Resolution with Counting: Different Moduli and Tree-Like Lower Bounds

Fedor Part ${ }^{1}$ and Iddo Tzameret ${ }^{2}$
${ }^{1}$ Department of Computer Science Royal Holloway, University of London Fjodor.Part.2012@live.rhul.ac.uk
${ }^{2}$ Department of Computer Science Royal Holloway, University of London Iddo.Tzameret@rhul.ac.uk

We study the complexity of resolution extended with the ability to count over different characteristics and rings. These systems capture integer and moduli counting, and in particular admit short tree-like refutations for insolvable sets of linear equations. For this purpose, we consider the system $\operatorname{Res}\left(\operatorname{lin}_{R}\right)$, as introduced in [5], in which proof-lines are disjunction of linear equations over a ring $R .^{3}$ Extending the work of Itsykson and Sokolov [3] we obtain new lower bounds and separations, as follows:

Finite fields:

1. Exponential-size lower bounds for tree-like $\operatorname{Res}\left(\operatorname{lin}_{\mathbb{F}_{p}}\right)$ refutations of Tseitin $\bmod q$ formulas, for every pair of distinct primes p, q. As a corollary we obtain an exponential-size separation between tree-like $\operatorname{Res}\left(\operatorname{lin}_{\mathbb{F}_{p}}\right)$ and tree-like $\operatorname{Res}\left(\operatorname{lin}_{\mathbb{F}_{q}}\right)$.
2. Exponential-size lower bounds for tree-like $\operatorname{Res}\left(\operatorname{lin}_{\mathbb{F}_{p}}\right)$ refutations of random k-CNF formulas, for every prime p and constant k.
3. Exponential-size lower bounds for tree-like $\operatorname{Res}\left(\operatorname{lin}_{\mathbb{F}}\right)$ refutations of the pigeonhole principle, for every field \mathbb{F}.
All the above hard instances are encoded as CNF formulas. The lower bounds are proved using extensions and modifications of the Prover-Delayer game technique $[4,3]$ and size-width relations [2].
Characteristic zero fields: Separation of tree-like $\operatorname{Res}\left(\operatorname{lin}_{\mathbb{F}}\right)$ and (dag-like) $\operatorname{Res}\left(\operatorname{lin}_{\mathbb{F}}\right)$, for characteristic zero fields \mathbb{F}. The separating instances are the pigeonhole principle and the Subset Sum principle. The latter is the formula $\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}=\beta$, for some β not in the image of the linear form. The lower bound for the Subset Sum principle employs the notion of immunity from Alekhnovich and Razborov [1].

References

1. Alekhnovich, M., Razborov, A.A.: Lower bounds for polynomial calculus: nonbinomial case. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (Las Vegas, NV, 2001), pp. 190-199. IEEE Computer Soc., Los Alamitos, CA (2001)

[^0]2. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow—resolution made simple. J. ACM 48(2), 149-169 (2001)
3. Itsykson, D., Sokolov, D.: Lower bounds for splittings by linear combinations. In: Mathematical Foundations of Computer Science 2014-39th International Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part II. pp. 372-383 (2014). https://doi.org/10.1007/978-3-662-44465-8_32, https://doi.org/10.1007/978-3-662-44465-8_32
4. Pudlák, P., Impagliazzo, R.: A lower bound for DLL algorithms for k-sat (preliminary version). In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, January 9-11, 2000, San Francisco, CA, USA. pp. 128-136 (2000), http://dl.acm.org/citation.cfm?id=338219.338244
5. Raz, R., Tzameret, I.: Resolution over linear equations and multilinear proofs. Ann. Pure Appl. Logic 155(3), 194-224 (2008). https://doi.org/10.1016/j.apal.2008.04.001, http://dx.doi.org/10.1016/j.apal.2008.04.001

[^0]: ${ }^{3}$ We focus on the case where the variables are Boolean, i.e., we add the Boolean axioms $\left(x_{i}=0\right) \vee\left(x_{i}=1\right)$, for all variables x_{i}.

