
Lucas Interpretation from Programmers’ Perspective

Walther A. Neuper

University of Technology, Graz, Austria
wneuper@ist.tugraz.at

1 Introduction

This extended abstract describes the initial, but already effective step of a major development
task in the ISAC-project 1

A recent survey on ISAC’s [6, p. 102] development listed the task described here at the first
place: Shift ISAC’s programming language towards Isabelle’s function package (FP) [4]. The
original definition [9] is updated according to what has stabilised during prototyping. In the
meanwhile also logical foundations of Lucas Interpretation have been clarified [10]. Since a short
paper on the users’ perspective [12] and a case study [11], this paper will focus the programmers’
view and take the opportunity to point at advantages introduced by Isabelle/jEdit [16] for
programming, also for ISAC’s programms.

The paper is structured as follows: §2 presents the current state of the programming lan-
guage, §3 sketches what a programmer can expect from combining Lucas Interpretation and
Isabelle’s FP, §4 gives a detailed account of tasks to accomplish in further integration of Lucas
Interpretation into the FP and §5 are the final conclusions.

2 The Program Language

The original definition [9, p. 86] has been adapted due to experiences during prototyping;
presently the definition in Backus-Naur form (BNF) is as follows (terminal symbols are written
bold face, the numbers on the left serve referencing and do not belong to the BNF):

01 definition ::= partial function (tailrec) fun-id :: signature where program

02 program ::= ′′ fun-id arg+ = (body) ′′

03 fun-id ::= identifier
04 arg ::= identifier
05 body ::= if bool-expr then expr else expr
06 | let assigns in expr
07 | expr
08 assigns ::= (assign ;)∗ assign
09 assign ::= identifier = body
10 expr ::= (tac-expr | no-tac-expr)

The elements signature, identifier and bool-expr are as given by the FP, as well as if, let
and no-tac-expr, the kind of expressions native to the FP. The specific element is tac-expr:

21 tac-expr ::= tacs no-tac-expr

22 | SubProblem (identifier, key, key) probl-args
23 tacs ::= tactical-1 tacs
24 | tactical-2 tacs tacs

1TODO isac-history

isac-history

Lucas Interpretation W.Neuper

25 | tactic
26 key ::= [(ID ,)∗ ID]
27 ID ::= identifier (* declared as constant *)
28 probl-args ::= [(probl-arg ,)∗ probl-arg]
29 probl-arg ::= type-con no-tac-expr
30 type-con ::= REAL | REAL LIST | REAL SET | BOOL | BOOL LIST

Before the tactics and tacticals are discussed in detail, a hint on respective semantics is
given and an issue with the FP is recognised:

The distinctive semantics of tactics is, that they are recognised as breakpoints by Lucas
Interpretation. The breakpoints hand over control to a student (or a dialogue module [6,
p. TODO]), while the programmer can “forget user interaction” (see the respective paragraph
in §3). The tactic SubProblem specifically involves “work on libraries of theories, specifications
and methods” (see the respective paragraph in §3, too).

And the issue with tactics in conjunction with the function pacakge is introduced by a
valuable feature of the latter: it rejects free variables on the right-hand side of equalities
(assignments, line 09 above). While this is helpful in programming generally, it requires the
arguments of tactics to be constants (in Isabelle’s term language). Similarly with SubProblem:
for the sake of generality the formal arguments are collected in a list, where the type is unified
by type-constraints like REAL, REAL LIST, etc.

Finally, here comes the list of tactics and of tacticals, both notions borrowed from computer
theorem proving:

41 tactic ::= Take
42 | Rewrite ID
43 | Rewrite Inst subst ID
44 | Calculate op
45 | Rewrite Set ID
46 | Rewrite Inst subst ID
47 | Substitute

48 subst ::= [((identifier, no-tac-expr) ,)∗ (identifier, no-tac-expr)]
49 op ::= PLUS | MINUS | TIMES | DIVIDE | POWER

Tactics contribute to visible steps in calculations in the following ways:

Take assembles a term as described by a no-tac-expr and displays it on a worksheet as shown,
for instance at [6, p. 97].

Rewrite takes a term, rewrites it according to a theorem (given by an identifier of type ID)
and displays the result in a worksheet. In case the theorem does not match, the program
terminates with an exception 2.

Rewrite Inst works like Rewrite, but instantiates the theorem by use of a substitution. This
allows to disburden students from λ-notation) in equation solving and with functions as
first-order terms: bound variable(s) are substituted by the respective identifier encoded
as a constant.

Calculate takes a term and calculates two adjacent numerals according to op. Adjacent nu-
merals are recognised with respect to associativity, e.g. (a + 1) + 2 would be simplified
by PLUS as well as a+ (1 + 2), but not (1 + a) + 2.

2Exception handling is not yet implemented, see Pt.5a on p.6

2

Lucas Interpretation W.Neuper

Rewrite Set works like Rewrite, but rewrites with a normalising term rewrite system (in
ISAC called “rule-set”).

Rewrite Set Inst instantiates all theorems in the rule-set and the rewrites with this rule-set.

Substitute assembles a term as described by a no-tac-expr, substitutes and displays it on
a worksheet 3.

Tacticals combine tactics; they take one or two arguments, the latter kind is declared as
infix as shown in the following BNF:

61 tactical-1 ::= Try
62 | Repeat
63 | While bool-expr
64 tactical-2 ::= Or (* infix *)
65 | @@ (* infix *)

Try takes a tactic (or nested tacticals) to be interpreted. If there are no applicable tactics,
then an idle step is performed (without displaying anything on the worksheet).

Repeat works the same way as Try, but requires at least one applicable tactic and proceeds
until none of the tactics are applicable.

While works similar to Repeat but terminates according to bool-expr.

Or takes two arguments (two tactics or two nested tacticals), checks the first one and in case
some tactic is applicable, interpretation of this argument is done; otherwise the second
argument is interpreted. In case none of the arguments contains an applicable tactic, an
exception is thrown.

@@ takes two arguments (two tactics or two nested tacticals) and interpretes them in se-
quence; this is forward chaining of functions. Each argument must contain an applicable
tactic.

Examples of programs are given in [6, 10, 12] and one in the sequel.

3 The Programmers’ Perspective

For widespread usage of the ISAC tutoring system not only usability for students will be essential,
but also convenient programming: Course designers, lecturers and teachers are supposed to
program examples of engineering mathematics they want their students to study and to exercise.
This section focuses the features considered appealing to programmers, issues of developing the
software machinery behind the scenes will be considered in the subsequent secition §4.

3There are design considerations to determine the substitution just by a list of respective identifiers, which
are substituted from the current environment

3

Lucas Interpretation W.Neuper

Focus algorithms and forget user interaction is the first advantage of Lucas Interpre-
tation, already described in [12] and discussed from a technical point of view [6, p. 97]. User
interaction on the new kind of powerful mathematics engine has been expected highly complex
from the very beginning [5]; recently this complexity has been extended to the specification
phase [14]. However, the expectation, that this complexity can be mastered by rule-based sys-
tems [3] is still speculative. Respective contacts to experts in didactics, HCI, cognitive science
and the like show, that it will be hard to recruit expertise required; one has to hope for fruitful
on-the-job learning.

Take advantage from Isabelle’s function package (FP), which has been experienced in
transferring the example [6, p. 92] from plain parsing of strings as terms 4 to the FP: syntax
errors are indicated accurately at the right location by Isabelle/jEdit [16], type annotations
for the function’s arguments shift into the initial signature, less type annotations are required
within the code, syntax highlighting indicates how identifiers are interpreted (as constants, as
free variable, etc), free variables on the right-hand-side of equalities (assignments in line 09 on
p.1) are rejected, etc. The result is Fig.1.

Figure 1: New appearance of the program introduced in [6, p. 92].

In comparison to [6, p. 92] the format of the program in Fig.1 adopts Isabelle’s coding
standards. There are already a considerable number of programs developed during prototying
(see below) which need to be reformatted as well. As a preview on the efficiency of programming
in ISAC: the one program in Fig.1 makes a whole section of a textbook [15] interactive, see 5

and the subsequent section.

Work on libraries of theories, specifications and methods. Work in programming
languages integrated into Computer Algebra Systems [1, 8] is efficient, because it can resort to
powerful libraries of methods. A same kind of library is expected for ISAC, already prototyping

4The respective code was at https://intra.ist.tugraz.at/hg/isa/file/c0fe04973189/src/Tools/isac/

Knowledge/Biegelinie.thy#l317.
5http://www.ist.tugraz.at/projects/isac/www/kbase/exp/exp_Statics_Biegel_Timischl.html

4

https://intra.ist.tugraz.at/hg/isa/file/c0fe04973189/src/Tools/isac/Knowledge/Biegelinie.thy#l317
https://intra.ist.tugraz.at/hg/isa/file/c0fe04973189/src/Tools/isac/Knowledge/Biegelinie.thy#l317
http://www.ist.tugraz.at/projects/isac/www/kbase/exp/exp_Statics_Biegel_Timischl.html

Lucas Interpretation W.Neuper

resulted in several dozens of programs 6. But there is an essential difference between Computer
Algebra and ISAC: the former are generally under-specified (if explicitly specified at all), while
ISAC is subject to Isabelle’s formal rigor. Thus each method in ISAC combines a program with
a guard, i.e. a formal specification. There is a preliminary collection from prototyping 7.

The collection of specifications is structured as a tree, which allows for automated prob-
lem refinement in special cases, for instance in equation solving. This feature is not yet well
documented (see [2, 7]), but Fig.1 may serve as an example: given an equation (or in the case
of Fig.1 an equational system in the variable c, c1, c2, c3), one has to normalise the equation
(-ional system) such that the type can be determined — thas is done by the pre-conditions
of the respective specifications, here starting a breadth-first seach from the node [system] in
the tree of specifications down the branches, until the pre-conditions match. The matching
node contains also a method (or several ones for interactive choice by the student 8), so there
is no method assigned in Fig.1. This program also determines the system as LINEAR, because
other types of systems cannot arise in this calculation.

And there is a third kind of libraries, native to theorem proving, libraries of theories. Not
only theories contained in the Isabelle distribution 9 but also the Archive of Formal Proofs 10.
For instance, importin theories like [13] would provide interactively playing with messages in
ISAC — this is modelled by rewriting und thus interaction would be there for free.

4 Integration into the Function Package

In order to enjoy the advantages of Isabelle’s FP and to make programming in ISAC as convenient
as described in the previous section, major development efforts are required. This paper is a
snapshot of work under construction.

The first step done only touched the surface, but was already nicely effective as shown in
Fig.1. In technical terms these steps were:

1. Replace plain parsing of strings as terms and use parsing by the FP’s instead.

2. Define constants, which replace free variables formerly accepted by term parsing. This
preliminary workaround calls for two further design decisions:

(a) Make handling of identifiers for theorems, rule-sets and keys convenient.

(b) Review early design decisions for fixing certain notions as constants, e.g. bdv for
variables bound by a (univariate) function, which is represented as a term (in order
to disburden students from λ-notation). And probably find more elegant ways to
determine variables to solve equational systems in, e.g. c, c1, c2 and c3 in the program
example.

The above steps clarified which further steps are required to reach the goals.

6This http://www.ist.tugraz.at/projects/isac/www/kbase/met/index_met.html is a specific view on
ISAC’s programs.

7http://www.ist.tugraz.at/projects/isac/www/kbase/met/index_met.html
8Like all other tactics SubProblem is recognised as a breakpoint by Lucas Interpretation; this breakpoint

requests specific user interaction, which is guided by a given theory identifier and a reference key into a tree
of specifications; the interaction succeeds with selecting a method – i.e. a function call for solving the specified
problem.

9https://isabelle.in.tum.de/dist/library/HOL/index.html
10https://www.isa-afp.org/

5

http://www.ist.tugraz.at/projects/isac/www/kbase/met/index_met.html
http://www.ist.tugraz.at/projects/isac/www/kbase/met/index_met.html
https://isabelle.in.tum.de/dist/library/HOL/index.html
https://www.isa-afp.org/

Lucas Interpretation W.Neuper

The most important step for reaching the goal of convenient programming is to compile
all rule-sets automatically required by a method 11. Evaluation by Lucas Interpretation uses
ISAC’s simplifier (which is different from Isabelle’s simplifier [6, p. 94]) and for that purpose the
programmer has to compile the following five rule-sets by hand:
• crls: evaluates the post-condition of a specification
• erls: evaluates assumptions of theorems applied by Rewrite or Rewrite Inst (if any)
• nrls: canonical simplifier for checking formulas input by a student at breakpoints during

interpretation of the program
• prls: evaluates predicates in pre-conditions of specifications
• srls: evaluates no-tac-expr as mentioned in line 10 on p.1

The reason for the many rule-sets is, that they should be minimal such, that a student has
a chance to review them and to understand how they work. The rule-sets must be confluent
and terminating term rewriting systems, so compiling these is a much more tedious taks than
writing a program.

For accomplishing the task of automated generation of rule-sets Isabelle’s machinery behind
value shall be studied and adopted as much as possible.

A comprehensive list of steps to do is as follows:

1. Find a convenient way handling for identifiers, i.e. the issue listed as Pt.2 on p.5. There are
several possibilities, for instance: localize the constant definitions, replace the identifiers
of type ID (as found as arguments of SubProblem, Rewrite, ect) in a pre-processing phase
of the FP, etc.

2. Generate rule-sets for evaluation of programs automatically (see previous paragraph)

3. Adapt Isabelle’s value such that it delivers results from Lucas Interpretation with by-
passing user interaction.

4. Improve the program language in several points

(a) Review priorities in constant definitions of tactics and tacticals in order to reduce
the number of parentheses in programs

(b) Remove the boolean argument from the Rewrite* tactis; this is left over from early
prototyping

(c)

5. Improve the Lucas Interpreter in several points

(a) introduce proper exception handling

(b) support interactive debugging as a specialisation of the debugger of Isabelle/PolyML;
presently there is only a tracing facility triggered by trace script

(c)

6.

7. Consider to replace the Isar command partial function by another one depending on
how invasive the above adaptions of the FP to the needs of Lucas Interpretation are.

11https://intra.ist.tugraz.at/hg/isa/file/c0fe04973189/src/Tools/isac/calcelems.sml#l600

6

https://intra.ist.tugraz.at/hg/isa/file/c0fe04973189/src/Tools/isac/calcelems.sml#l600

Lucas Interpretation W.Neuper

5 Summary and Conclusion

Within the process of pushing the ISAC prototype towards maturity for service in engineering
courses one of the most crucial points is to make programming convenient in ISAC. Programming
means to describe mathematical algorithms (a functional program without input/output, so
no concern with didactics and dialogues, which are handled by a separate component not
discussed here) of engineering problems by use of libraries of methods and specifications as
well as of respective theories. ISAC builds upon the theorem prover Isabelle, which offers a
convenient programming environment and a specific function package. This is considered an
appropriate means to improve programming in ISAC as required. The first steps of improvement
are described in this paper and the other steps are listed in detail.

The first step, adoption of parsing from Isabelle’s function package, was already nicely
effective as described in this paper. Further steps improving ISAC’s programming environment
will require studying the huge code base of Isabelle in order to exploit respective mechanisms
optimally. We hope for support from the Isabelle developer team at Munich.

References

[1] Victor Aladjav and Marijonas Bogdevicius. Maple: Programming, Physical and Engineering Prob-
lems. Fultus Corporation, February 27 2006.

[2] Matthias Goldgruber and Richard Lang. Eine explizite Hierarchie von Typen elementarer Gle-
ichungen. In Josef Böhm and Bernhard Kutzler, editors, Integrating Technology into Mathe-
matics Education. ACDCA, July 10-13 2002. http://www.ist.tugraz.at/projects/isac/publ/
visitme02-M023.pdf.

[3] Markus Kienleitner. Towards “nextstep userguidance” in a mechanized math assistant. Master’s
thesis, IICM, Graz University of Technology, 2012. http://www.ist.tugraz.at/projects/isac/publ/
mkienl_bakk.pdf.

[4] Alexander Krauss. Defining Recursive Functions in Isabelle/HOL. Munich, 2017. Part of the Isabelle
distribution.

[5] Alan Krempler and Walther Neuper. Formative assessment for user guidance in single stepping systems. In
Michael E. Aucher, editor, Interactive Computer Aided Learning, Proceedings of ICL08, Villach, Austria,
2008. http://www.ist.tugraz.at/projects/isac/publ/icl08.pdf.

[6] Alan Krempler and Walther Neuper. Prototyping ”systems that explain themselves” for education. In
Pedro Quaresma and Walther Neuper, editors, Proceedings 6th International Workshop on Theorem
proving components for Educational software, Gothenburg, Sweden, 6 Aug 2017, volume 267 of Elec-
tronic Proceedings in Theoretical Computer Science, pages 89–107. Open Publishing Association, 2018.
https://arxiv.org/pdf/1803.01470v1.pdf.

[7] Richard Lang. Elementare Gleichungen der Mittelschulmathematik in der ISACWissensbasis. Master’s
thesis, University of Technology, Institute of Software Technology, Graz, Austria, March 2003. http:

//www.ist.tugraz.at/projects/isac/publ/da-rlang.ps.gz.

[8] Roman E. Maeder. Programming in Mathematica. Addison-Wesley, Reading, Mass., 3rd edition, 2012.

[9] Walther Neuper. Reactive User-Guidance by an Autonomous Engine Doing High-School Math. PhD thesis,
IICM - Inst. f. Softwaretechnology, Technical University, A-8010 Graz, 2001. http://www.ist.tugraz.at/

projects/isac/publ/wn-diss.ps.gz.

[10] Walther Neuper. Automated generation of user guidance by combining computation and deduction. In
Pedro Quaresma and Ralph-Johan Back, editors, Electronic Proceedings in Theoretical Computer Science,
volume 79, pages 82–101. Open Publishing Association, 2012. http://eptcs.web.cse.unsw.edu.au/paper.
cgi?THedu11.5.

[11] Walther Neuper. GCD — a case study on lucas-interpretation. In Joint Proceedings of the MathUI,
OpenMath and ThEdu Workshops and Work in Progress track at CICM, Coimbra, Portugal, July 7-11
2014. http://ceur-ws.org/Vol-1186/paper-17.pdf.

[12] Walther Neuper. Lucas-interpretation from users’ perspective. In Joint Proceedings of the FM4M, MathUI,
and ThEdu Workshops, Doctoral Program, and Work in Progress at the Conference on Intelligent Com-

7

http://www.ist.tugraz.at/projects/isac/publ/visitme02-M023.pdf
http://www.ist.tugraz.at/projects/isac/publ/visitme02-M023.pdf
http://www.ist.tugraz.at/projects/isac/publ/mkienl_bakk.pdf
http://www.ist.tugraz.at/projects/isac/publ/mkienl_bakk.pdf
http://www.ist.tugraz.at/projects/isac/publ/icl08.pdf
https://arxiv.org/pdf/1803.01470v1.pdf
http://www.ist.tugraz.at/projects/isac/publ/da-rlang.ps.gz
http://www.ist.tugraz.at/projects/isac/publ/da-rlang.ps.gz
http://www.ist.tugraz.at/projects/isac/publ/wn-diss.ps.gz
http://www.ist.tugraz.at/projects/isac/publ/wn-diss.ps.gz
http://eptcs.web.cse.unsw.edu.au/paper.cgi?THedu11.5
http://eptcs.web.cse.unsw.edu.au/paper.cgi?THedu11.5
http://ceur-ws.org/Vol-1186/paper-17.pdf

Lucas Interpretation W.Neuper

puter Mathematics, pages 83–89, Bialystok, Poland, July 25-29 2016. http://cicm-conference.org/2016/
ceur-ws/CICM2016-WIP.pdf.

[13] Christoph Sprenger and Ivano Somaini. Developing security protocols by refinement. Archive of Formal
Proofs, May 2017. http://isa-afp.org/entries/Security_Protocol_Refinement.html, Formal proof de-
velopment.

[14] FH-Design Team. ISAC-project: User stories, user requirements document, use cases document. http:

//www.ist.tugraz.at/projects/isac/publ/isac-doc2.pdf, 2017.

[15] Wolfgang Timischl and Gerald Kaiser. Ingenieuer-Mathematik, volume 3. E. Dorner, Wien, 1999.

[16] Makarius Wenzel. Isabelle/jEdit. Munich, 2018. Part of the Isabelle distribution.

8

http://cicm-conference.org/2016/ceur-ws/CICM2016-WIP.pdf
http://cicm-conference.org/2016/ceur-ws/CICM2016-WIP.pdf
http://isa-afp.org/entries/Security_Protocol_Refinement.html
http://www.ist.tugraz.at/projects/isac/publ/isac-doc2.pdf
http://www.ist.tugraz.at/projects/isac/publ/isac-doc2.pdf

	Introduction
	The Program Language
	The Programmers' Perspective
	Integration into the Function Package
	Summary and Conclusion

