the 3-colourability
problem, which is coNP-hard, using only satisfiable symbolic heaps. O

Corollary 4.8. The quantifier-free entailment problem for SLypa is coNP-complete
(even when both symbolic heaps are satisfiable).

Proof. Theorems 4.3 and 4.7 give the upper and lower bounds respectively. [J

5 Quantified entailment: Hf lower bound

In this section, and the following one, we investigate the general form of the
entailment problem A | B for our SLypa, where B may contain existential
quantifiers. Here, we establish a lower bound for this problem of I in the
polynomial-time hierarchy (see [25]); in the next section we shall establish an
identical upper bound.

To prove ITF-hardness, we build a reduction from the so-called 2-round ver-
sion of the 3-colourability problem, defined as follows.

2-round 3-colourability problem. Let G = (V, E) be an undirected graph with
n > 4 vertices and k leaves (vertices of degree 1). The problem is to decide
whether or not every 3-colouring of the leaves can be extended to a perfect 3-
colouring of the entire graph, such that no two adjacent vertices share the same
colour.

Definition 5.1. Let G = (V, E) be an instance graph with n vertices and k leaves.
In addition to the variables c; and a and the numbers e;; which we reuse from
Definition 3.5, to each edge (v;,v;) we also associate a new variable ¢;;, repre-
senting the colour “complementary” to c; and c;.

To encode the fact that no two adjacent vertices v; and v; share the same
colour, we shall use ¢;, cj, and c;; as the addresses, relative to the base-offset
eij, for three consecutive cells within a memory chunk of length 3, which forces
¢, ¢j, and ¢;; to form a permutation of (1,2,3).

11

Formally, we define A, to be the following quantifier-free symbolic heap:

k e{1,2,3 -
Nici(a+1<¢ A <a+3): *(i{,vj)el}z a+ (egj 4 £) — nil

and By, to be the following quantified symbolic heap:

P NLi(atl<a<at+3) AN eplatl<ci<a+3d): ;
*(vi,uj)eE ¢ +eij =il x ¢j+e; = nil x ¢ +eij > nil (5)

where the existentially quantified variables z are all variables occurring in B,
that are not mentioned explicitly in A%. Note both Af, and B{. are satisfiable.

Lemma 5.2. Let G be an instance of the 2-round 3-colouring problem, and let
¢ and Bf, be given by Defn. 5.1 above. Then AZ, = B is valid iff there is a
perfect 3-colouring of G given any 3-colouring of its leaves.

Proof. Let G = (V,E) have n > 4 vertices vy,...,v, of which the first k are
leaves.
(<) Suppose that there is a winning strategy such that every 3-colouring of the
leaves can be extended to a perfect 3-colouring of the whole G. We will prove
that AY, = Bg.

Let s, h be a stack-heap pair satisfying s, h = Af.

The spatial part of A7, yields a decomposition of h as the disjoint collection
of the cells (we recall that s(e;;) = e;; and s(¢) = ¢):

h = * S(Q)‘f‘eij—f'gi—) nil (6)
(viyvy)EE, £=1,2,3

and /\le(s(a) +1 < s(¢;) < (s(a) + 3). Take the 3-colouring of the leaves ob-

tained by assigning the colours b; to the leaves vy, vs,..., v resp.. where
b; = s(c¢;) — s(a). According to the winning strategy, we can assign colours, de-
note them by b;, i > k, to the rest of vertices viy1, ..., vn, resp., obtaining a

3-colouring of the whole G such that no adjacent vertices share the same colour.
In addition, we mark edges (v;,v;) by b;; complementary to b; and b;.
We extend the stack s for quantified variables in Bf, so that for all i < k,

s(c;) = s(a) + by,

and, for each (v;,v;) € E, we have s(c¢;;) = s(a) + 6 — b; — b;. The fact that no
adjacent vertices v; and v; share the same colour means that

(s(ci)s s(ez), s(ci))

is a permutation of
(s(a) +1, s(a) +2, s(a) + 3),

and, as a result, (s, h) is also a model for Bf:

h= 3k s(c)+ey=nil x s(c;)+ ey nil x s(ciy) + ey =il (7)
(vi,vj)eE

12

(=) As for the opposite direction, let A7, = B¢.. Since Af. is satisfiable, there is
a model (s, h) for A} so that, in particular, h satisfies (6).
We will construct the required winning strategy in the following way. Assume
a 3-colouring of the leaves be given by assigning colours, say b;, to the leaves vy,
vg,. .., Vg respectively. We modify our original s to a stack s’ by defining, for
each 1 <i <k,
s'(¢;) = s(a) + b;.

which does not change the heap h, but provides
Nizi(s(a) +1 < ' (ci) < (s(a) +3).

It is clear that the modified (s, h) is still a model for A7, and, hence, a model
for Bf.. Then for some stack sp, which is extension of s’ to the existentially
quantified variables in B, we get (sp,h) = Bf.

Foreach1 <i <k, sp(c¢;) = s'(¢;) = sp(a) + b;, which means that, for 1 <14 < k,
these sp(c;) represent correctly the original 3-colouring of the leaves.

By assigning the colours b; = sg(c;) — sp(a) to the rest of vertices vy,
Uk42, -- ., Up Tesp. we obtain a 3-colouring of the whole G.

The spatial part of the form (7) provides that sg(c;) # sg(c;), which results
in that no adjacent vertices v; and v; share the same colours b; and b;, providing
a perfect 3-colouring of G. 0

Theorem 5.3. The general entailment problem for SLmpa is II¥-hard, even
when both symbolic heaps are satisfiable.

Proof. Lemma 5.2 gives a reduction from the 2-round 3-colourability problem,

which is HQP—hard [15]. O

6 Quantified entailments: The H2P upper bound

The I1£ lower bound is given in Theorem 5.3. For the case of quantified entail-
ments in SLypa, we establish here, Theorem 6.1, an upper bound also of IT{, as
well as the small model property.

Theorem 6.1. The entailment problem in minimal pointer arithmetic belongs
to ITY . Moreover, given A and B, for some conjunction of difference constraints
R(x1, T, .., Tn, Y1, Y2, -, Ym), AE B is equivalent to

Va1V Vo, Iy Jya.. 3ym R(T1, T2, ooy Tny Y1, Y25 - Ym) - (8)
where all x; are bounded by (n+1)- M and all y; by (n+m +2) - M, where M
is defined as: M =", (|k;| + 1), with k; ranging over all occurrences of ‘offsets’

numbers occurred in A and B.

Proof. This follows from the small model property provided by Theorem 6.2 [

13

Theorem 6.2 (Small model property). Given A and B, quantified symbolic
heaps, suppose that A = B, encoded with (4), is not valid.

Then we can find a counter-model (s, h) such that (s,h) = A but (s,h) = B,
in which all x-values and y-values are bounded in accordance with Theorem 6.1.

Proof Sketch. Taking x, as a “zero” node, and y,, as a “maximum node”, we
assume that =, < z2 < -+ <y, and z, < Yy, and for all y;, =1 <y; < Y.

Let (s, h) be a concrete counter-model for A = B, such that s(z1) = 0, and,
being a model for A, (s,h) be fully determined by the system:

n—1

Yas(@, 2, wn) = [\ (@i = i+ diig) 9)
=1

where for all 1 <14 < j <mn, the d;; is defined as: d;; = s(z;) — s(x;).

Following Proposition 3.12, the fact that (s,h) = B means that for a cer-
tain Boolean function fa p, whatever a Boolean vector ¢ =(i,..,¢ such that
fa.B(Cy..,) = T we take, the following system, G4 g ¢ ¢, has no integer solu-
tion for s(z1), .., s(xy,) fixed by v4, s from (9):

VAT, 22, an) A (20 = Q) A A (Ze =) (10)

Given a smaller M, we introduce a smaller counter-model (s, h’) by simply
replacing all large gaps d; ;11 with one and the same smaller M as follows:

n—1

Va5 (T1, 22, .., Tp) = /\ (Tit1 =i + d;,i-&-l) (11)
i=1

where dj; = s'(z;) — s'(v;), for 1 <i < j <n, and a smaller s is defined by:

s'(x;) + dijivr, if diip1 <M

. -
' (@ig1) == {S/<$i) + M, otherwise 12)

Ezample 6.3. (On the edge of disaster) Here we show that it is a real chal-
lenge to prove that our (s’,h’) is a small counter-example we look for.
Assuming x7 < z9 < x3 < 4, let A be of the form

(1 < @2) A (22 < 23) A (23 < 24) A (23 < 22+ 3): 21 = nil * x5 — nil (13)
and B be of the form
Fy1Ty2TysTya (y2 = 22) A (ya = 2a) A (Y2 < ya—5)A(ys =y1 +7): y1 — nil * ys — nil

(14)
Then the validity of A = B can be reduced to €4, p of the form:

ean = Yz (ya(z) = 3y Gp(7,7)) (15)
where G (z, %) is the following conjunction

(yi=2)A(ys=a3) A(y2=a2) A(ya=aa) A2 <ya—B5)A(ys =1 +7) (16)

14

Let (s, h) be a ‘large’ counter-model for A |= B, defined by the following s (here

D is a very large number, say 2024):
s(xe) = s(x1) + 2D,
s(z3) = s(x2) + 2, (17)
s(zq) = s(z3) + D,

Our (s,h), being a model for A, is fully determined by the system:
Va,s(®1, T2, 23, 24) = (x2 =21 +2D)A (z3 =22+ 2) A (x4a =235+ D). (18)

The constraint graph, G A,s, consists of the following pairs of labelled edges

~ 2D o~ o~ 2D ~ ~ 2 o~ ~ -2 —~ —~ D o~ ~ —-D ~
1 —> T2, T2 —> T1, T2 — X3, X3 — X2, X3 —7 T4, T4 —7 T3,

According to (15), (s,h) = B means that the following system has no solution:
va,s(s(w1), 8(22), 5(23), s(x4)) NG (s(21), 5(22), 5(x3), 5(24), Y1, Y2, Y3, y4) (19)
which is the case because of the cycle with the negative weight, —D + 2:
0. ~ -5 ~ 0 —2D 0. ~ 7. ~ 0 D
@=a2e >@F@>a06 5 ®>@ @

By our construction, a small counter-model (s, k') is defined with the following s’
by replacing the large D and 2D with one and the same M:

§'(xe) = §'(x1) + M,
s'(z3) = §'(2) + 2, (21)
§'(x4) = §'(x3) + M.

(s',h') = B means that the following system has no solution, cf. (19):

Va8 (@1), 8" (22), 8/ (w3), 8" (24)) A G (8" (1), 8" (22), 8" (w3), 5" (24), Y1, Y2, Y3, Ya)

A natural idea to detect a cycle with the negative weight for (s’,h’), is to
take (20) defined for (s, h), and transform it into a hopefully negative cycle in
terms of (', h') by replacing its large D and 2D with the modest M, resulting in:

0, ~ =5 ~ O -M 0. ~ 7. ~ 0 M
@>n e S2@F@a a5 ®S@ e
But the weight of this cycle happens to be positive. O
The challenge to our construction can be resolved by the following lemma.

Lemma 6.4. Having got a cycle C with the negative weight for (10), we can
extract a smaller cycle with the negative weight for (10), which is good for (s', h'),
as well.

Proof. We introduce the following reductions for i < j:

15

(al) Let @ —] = 3;\’ — @ be a part of C, which does not use
edges from 74 s, see (9). Here o is the sum of all integers the edges invoked
in this part are labelled by.

In the case where d;; + 0 > 0, we replace the above part with the part:
—d;;
Ok
Since —d;; < o, the weight of the whole updated C remains negative.
(a2) For d;j + 0 < 0, we can identify the following cycle with a negative weight:

~ o dij
@—>y:>y’—>@—>@ (23)
Since d;; < —o < M, we have d;j = d;j, and hence this smaller cycle with
the negative weight is good for (s',h'), as well.
(b1) Let — Y =y — be a part of C, which does not use edges
from 74,5, see (9).

dij
For d;; < o, we replace the above part with the part: @ -
Since d;; < o, the weight of the whole updated C remains negative.
(b2) For d;; > o, we can identify the following cycle with a negative weight:

~ -~ —dyj
@27 -®4E
Suppose that for all k£ such that ¢ < k < j, dg 41 < M. Then d;j = d;;, and
hence this smaller cycle with the negative weight is good for (s’, h’), as well.
Otherwise, for some k such that i <k < j, djr41 > M, and thereby by

construction dj ., = M, and, hence, dj; > M.
Then the following cycle defined in terms of (s',h’),

@—)ﬂéyﬁ%@i}]@

is of negative weight, since o — dgj <o—-M<O.
E.g., in Example 6.3 the following part of its negative cycle (20):

@&@A@ &@

provides the following negative cycle in terms of (s', h'):

@L@Ay@, L@*—%@i{@

We can prove that any chain of reductions must terminate in (a2) or in (b2).
This concludes the proof of Lemma 6.4 and thereby of Theorem 6.2. O

Remark 6.5. The proof of Theorem 6.2 provides quite efficient procedures for the
entailment problem in Theorem 6.1, in which the corresponding polytime sub-
procedures are running as the shortest paths procedures with negative weights
allowed with providing polynomials of low degrees.

In fact we prove that the entailment problem is ITF-complete, and enjoys the
small model property, even if we allow any Boolean combinations of elementary
formulas (' < x + ko), and, in addition to the points-to formulas, we allow spa-
tial formulas of the arrays the length of which is bounded by k(¢ and lists which
length is bounded by a fixed integer k. O

16

7 Conclusions

In this paper, we study the points-to fragment of symbolic-heap separation logic
extended with pointer arithmetic, in a minimal form allowing only conjunctions
of difference constraints x < y + k for k € Z.

Perhaps surprisingly, we find that polynomial time algorithms are out of reach
even for minimal SL pointer arithmetic: for example, satisfiability is already NP-
complete and quantifier-free entailment is coNP-complete.

We point out that, for the case of quantified entailments in minimal pointer
arithmetic, we establish here an eract upper bound of IT1 as well as the small
model property.

We note that some of our upper bound complexity results can be seen as
following already from our earlier results for array separation logic, where we
allow array predicates array(z,y) as well as pointers and arithmetic constraints.
Of course, pointer arithmetic is often an essential feature in reasoning about
array-manipulating programs. The main value of our findings, we believe, is in
our lower bound complexity results, which show that NP-hardness or worse is
an inevitable consequence of admitting pointer arithmetic of almost any kind.

We remark that our lower-bound results do however rely on the presence of
pointer arithmetic, as opposed to arithmetic per se. If pointers and data values
are strictly distinguished and arithmetic permitted only over data, as is done e.g.
in [16], then polynomial-time algorithms may still be achievable in that case.

References

1. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M., Ouaknine, J.: Foun-
dations for decision problems in separation logic with general inductive predicates.
In: Proc. FoSSaCS-17. pp. 411-425. Springer (2014)

2. Berdine, J., Calcagno, C., O’Hearn, P.: A decidable fragment of separation logic.
In: Proc. FSTTCS-24. LNCS, vol. 3328, pp. 97-109. Springer (2004)

3. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: memory safety for systems-level code.
In: Proc. CAV-23. pp. 178-183. Springer (2011)

4. Brochenin, R., Demri, S., Lozes, E.: On the almighty wand. Information and Com-
putation 211, 106-137 (2012)

5. Brotherston, J., Fuhs, C., Gorogiannis, N., Navarro Pérez, J.: A decision procedure
for satisfiability in separation logic with inductive predicates. In: Proc. CSL-LICS.
pp. 25:1-25:10. ACM (2014)

6. Brotherston, J., Gorogiannis, N., Kanovich, M.: Biabduction (and related prob-
lems) in array separation logic. In: Proc. CADE-26. LNAI, vol. 10395, pp. 472-490.
Springer (2017)

7. Brotherston, J., Gorogiannis, N., Kanovich, M., Rowe, R.: Model checking for
symbolic-heap separation logic with inductive predicates. In: Proc. POPL-43. pp.
84-96. ACM (2016)

8. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M.,
O’Hearn, P., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast with
software verification. In: Proc. NFM-7. LNCS, vol. 9058, pp. 3-11. Springer (2015)

17

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results for a
spatial assertion language for data structures. In: Proc. FSTTCS-21. pp. 108-119.
Springer (2001)

Chen, T., Song, F., Wu, Z.: Tractability of separation logic with inductive defini-
tions: Beyond lists. In: Proc. CONCUR-28. pp. 33:1-33:16. Dagstuhl (2017)
Cook, B., Haase, C., Ouaknine, J., Parkinson, M., Worrell, J.: Tractable reasoning
in a fragment of separation logic. In: Proc. CONCUR-22. LNCS, vol. 6901, pp.
235-249. Springer (2011)

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, 3rd edn. (2009)

Demri, S., Lozes, E., Lugiez, D.: On symbolic heaps modulo permission theories.
In: Proc. FSTTCS-37. pp. 25:1-25:13. Dagstuhl (2017)

Demri, S., Lozes, E., Mansutti, A.: The effects of adding reachability predicates in
propositional separation logic. In: Proc. FoSSaCS-21. LNCS, Springer (2018), to
appear

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

Gu, X., Chen, T., Wu, Z.: A complete decision procedure for linearly compositional
separation logic with data constraints. In: Proc. IJCAR. LNAI, vol. 9706, pp. 532—
549. Springer (2016)

Haase, C.: Subclasses of Presburger arithmetic and the weak EXP hierarchy. In:
Proceedings of CSL-LICS. pp. 47:1-47:10. ACM (2014)

Tosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with
recursive definitions. In: Proc. CADE-24. LNAI, vol. 7898, pp. 21-38. Springer
(2013)

Kimura, D., Tatsuta, M.: Decision procedure for entailment of symbolic heaps with
arrays. In: Proc. APLAS-15. LNCS, vol. 10695, pp. 169-189. Springer (2017)

Le, Q.L., Sun, J., Chin, W.N.: Satisfiability modulo heap-based programs. In: Proc.
CAV-28. LNCS, vol. 9779, pp. 382-404. Springer (2016)

Le, Q.L., Tatsuta, M., Sun, J., Chin, W.N.: A decidable fragment in separation
logic withinductive predicates and arithmetic. In: Proc. CAV-29. LNCS, vol. 10427,
pp. 495-517. Springer (2017)

Le, X.B., Gherghina, C., Hobor, A.: Decision procedures over sophisticated frac-
tional permissions. In: Proc. APLAS-10. LNCS, vol. 7705, pp. 368-385. Springer
(2012)

Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proc. LICS-17. pp. 55-74. IEEE (2002)

Scarpellini, B.: Complexity of subcases of Presburger arithmetic. Trans. American
Mathematical Society 284(1), 203-218 (1984)

Stockmeyer, L.J.: The polynomial-time hierarchy. Theoretical Computer Science
3, 1-22 (1977)

Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’'Hearn, P.:
Scalable shape analysis for systems code. In: Proc. CAV-20. LNCS, vol. 5123, pp.
385-398. Springer (2008)

Yang, H., O’'Hearn, P.: A semantic basis for local reasoning. In: Proc. FOSSACS-5.
pp. 402-416. Springer (2002)

18

