
Submitted to:
LFMTP 2018

c© Komauli & Momigliano
This work is licensed under the
Creative Commons Attribution License.

Property-Based Testing of Abstract Machines:
an Experience Report

Francesco Komauli Alberto Momigliano
DI, Università di Milano, Italy

francesco.komauli@studenti.unimi.it momigliano@di.unimi.it

Contrary to Dijkstra’s diktat, testing, and more in general, validation, has found an increasing niche in
formal verification, prior or even in alternative to theorem proving. Validation, in particular, property-
based testing (PBT) is quite effective in mechanized meta-theory of programming languages, where
theorems have shallow but tedious proofs that may go wrong for fairly banal mistakes. In this report,
we abandon the comfort of high-level object languages and address the validation of abstract ma-
chines and typed assembly languages. We concentrate on Appel et al.’s list-machine benchmark [2],
which we tackle both with αCheck, the simple model-checker on top of the nominal logic program-
ming αProlog and the PBT library FSCheck for F#. This allows us to compare the relative merits
of exhaustive-based PBT in a logic programming style versus the more usual randomized functional
setting. We uncover one major bug in the published version of the paper plus several typos and ambi-
guities thereof. This is particularly striking, as the paper is accompanied by two full formalizations,
in Coq and Twelf. Finally, we do a bit of mutation testing on the given model, to asses further the
trade-off between exhaustive and randomized data generation. Spoiler alert: the former performs
better.

1 Introduction

Does this sound familiar? You are in the middle of a long but supposedly straightforward formal proof
trying to drag your favourite proof assistant to confirm the blindingly obvious truth of the result, when
you get stuck in an unprovable part of the derivation; you realize that the statement needs to be adjusted
or more commonly that there is something afoul, typically a banality, in your specification. If only you
had a way to realize that the theorem was unprovable before wasting precious time in a doomed proof
attempt, perhaps some kind of testing . . .

This is where, with due respect to Dijkstra and his “thou shall not test” commandment, validation
prior to theorem proving comes in: as a matter of fact, such tools have been available for some time
in the leading proof assistants: to cite only two of them, the NitPick/QuickCheck combination [4] (and
descendants) in Isabelle/HOL and QuickChick [21] in Coq.

Our angle is not verification vs. validation in general, but in a particular domain: the mechanization
of the meta-theory (MMT) of programming languages (PL) and related calculi. As any practitioner may
testify, the main properties of interest are well known and have mathematically shallow proofs. The
difficulties lies in the potential magnitude of the cases one must consider and in the trickiness that some
encodings require, typically those having to deal with binding signatures. Here, very minor mistakes
in the specification, even at the level of what we would consider a typo, may severely frustrate the
verification effort, to the point to make it not cost-effective. Further, we aim to support the “working
semantics” in her work in developing, and eventually formally proving correct, such calculi, rather than
concentrating on models that we already know to be correct.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 PBT Abstract Machines

The model checking technique we have adopted is property-based testing (PBT): while it originated
as a testing techniques for concrete (functional) programs, it is also applicable at the meta-theoretical
level, especially in the PL domain, as shown by the success [17] of tools such as PLT-Redex (https://
redex.racket-lang.org) and, “si parva licet componere magnis”, αCheck [7]. PBT’s data generation
strategy comes in several flavours: random [11], exhaustive [27], a combination of the two [12], with an
ever increasing emphasis on coroutining the generation and testing phases [14, 19]. An analysis of some
of those strategies as applied to MMT was carried out in [13].

In this paper, we abandon the comfort of high-level object languages, which have been investigated
extensively, and address the validation of abstract machines and typed assembly languages. That seems
more challenging, since instructions operating at a low level provide less “structure” for counterexam-
ples, which then tend to be substantially more complex. Further, it is hard to generate sequences of
machine states that yield meaningful machine runs. Similar remarks have appeared in the context of
random generation of C programs [29]. Not coincidentally, the authors of [1] suggest that “[counterex-
amples to properties such as non-interference may be] well beyond the scope of naive exhaustive testing”
(pag. 12).

We take on Appel et al.’s list-machine benchmark [2], dubbed by the authors CIVmark, standing for
Compiler Implementation Verification. We concentrate mostly on its version 1.0, as originally presented
at LFMTP’06, but we also touch on 2.0, see Section 6.1. CIVmark was conceived as a benchmark for
“machine-checked proofs about real compilers”, spurred by a civilized criticism of POPLMark as being
too biased towards issues of binders. It consists of a basic pointer machines with instructions such as car,
cdr, cons and (un)conditional jump, endowed with a standard SOS, but with a reasonably sophisticated
type system: the latter, being able to make static predictions about lists being empty or not, guarantees
that a well typed machine’s run does not get stuck. Two implementations, including sketch of proofs of
type soundness in Twelf and Coq come with the paper.

A version of this model is also part of the benchmarks distribution of PLT-Redex [15] and as such
being subjected to some PBT. All the more reasons to tackle with two very distinct PBT’s approaches,
which fits well with the existing formalizations:

1. An encoding in the nominal logic programming αProlog [9], to be tested with its model checker
αCheck [7];

2. A functional encoding with the PBT library FSCheck for F#.
This allows us to compare the relative merits of exhaustivity-based PBT in a logic programming style
versus the more usual randomized functional setting polarized by QuickCheck. It is also a stress test for
αCheck, since CIVmark does not exploit any of the features offered by nominal logic that makes αProlog
effective, see the case studies at https://github.com/aprolog-lang/checker-examples, which
are all devoted to high-level languages, including some studied in [17]; instead, the CIVmark benchmark
brings to the fore the naivete of αProlog’s search strategy.

A testing approach is “good” only if it uncovers bugs, and so we did: we falsified the type preser-
vation property as presented in the paper, caused by an incorrect specification of typing for values. This
is particularly striking, considering the paper comes with two formalized proof of type soundness. The
mystery disappears once we realized that the Coq implementation of that judgment was different from
the paper and coincided with the definition that we had reverse-engineered from the counter-example to
preservation1. We also found several typos and ambiguities in the typing rules in the published paper,
but this is not unusual where there is no connection between the text in the paper and the model verified
by the proof assistant.

1The Twelf “proof” is left as an exercise and the above typing judgment undefined.

https://redex.racket-lang.org
https://redex.racket-lang.org
https://github.com/aprolog-lang/checker-examples

Komauli & Momigliano 3

That was encouraging, but to asses further the trade-off between exhaustive and randomized data
generation, we resorted to some mutation testing [22] on the given debugged model. As we will see in
Section 5, exhaustive generation, in all its naivety, tends to be more cost effective than pure random PBT.
Finally, we report on some ongoing work on the list-machine 2.0 and on replaying the first section of [1],
which deals with an abstract machine for dynamic information-flow control. Here again, exhaustive PBT
shows its colours.

2 The list machine

We present here the syntax, static and dynamic semantics and finally meta-theory of CIVmark[2].

2.1 The plumbing of the machine

The list-machine, as the name suggests, operates over an abstraction of lists, where every value is either
nil or the cons of two values, in other terms S-expressions with only nil as atom.

value a ::= nil | cons(a1, a2)

Given a set of variables and labels, the machine features the following set of instructions:

ι1, ι2, . . . : I instructions
jump l : I jump to label l
branch-if-nil v l : I if v = nil then jump to l
fetch-field v 0 v′ : I fetch the head of v into v′

fetch-field v 1 v′ : I fetch the tail of v into v′

cons v0 v1 v′ : I make a cons cell in v′

halt : I stop executing
ι1; ι2 : I sequential composition

We rely on several association lists: programs map labels to instructions and stores variables to values.

program p ::= end | p, ln : ι

store r ::= { } | r[v 7→ a]

We use a functional notation such as p(l) for look-up into such structures. The notation r[v 7→ a] assumes
that the variable v is not in the domain of r and we use r[v := a] = r′ for functional update.

2.2 Dynamic and static semantics

The operational semantics is summarized in the inference rules in Fig. 1: given a fixed program, the
small-step relation (r, ι)

p7→ (r′, ι ′) works on store/instruction configurations in a continuation-passing
style. Then, a big-step semantics is defined as the Kleene closure of the small-step relation, with the
instruction halt that signals the end of a program execution. A program p is said to run if it runs in the
big-step relation, starting from the instruction at p(l0) with an initial store containing only the binding
v0 = nil, until a halt instruction is reached.

The type system assigns to each variable a list type that is then refined to empty and nonempty lists,
to guarantee safety of certain operations, e.g. fetch-field.

type τ ::= nil | list τ | listcons τ

4 PBT Abstract Machines

(r, (ι1; ι2); ι3)
p7→ (r, ι1; (ι2; ι3)) step-seq

r(v) = cons(a0, a1) r[v′ := a0] = r′

(r, (fetch-field v 0 v′; ι))
p7→ (r′, ι)

step-fetch-field-0

r(v) = cons(a0, a1) r[v′ := a1] = r′

(r, (fetch-field v 1 v′; ι))
p7→ (r′, ι)

step-fetch-field-1

r(v0) = a0 r(v1) = a1 r[v′ := cons(a0, a1)] = r′

(r, (cons v0 v1 v′; ι))
p7→ (r′, ι)

step-cons

r(v) = cons(a0, a1)

(r, (branch-if-nil v l; ι))
p7→ (r, ι)

step-branch-not-taken

r(v) = nil p(l) = ι ′

(r, (branch-if-nil v l; ι))
p7→ (r, ι ′)

step-branch-taken

p(l) = ι ′

(r, jump l)
p7→ (r, ι ′)

step-jump

. .
(r, ι)

p7→ (r′, ι ′) (p,r′, ι ′) ⇓
(p,r, ι) ⇓

run-step

(p,r,halt) ⇓ run-halt

[v0 = nil] = r p(l0) = ι (p,r, ι) ⇓
p ⇓ run-prog

Figure 1: Small and big step operational semantics

The type system includes therefore the expected subtyping relation and a notion of least common super-
type τ t τ ′. A type environment Γ is a mapping between variables and types and subtyping is extended to
environments width and depth-wise. A program typing Π is an association list of labeled environments,
where Π(l) = Γ represents the types of the variables when entering a block labeled with l.

typing env Γ ::= { } | Γ,v : τ

program typing Π ::= { } | Π, l : Γ

Type-checking is stratified in several judgments following the structure of a program as a labeled
sequence of blocks. At the bottom, instruction typing Π `instr Γ{ι}Γ′ transforms a precondition Γ into
post-condition Γ′ under the program typing Π. The check-block relation handles terminal instructions
halt and jump. Block typing is extended to all blocks of a program p with the check-blocks relation
Π `blocks p, whereby for each label l in program p, the associated block ι = p(l) is type-checked with its
environment Γ = Π(l). Finally, the top-level type-checking relation |=prog p : Π states that a program p
type-checks with a program typing Π when blocks and environments have matching labels, every block
type-checks with its corresponding environment, and the initial environment is Γ0 = (v0 : nil).

Komauli & Momigliano 5

Π `instr Γ{ι1}Γ′ Π `instr Γ′{ι2}Γ′′
Π `instr Γ{ι1; ι2}Γ′′

check-instr-seq

Γ(v) = list τ Π(l) = Γ1 Γ[v := nil] = Γ′ Γ′ ⊂ Γ1
Π `instr Γ{branch-if-nil v l}(v : listcons τ, Γ′)

check-instr-branch-list

Γ(v) = listcons τ

Π `instr Γ{branch-if-nil v l}Γ check-instr-branch-listcons

Γ(v) = nil Π(l) = Γ1 Γ⊂ Γ1
Π `instr Γ{branch-if-nil v l}Γ check-instr-branch-nil

Γ(v) = listcons τ Γ[v′ := τ] = Γ′

Π `instr Γ{fetch-field v 0 v′}Γ′ check-instr-fetch-0

Γ(v) = listcons τ Γ[v′ := list τ] = Γ′

Π `instr Γ{fetch-field v 1 v′}Γ′ check-instr-fetch-1

Γ(v0) = τ0 Γ(v1) = τ1
(list τ0) t τ1 = list τ Γ[v := listcons τ] = Γ′

Π `instr Γ{cons v0 v1 v}Γ′ check-instr-cons

. .

Π;Γ `block halt check-block-halt

Π `instr Γ{ι1}Γ′ Π;Γ′ `block ι2
Π;Γ′ `block ι1; ι2

check-block-seq

Π(l) = Γ1 Γ⊂ Γ1
Π;Γ `block jump l

check-block-jump

Figure 2: Instruction and block typing

2.3 Properties

One of the few drawbacks of PBT as a testing technique for programming units is coming up with
meaningful properties. In MMT, this is a non-issue, as PL calculi come equipped with the meta-theorems
they must satisfy, when they are not variants of standard results. As far as the list-machine is concerned,
we are spoiled with choices: the paper (pages 467–8) lists more than a dozen theorems ranging from
basic properties of subtyping to type soundness. We report the top-level ones:

Progress: given a well-typed instruction and a well-typed store, the machine steps or halt.

|=prog p : Π Π `instr Γ{ι}Γ′ r : Γ

step-or-halt(p, r, ι)

Preservation: if a well-typed block steps, there is an environment type-checking the next instruction.

|=prog p : Π `env Γ r : Γ Π;Γ `block ι (r, ι)
p7→ (r′, ι ′)

∃Γ′. `env Γ′ ∧ r′ : Γ′ ∧ Π;Γ′ `block ι ′

6 PBT Abstract Machines

Soundness: a well-typed program, after a finite amount of steps, either halts or can make another step.

|=prog p : Π Γ = Π(l0) ι = p(l0) (r, ι)
p7→ ∗(r′, ι ′)

step-or-halt(p, r′, ι ′)

Note that all the above properties are existential and while this is a non-issue for (constructive) theo-
rem proving, it may be a challenge for testing, not only in the functional setting, but also when logic
programming is concerned, as we shall see in Section 3.1.

The Twelf implementation adds more properties, mostly linked to its own peculiar meta-theory. So,
what shall we test? Past experience with αCheck [7] suggests that testing intermediate lemmas is ben-
eficial, while systems such as PLT-Redex tend to go for the bull’s eye. We report in Section 5.2 some
partial answers to this dilemma.

2.4 Mutation testing

How do we know that PBT is effective in catching bugs in MMT? There are very few F#/Prolog imple-
mentation of PL calculi in the wild that we can sink our metaphorical teeth in. In truth, PLT-Redex has
collected a small set of bugged models, but for one, you really have to fancy Lisp2, and secondly, it is
not clear how meaningful those (very few) bugs are. Case in point, their list-machine model comes with
only 3 (three) bugs that are caught by counterexamples with at most two instructions.

One way to asses the effectiveness of PBT is via mutation testing [22]. As well known, the latter is a
form of white box testing, whereby a program is changed in a localized way by introducing a fault. The
resulting program is called a “mutant” and the aim of a testing suite is to fail the faulted code, which is
known as “killing” the mutant.

While mutation testing is widely applied to programming languages [16], the fact is that we do not
have a theory for mutations of PL models. Standard mutation operators from (imperative) programming
languages largely do not apply; hence we took some inspiration from operators for the closest we can get
to models specified by derivation rules, Prolog [24]; this resulted in the following mutation operators,
adapted to a strongly-typed setting:

Clause mutations: predicate deletion and swap, replacement of conjunction by disjunction.

Operator mutations: arithmetic and relational operator mutation.

Variable mutations: replacing variable by (anonymous) variable and vice versa

Constant mutations: replacing constant by constant, by (anonymous) variable and vice versa.

We thus manually produced two dozens mutations of the list-machine, half of which are specific to
a relational implementation of part of the model. In Fig. 3 we show two sample mutations: the first
one, ported from PLT-Redex, is a variable mutation, by which the step-cons rule fails to update the store
forgetting r′. The second one is a constant mutation where, removing the list type constructor, v′ gets the
wrong type.

While we readily acknowledge that a manual approach to mutation testing is seriously limited, we
point out that this is common in the field and that a general theory and implementation of a tool for
mutation testing of PL calculi is beyond the scope of this paper.

2It is not just a question of syntax: the code for the only check in [15], namely progress, is so procedural to make it hard to
relate to the formal statement in the paper.

Komauli & Momigliano 7

r(v0) = a0 r(v1) = a1 r[v′ := cons(a0, a1)] = r′

(r, (cons v0 v1 v′; ι))
p7→ (r , ι)

step-cons*

Γ(v) = listcons τ Γ[v′ := ��HHlist τ] = Γ′

Π `instr Γ{fetch-field v 1 v′}Γ′ check-instr-fetch*

Figure 3: Sample mutations

3 αProlog implementation

αProlog [9] is a logic programming language particularly suited to encoding PL calculi and related
systems due to its support for nominal logic. However, since this case study is purposely first order
only, we did not get to use any of those goodies and the encoding is many sorted pure Prolog code.
In fact, it follows quite closely the reference Twelf implementation by Appel [2]. The only place one
would naturally try and use name types, and hence inherit α-equivalence, is encoding of variables and
labels. Yet, the machine model calls for distinguished (initial) variable and label v0 and, l0 and this
suggests an encoding based on an enumeration of constants — remember, we are in the business of
bounded model checking, so we tend to avoid using infinite types as integers. The only downside is
the need for an explicit inequality predicate. We use association lists for all the environments the list-
machine uses (note the Haskell like syntax for type abbreviations) and standard Prolog predicates for
related operations such as looking up or updating (non-destructively) such a list. Do not be fooled by the
functional notation, it is flattened at compile time to the equivalent relation. The complete code can be
found at https://bitbucket.org/fkomauli/list-machine.
var : type.
v0 : var.
v1 : var.
...
pred not_same_var (var, var).
not_same_var(v0, v1).
not_same_var(v0, v2).
...
type block = (label,instr).
type program = [(block)].
type store = [(var,value)].
...
func var_lookup (store,var) = value.
var_lookup([(V,A)|R],V) = A.
var_lookup([(V,A)|R],V1) = A1 :-
not_same_var(V,V1), A1 = var_lookup(R,V1).

The small-step semantics is an unsurprisingly translation of the rules in Fig. 1 into a predicate step

(program, store, instr, store, instr), where the first three arguments are inputs. Type check-
ing is slightly more interesting: we summarize the main type definitions:

pred check_instr (program_typing,env,instr,env).
pred check_block (program_typing,env,instr).
pred check_blocks (program_typing,program).
pred check_program (program,program_typing).

Note that check_instr(Pi,G,I,G’) will instantiate G’ during execution. All other checks expect fully
grounded inputs, i.e. no type inference is possible.

https://bitbucket.org/fkomauli/list-machine

8 PBT Abstract Machines

3.1 PBT with αCheck

αCheck [7] is a tool for checking desired properties of formal systems implemented in αProlog. The
idea is to test properties/specifications of the form H1∧ ·· ·∧Hn→ A by searching exhaustively (up to a
bound) for a substitution θ such that θ(H1), . . . ,θ(Hn) all hold but the conclusion θ(A) does not. In this
paper, we identify negation with negation-as-failure, but the tool includes also another strategy [8]. The
concrete syntax for a check is

#check "name" depth: G => A.

where G is a goal and A an atom or constraint3. As usual in Prolog the free variables are implicitly
universally quantified and depth is the user-given bound. The above pragma is translated to the formula

∃~X :~τ. G∧ gen~τ(~X)∧ ¬A (1)

where gen~τ are type directed exhaustive generators automatically compiled by the tool to ground ~X ,
the intersection of the free variables of G and A, needed to make the use of NF sound. The user can,
alternatively, specify her own generators as αProlog code, if she feels she needs to implement a smarter
generation strategy, as we will see shortly and in Section 6.2.

A query such as (1) amounts to a derivation-first approach, which generates all “finished” derivations
of the hypothesis G up to a given depth, considers all sufficiently ground instantiations of variables, and
finally tests whether the conclusion finitely fails for the resulting substitution. αCheck implements a
simple-minded iterative deepening search strategy over a hard-wired notion of bound, which roughly
coincides with the number of clauses that can used in the derivation of each of the premises

Let’s look at a check to be more concrete, progress. While αProlog does not have first class existen-
tials and disjunction, it is a basic Prolog exercise to code it:

pred step_or_halt (program,store,instr).
step_or_halt(P,R,instr_halt).
step_or_halt(P,R,I) :- step(P,R,I,R’,I’).

#check "progress" 10: check_program(P,Pi), check_block(Pi,G,I), store_has_type(R,G)
=> step_or_halt(P,R,I).

Keeping in mind that the tool add generators for P,R,I before trying to refute
step_or_halt(P, R, I), informal mode analysis for step tells us that R’,I’ will be ground
when the partial proof tree for the check is built.

The same approach will not work for preservation:

pred exists_env (program_typing,store,instr).
exists_env(Pi,R,I) :-
store_has_type(R,G), env_ok(G), check_block(Pi,G,I).

#check "pres" 20 : check_program(P,Pi), step(P,R,I,R’,I’), env_ok(G),
store_has_type(R,G),check_block(Pi,G,I)

=> exists_env(Pi,R’,I’).

This because store_has_type(R,G) expects G to be ground and we are in effect trying to use αProlog
for an impossible type inference task. The solution is to write a specialized generator build_env for
type environments (and recursively, for types and variables). The peculiarity is that we need to add a
local depth bound, so that smallish environments can be built independently from the hard-wired bound,
which is additively distributed along all the atoms in the check.

3Since in this paper we make no use of nominal features, this means syntactic equality.

Komauli & Momigliano 9

pred exists_env_b (int,program_typing,store,instr).
exists_env_b(N,Pi,R,I) :-
N > 0, exists_env_b(N - 1,Pi,R,I).

exists_env_b(N,Pi,R,I) :-
N >= 0, build_env(N,G), store_has_type(R,G), env_ok(G), check_block(Pi,G,I).

#check "pres_b" 20 : ... => exists_env_b(4,Pi,R’,I’).

Please see Section 5 for empirical results. Even discounting our obvious bias, specifying and validating
properties (“spec’n’check”) in αCheck is dead simple, requires very little effort and more than often
turns out to be pretty useful.

4 F# implementation

The granddaddy of PBT being QuickCheck, it is natural to look into a functional implementation of
the benchmark to establish a baseline for αCheck’s efficacy. We chose FsCheck (https://fscheck.
github.io/FsCheck), partly because we were familiar with it, but mostly because, differently from
other libraries, we hoped we could leverage FsCheck’s ability to provide automatic data generation for
any datatype via .Net reflection to start spec’n’check without further ado. How wrong we were.

The functional implementation of the machine is unremarkable: we use F#’s maps for all sorts of
environments and integers for variables and labels. The step function is total, since type-checking see
to that. The type-checking function follows the imperative specification in the paper (Section 8.2).

This is what a check such as progress looks like in FsCheck’s DSL, keeping in mind that ==> opera-
tionally means: (lazily) pass to the post-condition all the tests that satisfies the pre-conditions and discard
the other up to a (configurable) limit:

(typecheck-program pi p) && (typecheck-block pi g i) && (store-has-type r g)

==> lazy (step-or-halt p r i)

Having carefully read [1], we were expecting low coverage for checks as the above, since uniform
distributions are not likely to find data that has to satisfy severe constraints; still, we were not quite ready
for the number we got: zero. FsCheck, as typical in adaptations of QuichCheck, provides a monadic
language to write your own generators and so we did. In [1], the emphasis was writing generators so
that the machine would run longer without getting stuck; here we need to produce well-typed programs,
and this is far from immediate, since we have no type-inference whatsoever. For the progress property,
we need to generate simultaneously a program p, a program typing pi that type-checks with p, a store r
compatible with a type environment g, a label l that belongs to program p and the instruction i associated
to label l.

Rather than showing the code, which is available in the repo https://bitbucket.org/fkomauli/
list-machine/branch/fsharp, we sketch some of the strategy. The starting point is giving more
bias to cons instructions, so as to populate the store giving a chance for branching and fetching to
do something interesting. We choose an instruction only if we know it is safe to execute in the given
type environment. With the instruction itself, the generators produces the environment updated after the
execution of the instruction. We then build sequence of non-terminal instructions. Jumps are delicate: a
jump is always directed forward to a random label with id greater than the current block. If the chosen
landing block has an incompatible typing environment or there is no label to jump forward to, then an
halt instruction is generated instead. And this is just part of the reasoning behind it.

The smart generators developed for this benchmark consists of over a hundred lines of very dense
F# code. Even if it sounds like a small number, the time spent behind it was dozens of hour dedicated

https://fscheck.github.io/FsCheck
https://fscheck.github.io/FsCheck
https://bitbucket.org/fkomauli/list-machine/branch/fsharp
https://bitbucket.org/fkomauli/list-machine/branch/fsharp

10 PBT Abstract Machines

to studying data correlation and distribution to generate meaningful objects. The process continued by
improving distributions and fixing bugs that were found out by analyzing coverage. Though not a formal
proof, we also validated with FsCheck itself the soundness of generators, as far as providing data that
satisfies the constraints we imposed. Completeness is out of the question, but even in systems such as
QuickChick [21] where such proofs are expressible, this is far from automatic.

Shrinkers are a necessary evil of random generation, transforming large counterexamples into smaller
ones that can be understood and acted upon. The QuickCheck philosophy across the board is to put in
the hand of the user all the hard choices and implementing shrinkers is one. While shrinking blocks can
be achieved by removing non-terminal instructions, we must safeguard several sources of correlation
between data: for example, programs and program typings cannot be shrunk independently, as we must
ensure that they still type-check. For the latter we wrote a type inference function to generate them
together from scratch. This strategy worked well enough to reduce counterexamples to sizes sufficiently
close to the minimal ones easily found with the iterative deepening approach of αCheck.

5 Experimental results

Reasons of space and the desire not to bore the reader silly suggest to present only a selection of all the
experiments that we have carried out. Full details can be found in [18].

5.1 A cautionary tale

A testing approach is any good only if it uncovers bugs, but we were not expecting to find any in the
model presented in the paper, which came equipped with a type soundness proof formalized in two proof
assistants. So, imagine our surprise when FsCheck, and later on αProlog came up with this counterex-
ample to type preservation:

p = (l0 : cons(v0,v0,v0); jump l1); (l1 : fetch-field(v0,0,v0); jump l2); (l2;halt)

Π = (l0 : [v0 7→ nil]); (l1 : [v0 7→ listcons nil]); (l2 : [v0 7→ nil])

r = [v0 7→ cons(cons(nil,nil),nil)]

i = fetch-field(v0,0,v0); jump l2 (instruction at l1)

which after a single step yields:
r′ = [v0 7→ cons(nil,nil)]
i′ = jump l2

However, there can be no Γ′ satisfying the postconditions: any such type environment must contain either
the binding [v0 7→ listcons τ] or [v0 7→ list τ] to accommodate r′, but both would not be compatible with
what is required by the jump.

After a fair amount of soul searching, we zeroed on the encoding of the the judgment value-has-ty,
(page 481 of [2]).

nil : nil nil : list τ cons(a0, a1) : listcons τ

a : listcons τ

a : list τ

This is an essential component of the definition of r : Γ, which can be stated as for all v ∈ dom(r), it
holds r(v) : Γ(v). The listcons case sounds fishy, since it makes no assumption about the types of a0 and

Komauli & Momigliano 11

a1. Once we changed that case to:
a0 : τ a1 : list τ

cons(a0, a1) : listcons τ

the counterexample failed to show up. This change was also confirmed by inspecting the Coq implemen-
tation (it is left as an exercise in the Twelf one), which defines value-has-ty exactly like that.

Less dramatically, the check-instr-branch-listcons typing rule in the original paper contains addi-
tional preconditions similar to those in the check-instr-branch-list rule, regarding the jump target envi-
ronment; however in the Coq implementation they are not present, and they could not be, considering
the proof of equivalence with the algorithmic version of type checking, where they are notably absent.
Several typos also present, viz. rule check-instr-cons0 (Section 8.1) and in the type checking algorithm
(instruction typecheck instr Π Γ ι). Typos were spotted through formalization, not PBT.

The moral is, of course, that if there is no formal connection between a formalization and the paper
reporting it, Isabelle/HOL and literate Agda being the precious exceptions, you may want to be skeptical
of the latter. Similar findings appear in [17].

5.2 Mutation analysis

Theorems Lemmas Auxiliary Checks Unit Tests
0

2

4

6

8

10
9

2 2

77

1 1

7

K
ill

ed
M

ut
an

ts

αCheck FsCheck

Figure 4: Mutation analysis for all properties and unit tests

We used our “home-baked” mutation testing to assess the efficacy of PBT suites implemented with
αCheck and FsCheck w.r.t. the 11 mutations applicable to both implementation. Checks are divided in
three groups: top-level theorems as in our Section 2.3, intermediate lemmas collected in Section 8 of [2]
and auxiliary checks regarding low-level details of the machine specification. We have also ported from
PLT-Redex to both αProlog and F# few dozens unit tests, as an additional baseline for mutant killing.
In doing, so we have made some of them parametric, so that exhaustive and random generation of those
parameters could make those tests more far-reaching.

Checks that took more than a minute to find a counterexample are considered timed-out4. We do
4Checks executed on machine with Intel Core i5–4–200U CPU,a clock speed of 1.60GHz and 8GB of RAM, with 64 bit

Ubuntu 17.10 Artful and Linux kernel 4.13.0

12 PBT Abstract Machines

Progress Preservation Soundness Together
0

2

4

6

8

10

1

5

7

9

1

4 4

7

K
ill

ed
M

ut
an

ts
αCheck FsCheck

Figure 5: Mutation analysis for top-level theorems

not compare times to find counterexamples in αCheck vs. FsCheck, because it is a serious case of
oranges and apples. We did take timing information’s separately, and again we refer to [18] for the full
breakdown. In summary, the FsCheck implementation of PBT is quick (as promised, although not as
much as you would expect), not only because of the efficiency of the host language, but also thanks to
the flexibility of the configuration of how checks are executed. The whole FsCheck BPT suite completes
in around 5 minutes: roughly 10 seconds are taken by top-level checks and about 40 seconds by the
intermediate lemmas, while the remaining time is taken by the auxiliary checks. Instead, execution time
of the αCheck suite is not as predictable: we manually set the depth bound so as to make the execution
stay withing 10 seconds. Exception to this discipline are the progress and preservation checks, whose
search space size tend to explode several minutes to complete. Unit tests, even in a parametric fashion,
execute in just few seconds in both implementations.

What we can reasonably compare is the rate of mutants killed by the two testing approaches (Fig. 4)
and the αCheck implementation comes marginally ahead. Lemmas and low-level checks did not perform
well, while top-level theorems were capable of killing most mutants. In fact, the soundness property was
the one which killed most, as we can see in Fig. 5 and it is a good countermeasure against possible errors
contained in the model. This is consistent to the PLT-Redex model, where soundness is the only property
checked.

While we do not want to read too much in such a limited experimentation, it is safe to say that
αCheck keeps its ground, considering how inexpensive it is to set up.

6 Extensions

Here we very briefly report on extending the list machine model to its 2.0 version, see http://www.cs.
princeton.edu/~appel/listmachine/2.0/ and on replicating some of the results in [1]. In both
cases, we fixed αCheck as the testing approach: in the first case, to showcase how nice it is not having
to adapt generators and shrinkers and in the second one because the random approach has already been

http://www.cs.princeton.edu/~appel/listmachine/2.0/
http://www.cs.princeton.edu/~appel/listmachine/2.0/

Komauli & Momigliano 13

thoroughly investigated by much smarter people than us.

6.1 List-machine 2.0

In the final part of the paper [2], the model is extended to cater for indirect jumps. This entails some
small but far-reaching changes: labels are now coerced into values and the nil value is replaced by the
initial label l0. We generalize the jump instruction and add a way to get the current label. This yields
the following changes to the operational semantics:

r(v) = l p(l) = ι ′

(r, jump v)
p7→ (r, ι ′)

step-jump
r[v := l] = r′

(r, get-label l v; ι)
p7→ (r, ι)

step-get-lab

We modify the type system for the new instruction(s):

Π(l) = Γ1 Γ⊂ Γ1 v 6∈ dom(Γ1)

Π;Γ `block get-label l v; jump v
check-block-jump2

Updating the αProlog implementation to reflect those changes is a matter of half an hour and we refer
to the online documentation for details (https://bitbucket.org/fkomauli/list-machine/2.0).
As the paper does not detail the soundness proof, the first thing we did was running our PBT suite to
validate our implementation of the extension.

Preservation as formulated beforehand fails! This time, it is not a specification error, but the fact that
the statement of the theorem has to be generalized. In fact, in the new typing rule both instructions have
to occur in sequence and if we take a single step after get-label, no typing rule will match the remaining
jump, thus making the typing requirement in the existential conclusion fail. One solution is to modify
the latter so as to try another optional step to “get over” the jump. After this modification, αCheck did
not find any other counterexamples w.r.t. the 2.0 model.

6.2 Testing non-interference, not so quickly

It is natural to consider, in addition to type soundness, more intensional properties, such as dynamic
secure information-flow control (IFC). This choice is not casual, since this is the topic of [1], which uses
classic QuickCheck. The paper claims that, for the hardest-to-find bugs, minimal counterexamples are
well beyond the scope of naive exhaustive testing. Thus, we want to test this. We mainly concentrate on
Section 1–4 of [1] and refer the reader to the paper for full details of the model and their testing outcome.

The starting point is a simple, but not simplistic abstract stack-and-pointer machine with instructions
such as push, pop, load and store. A machine state consists of a program counter, a stack, a random-
access memory, and a fixed instructions sequence. In dynamic IFC, security levels (labels, here only
public ⊥ and private >) are attached to run-time values and propagated during the execution, making
sure that private data does not leak. In this model, the values manipulated by the machines are labeled
integers x@L. The property that the abstract machine must satisfy is end-to-end noninterference: if
we call indistinguishable two machine states if they differ only in their private values, non interference
guarantees that in any execution starting with indistinguishable states and ending in a halted state, the
final states are indistinguishable as well.

In [1, Section 2.3], the authors present an operational semantics for the machine, which, while intu-
itive, turns out to be bugged; then they detail (Section 4) the sophisticated testing strategies they had to
program to catch the four bugs inserted. To give an idea, on the left we report the buggy rule for Load

https://bitbucket.org/fkomauli/list-machine/2.0

14 PBT Abstract Machines

and on the right the fixed one, where i(pc) = Load and the box signals where the issue is.

〈pc,(x@L : s),m〉=⇒ 〈pc,(m(x) : s),m〉
Load∗

〈pc,(x@L : s),m〉=⇒ 〈pc,(m(x)@L : s),m〉
LoadOK

QuickCheck managed to locate the first two bugs with a relatively naive generation strategy by which
indistinguishable states where generated together by randomly creating the first and modifying the sec-
ond in their secret part. The other two bugs necessitated a far more complex strategies for generating
meaningful sequences of instructions and addresses, akin to the ones we used for the FsCheck imple-
mentation of the list machine.

αCheck found the first two bugs in less than a minute without any setup. The third one required writ-
ing a generator that yields more structured programs, such as sequences of push and store so that values
in memory can change during execution, a necessary condition to find distinguishable states. This gen-
erator is a simplification of the weighted and sequence strategy in [1]. The fourth bug seemed, however,
out of reach of αCheck, until we got it instead using a plain αProlog query for non-interference, rather
than a check, the difference being the search strategy: depth-first vs. un-optimized iterative deepening.
After the last bug has been fixed, the query did not find any counterexample and completes in about 5
minutes.

Section 2 in the paper ends by introducing three additional and more outlandish bugs. We got them
all with the previous techniques (vanilla check, check with a generator and query with a generator) with
queries being the more efficient one. Additionally, we have also carried out some experiments with a
second version of the machine that includes a jump instruction [1, Section 5], but the results are too
preliminary to draw any conclusion.

7 Conclusions and future work

Our experience suggests that off-the-shelf PBT tools are already quite useful in validating the meta-
theory of PL models, may they be already formalized as the list machine and their evolution, or the more
if under under development. PBT helps in finding errors in the specifications and also in adjusting the
statements of theorems when the model changes, as in the case of list-machine 2.0. From the costs/ben-
efits perspective, exhaustive generation, even in the naive way we have considered, seems to be a winner
over the random approach. Validating low-level languages brings in more challenges, but those can be
handled with the tools we have and some additional work. Clearly, there are many other TAL models,
see Chapter 4 of [23], that could confirm this conclusion.

We are keenly aware that FsCheck and αProlog are the extremes of a small number of PBT-tools that
we could have used for this case study, starting from running PLT-Redex on our mutations, to other logic
programming model-checkers such as Bedwyr [3]. The present paper is not meant to be an exhaustive
(sorry for the pun) survey of any applicable tool. Still, a gap that should be filled is replaying the
benchmark with approaches that goes beyond pure generate-and-test and try to automatically derive
(random) generators that intrinsically satisfy certain pre-conditions. The obvious candidate is the new
QuickChick [19], but also Bulwahn’s smart generators in Isabelle/HOL[5] are a possibility.

αCheck performs better than we hoped for, considering that its implementation is nothing more
than a OCaml interpreter for nominal logic programming, exploring the full search space in an iterative
deepening way up to a bound. In other terms, it is probably orders of magnitude slower than standard
Prolog and it makes no effort to prune the search space or to explore it in more flexible ways. As the
preservation example shows, a hard-wired additive bound is, to say the least, inconvenient and therefore

Komauli & Momigliano 15

it is natural to try and make the search strategy more modular, possibly using the notion of hookable
disjunction from TOR [28]. Orthogonally, model-checking is all about pruning the search space and in
the context of MMT, ideas from [25] could be valuable.

Finally, it is folklore that linear logical framework are well suited to represent in an elegant and con-
cise way PL calculi with imperative features, as initially suggested by [6]. However, when it comes to
reason about them, the offering is quite meagre, with a few exceptions [20]. This is due to the (current)
lack of meta-reasoning facilities in the leading (well, the only) sub-structural logical framework, Celf.
An alternative worth pursing hence is validation via PBT in such a setting. In [26], the authors have
presented a proof theoretical reconstruction of PBT for relational specifications: this leverages the Foun-
dational Proof Certificate framework [10] to describe both the generation and the testing phase in terms
of focused search. The idea translates directly to linear logic as well and can be immediately prototyped
by encoding what it boils down to very simple Lolli-like meta-interpreters in a host language such as
λProlog. The conjecture is that a linear encoding would help particularly exhaustive data generation by
making structures such as stores and type environments implicit and turning them into (atomic) logical
assertions.

References

[1] Catalin Hritcu et al. (2013): Testing noninterference, quickly. In: ICFP, ACM, pp. 455–468.

[2] Andrew W. Appel, Robert Dockins & Xavier Leroy (2012): A List-Machine Benchmark for Mechanized
Metatheory. J. Autom. Reasoning 49(3), pp. 453–491.

[3] David Baelde, Andrew Gacek, Dale Miller, Gopalan Nadathur & Alwen Tiu (2007): The Bedwyr System for
Model Checking over Syntactic Expressions. In Frank Pfenning, editor: CADE, LNCS 4603, Springer, pp.
391–397. Available at http://dx.doi.org/10.1007/978-3-540-73595-3_28.

[4] Jasmin Christian Blanchette, Lukas Bulwahn & Tobias Nipkow (2011): Automatic Proof and Disproof in
Isabelle/HOL. In Cesare Tinelli & Viorica Sofronie-Stokkermans, editors: FroCoS, LNCS 6989, Springer,
pp. 12–27. Available at http://dx.doi.org/10.1007/978-3-642-24364-6_2.

[5] Lukas Bulwahn (2012): The New Quickcheck for Isabelle - Random, Exhaustive and Symbolic Testing under
One Roof. In Chris Hawblitzel & Dale Miller, editors: CPP, LNCS 7679, Springer, pp. 92–108. Available at
http://dx.doi.org/10.1007/978-3-642-35308-6_10.

[6] Iliano Cervesato & Frank Pfenning (2002): A Linear Logical Framework. Information and Computation
179(1), pp. 19 – 75, doi:https://doi.org/10.1006/inco.2001.2951.

[7] James Cheney & Alberto Momigliano (2017): αCheck: A mechanized metatheory model checker. TPLP
17(3), pp. 311–352.

[8] James Cheney, Alberto Momigliano & Matteo Pessina (2016): Advances in Property-Based Testing for
αProlog. In Bernhard K. Aichernig & Carlo A. Furia, editors: TAP 2016, LNCS 9762, Springer, pp. 37–56,
doi:10.1007/978-3-319-41135-4 3.

[9] James Cheney & Christian Urban (2008): Nominal logic programming. ACM Trans. Program. Lang. Syst.
30(5), pp. 26:1–26:47.

[10] Zakaria Chihani, Dale Miller & Fabien Renaud (2013): Foundational Proof Certificates in First-Order Logic.
In Maria Paola Bonacina, editor: Automated Deduction - CADE-24, LNCS 7898, Springer, pp. 162–177,
doi:10.1007/978-3-642-38574-2 11.

[11] Koen Claessen & John Hughes (2000): QuickCheck: a lightweight tool for random testing of Haskell pro-
grams. In: ICFP, ACM, pp. 268–279.

[12] Jonas Duregård, Patrik Jansson & Meng Wang (2012): Feat: functional enumeration of algebraic types. In
Janis Voigtländer, editor: Haskell Workshop, ACM, pp. 61–72, doi:10.1145/2364506.2364515.

http://dx.doi.org/10.1007/978-3-540-73595-3_28
http://dx.doi.org/10.1007/978-3-642-24364-6_2
http://dx.doi.org/10.1007/978-3-642-35308-6_10
http://dx.doi.org/https://doi.org/10.1006/inco.2001.2951
http://dx.doi.org/10.1007/978-3-319-41135-4_3
http://dx.doi.org/10.1007/978-3-642-38574-2_11
http://dx.doi.org/10.1145/2364506.2364515

16 PBT Abstract Machines

[13] Guglielmo Fachini & Alberto Momigliano (2017): Validating the Meta-Theory of Programming Languages
(Short Paper). In Alessandro Cimatti & Marjan Sirjani, editors: SEFM 2017, LNCS 10469, Springer, pp.
367–374, doi:10.1007/978-3-319-66197-1 23.

[14] Burke Fetscher, Koen Claessen, Michal H. Palka, John Hughes & Robert Bruce Findler (2015): Making
Random Judgments: Automatically Generating Well-Typed Terms from the Definition of a Type-System. In
Jan Vitek, editor: ESOP 2015, LNCS 9032, Springer, pp. 383–405, doi:10.1007/978-3-662-46669-8 16.

[15] Robbie Findler: The PLT-Redex list-machine model. https://github.com/racket/redex/tree/

master/redex-benchmark/redex/benchmark/models. Latest commit: Oct 2016.
[16] Yue Jia & Mark Harman (2011): An Analysis and Survey of the Development of Mutation Testing. IEEE

Trans. Software Eng. 37(5), pp. 649–678.
[17] Casey et al. Klein (2012): Run your research: on the effectiveness of lightweight mechanization. In: POPL

’12, ACM, New York, NY, USA, pp. 285–296, doi:10.1145/2103656.2103691.
[18] Francesco Komauli (2018): Property-Based Testing Abstract Machines. Master’s thesis, DI, University of

Milan, doi:10.13140/RG.2.2.27992.39681.
[19] Leonidas Lampropoulos, Zoe Paraskevopoulou & Benjamin C. Pierce (2018): Generating good generators

for inductive relations. PACMPL 2(POPL), pp. 45:1–45:30, doi:10.1145/3158133.
[20] Alberto Momigliano & Jeff Polakow (2003): A formalization of an Ordered Logical Framework in Hybrid

with applications to continuation machines. In: MERLIN, ACM.
[21] Zoe Paraskevopoulou, Catalin Hritcu, Maxime Dénès, Leonidas Lampropoulos & Benjamin C. Pierce (2015):

Foundational Property-Based Testing. In: ITP, LNCS 9236, Springer, pp. 325–343.
[22] Mauro Pezzè & Michal Young (2007): Software testing and analysis - process, principles and techniques.

Wiley.
[23] Benjamin C. Pierce, editor (2005): Advanced Topics in Types and Programming Languages. MIT Press.
[24] Juliano R Toaldo & Silvia Vergilio (2016): Applying Mutation Testing in Prolog Programs.
[25] Michael Roberson, Melanie Harries, Paul T. Darga & Chandrasekhar Boyapati (2008): Efficient software

model checking of soundness of type systems. In Gail E. Harris, editor: OOPSLA, ACM, pp. 493–504.
Available at http://doi.acm.orberg/10.1145/1449764.1449803.

[26] Dale Miller Roberto Blanco & Alberto Momigliano (2017): Property-Based Testing via Proof Re-
construction: Work-in-progress. Available at http://www.dimi.uniud.it/assets/preprints/

5-2017-miculan.pdf. LFMTP’17, Oxford.
[27] Colin Runciman, Matthew Naylor & Fredrik Lindblad (2008): Smallcheck and lazy smallcheck: automatic

exhaustive testing for small values. In: Haskell, ACM, pp. 37–48.
[28] Tom Schrijvers, Bart Demoen, Markus Triska & Benoit Desouter (2014): Tor: Modular

search with hookable disjunction. Science of Computer Programming 84, pp. 101 – 120,
doi:https://doi.org/10.1016/j.scico.2013.05.008. PPDP 2012.

[29] Xuejun Yang, Yang Chen, Eric Eide & John Regehr (2011): Finding and understanding bugs in C compilers.
In: PLDI, ACM, pp. 283–294.

http://dx.doi.org/10.1007/978-3-319-66197-1_23
http://dx.doi.org/10.1007/978-3-662-46669-8_16
https://github.com/racket/redex/tree/master/redex-benchmark/redex/benchmark/models
https://github.com/racket/redex/tree/master/redex-benchmark/redex/benchmark/models
http://dx.doi.org/10.1145/2103656.2103691
http://dx.doi.org/10.13140/RG.2.2.27992.39681
http://dx.doi.org/10.1145/3158133
http://doi.acm.orberg/10.1145/1449764.1449803
http://www.dimi.uniud.it/assets/preprints/5-2017-miculan.pdf
http://www.dimi.uniud.it/assets/preprints/5-2017-miculan.pdf
http://dx.doi.org/https://doi.org/10.1016/j.scico.2013.05.008

	Introduction
	The list machine
	The plumbing of the machine
	Dynamic and static semantics
	Properties
	Mutation testing

	Prolog implementation
	PBT with Check

	F# implementation
	Experimental results
	A cautionary tale
	Mutation analysis

	Extensions
	List-machine 2.0
	Testing non-interference, not so quickly

	Conclusions and future work

