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The field of geometric automated theorem provers has a long and rich history, from the early synthetic
provers in the 50th of last century to up to date provers.

Establishing a rating among them will be useful for the improvement of the current meth-
ods/implementations. Improvements could concern wider scope, better efficiency, proof readability
and proof trustworthiness.

We need a common test bench: a common language to describe the geometric problems; a large
set of problems and a set of measures to achieve such goal.

1 Introduction

When considering rating the Geometric Automated Theorem Provers (GATP) we have to consider some,
somehow opposing, goals: scope; efficiency; readability; reliability of generated proofs [12, 16].

The first methods proposed, that came as early as in 1950s, adapt general-purpose reasoning ap-
proaches developed in the field of artificial intelligence, automating the traditional geometric proving
processes. In order to avoid combinatorial explosion while applying postulates, many suitable heuristics,
e.g. adding auxiliary elements to the geometric configuration, have been developed. Although being
able to produce readable proofs, the proposed methods were very narrow-scoped and not efficient [21].
There are no recent results using this approach. It can be said that this first provers were narrow-scoped;
inefficient; with readable proofs; without any attempt to testify the reliability of generated proofs.

The algebraic methods, such as the characteristic set method, the polynomial elimination method, the
Gröbner basis method, and the Clifford algebra approach, reduce the complexity of logical inferences by
computing relations between coordinates of geometric entities. What is gained in efficiency and wider
scope is lost in the connection of the algebraic proof and the geometric reasoning. So: broad-scope;
efficient; unreadable proofs, very complex algebraic proofs; without any attempt to testify the reliability
of generated proofs. [3, 5, 4, 21]. This is still an active area of research [1, 10, 11, 13, 24].

In order to combine the readability of synthetic methods and efficiency of algebraic methods, some
approaches, such as the area method or the full angle method, represent geometric knowledge in a form
of expressions with respect to geometric invariants. These methods are broad-scoped (less than the
algebraic); efficient (less than the algebraic); with readable proofs (less than the synthetics methods);
some of then can have theirs proofs verified [3, 5, 4, 21, 10].

Other approaches, like the theorem prover ArgoCLP, based on coherent logic [18], or the deductive
database approach [8] having been proposed with different rates of success in the different classes of
geometric problems.
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2 Ratings

To be able to compare the different methods and implementations, alongside a standard test bench (see
Section 3), we must define a set of ratings capable of assessing the GATPs in different classes: scope;
efficiency; readability; reliability of generated proofs.

Scope To measure the scope of a GATP, one should consider:

• which geometries are allowed by the GATP—despite the fact that most GATPs deal only
with Euclidean geometry, some exist that prove geometric problems in non-Euclidean ge-
ometries [3];

• what kind of problems are provable—as an example, the area method uses geometric in-
variants as basic quantities to prove theorems, each of which is used to deal with different
geometric relations, hence allowing certain theorems to be easily proved [5].

Considering the existing methods, algebraic ones have the broadest scope. Not only have they been
used to prove theorems in Euclidean and non-Euclidean geometry, but, for every geometry, the
range of difficulty of the problems proved is very wide [3]. The earlier synthetic approaches were
narrow scoped, e.g. the GEOM [9] only dealt with a limited set of geometric elements and rela-
tions [5]. In between lie semi-synthetic methods and coherent logic based methods. Semi-synthetic
methods, starting with the area method which is complete for constructive geometry [6, 7, 10], with
its geometric invariant, the signed area, allow many problems with relations like incidence and
parallelism to be proved. Adding another geometric invariant, the Pythagoras difference, allows
the problems with relations like perpendicularity and congruence of line segments to be easily
proved. Adding other geometric invariants such as the full-angle (which gives its name to the
full-angle method), the volume, the vector, allows the demonstration of an ever increasing range
of theorems [5].
Synthetic and semi-synthetic methods scope may be influence by the use of deductive databases [8,
9]. Indeed, as stated in [8], unexpected results may be obtained, some of which are possibly new.

Efficiency The purpose of a GATP is, in addition to prove geometric conjectures, that these are obtained
efficiently. By and large, although other resources may be involved, efficiency is related to time
and memory space: we look for algorithms/implementations capable of fulfilling a proof in a
reasonable amount of time and space.
Time is indeed the natural way to measure efficiency since it is used extensively, if not exclu-
sively, throughout the literature [3, 4, 6, 7, 8, 10]. and, for obvious reasons, in a competition
such as CADE ATP System Competition (CASC) [19]. Moreover, such measure is of paramount
importance when considering an educational environment. Note however that when authors state
something about GATP times, they do so in their settings, i.e. computer and operating system
used, somehow restricting the usefulness of these results. The existence of a free and open plat-
form where different GATPs can be tested on equal terms proves to be of utmost importance.
Regarding space, the authors are unaware of any study, presumably because these physical con-
straints are nowadays less important. Besides, from the users point of view time is the most
important factor.

Readability Until recently, proofs in mathematics were solely made and verified by humans. With the
advent of computers and automated reasoning that is no longer the case. It is therefore natural that
the readability (by a human) of a computer generated proof is considered crucial. In an educational
setting the proof is an object of learning by itself. In this setting the ability of a GATP to produce
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a synthetic proof, with the usual geometric inference rules, is of fundamental importance to its
usability.
There are, at least, two different approaches to deal with the readability of proofs. In one approach
only the proofs generated by the GATPs are analysed. The readability of such proofs is not only
closely related to the method used, but may also be influenced by the features provided by the
GATP itself. It is then possible to divide geometric proofs in the following way:

• Algebraic proofs are based on algebraic methods that generate proofs that may be considered
illegible—the geometric conjecture is transformed in an algebraic problem with hundreds of
terms and dozens of variables, loosing its tie to geometry;

• Geometric proofs are based on synthetic and semi-synthetic methods that generate proofs
that closely resemble the human reasoning on geometry problems;

• Geometric proofs with visual support are also based on synthetic and semi-synthetic methods,
but the GATP provides a visual and geometric step by step presentation of the proof steps [22,
23]. An example of such GATP is JGEX1 [24].

The other approach, the de Bruijn factor [2, 20], involves the comparison of the size of an infor-
mal proof with the size of the corresponding machine proof, by means of a ratio. Although this
approach cannot be automated, it may be useful in a classroom setting and may certainly be useful
in enriching the Thousands of Geometric problems for geometric Theorem Provers2 (TGTP) plat-
form, a Web-based repository of geometric problems that was originally developed to support the
testing and evaluation of geometric automated theorem proving systems [15].

Reliability By reliability is meant the confidence that we have in the proofs made by a given prover. Is
the prover correctly implemented, are the proofs correct, or do we need to “prove the proofs”?
Using proof assistants like Coq,3 or Isabelle,4 the reliability of a given prover can be established,
e.g. in [14] a implementation of the area method within Coq is described, where all the properties
of the geometric quantities required by the area method are verified, demonstrating the correctness
of the system, reducing concerns of reliability, to the trustworthiness of respective proof assis-
tants [10, 14].
Unfortunately, within the current GATPs implementations, this is an exception, not the rule.

3 Test Bench

In order to implement a test bench, the TGTP platform presents itself as a solid foundation to fulfill
such purpose. Due to its initial objective, as explained in [15], it already provides a centralised com-
mon repository of geometric problems5 that may be used to test GATPs. Moreover, TGTP provides, as
part of its infrastucture, implementations of several methods, namely: GCLC6 implementations of Wu’s
method, Gröbner basis method and the area method; and a Coq implementation of the area method7 [14].
Statistical and performance information is also supplied for all implementations, as well as a proof status
for each geometric problem.

1http://www.cs.wichita.edu/~ye/
2http://hilbert.mat.uc.pt/TGTP/
3https://coq.inria.fr/
4https://isabelle.in.tum.de/
5In 2018–04–21 there were 236 problems.
6http://poincare.matf.bg.ac.rs/~janicic/gclc/
7https://github.com/coq-contribs/area-method
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With a working test bench in operation, an interesting goal to pursue would be to operationalize a
competition between GATPs, similar to CASC. Its ultimate goal, like in CASC, would be to encourage
researchers to improve existing GATPs and implement new ones.

4 Conclusion and Future Work

Maybe the question “what is the best GATP of them all”, can not be answered, but at least we should
have some partials answers when looking for a GATP that fit a particular goal.

We need a common workbench: a common language to describe the geometric problems; a large set
of problems and a set of measures to achieve such goal. Building on TGTP test bench [15], I2GATP com-
mon language [17] and CASC, CADE ATP System Competition [19], we need to improve and integrate
the first two, adapting the ideas of the last, to reach the goal of a common workbench that all sort of users
can use to choose the set of problems and tools that best fit their needs.
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