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We study the complexity of resolution extended with the ability to count over
different characteristics and rings. These systems capture integer and moduli
counting, and in particular admit short tree-like refutations for insolvable sets of
linear equations. For this purpose, we consider the system Res(linR), as introduced
in [5], in which proof-lines are disjunction of linear equations over a ring R.3

Extending the work of Itsykson and Sokolov [3] we obtain new lower bounds and
separations, as follows:

Finite fields:

1. Exponential-size lower bounds for tree-like Res(linFp
) refutations of

Tseitin mod q formulas, for every pair of distinct primes p, q. As a corol-
lary we obtain an exponential-size separation between tree-like Res(linFp

)
and tree-like Res(linFq ).

2. Exponential-size lower bounds for tree-like Res(linFp) refutations of ran-
dom k-CNF formulas, for every prime p and constant k.

3. Exponential-size lower bounds for tree-like Res(linF) refutations of the
pigeonhole principle, for every field F.

All the above hard instances are encoded as CNF formulas. The lower bounds
are proved using extensions and modifications of the Prover-Delayer game
technique [4, 3] and size-width relations [2].

Characteristic zero fields: Separation of tree-like Res(linF) and (dag-like)
Res(linF), for characteristic zero fields F. The separating instances are the
pigeonhole principle and the Subset Sum principle. The latter is the formula
α1x1 + . . .+ αnxn = β, for some β not in the image of the linear form. The
lower bound for the Subset Sum principle employs the notion of immunity
from Alekhnovich and Razborov [1].
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