
Separability by piecewise testable languages
and downward closures beyond subwords

Georg Zetzsche
IRIF (Université Paris-Diderot & CNRS)

France
zetzsche@irif.fr

Abstract
We introduce a flexible class of well-quasi-orderings (WQOs) on
words that generalizes the ordering of (not necessarily contiguous)
subwords. Each such WQO induces a class of piecewise testable
languages (PTLs) as Boolean combinations of upward closed sets.
In this way, a range of regular language classes arises as PTLs.
Moreover, each of the WQOs guarantees regularity of all down-
ward closed sets. We consider two problems. First, we study which
(perhaps non-regular) language classes allow to decide whether
two given languages are separable by a PTL with respect to a given
WQO. Second, we want to effectively compute downward closures
with respect to these WQOs. Our first main result is that for each of
the WQOs, under mild assumptions, both problems reduce to the
simultaneous unboundedness problem (SUP) and are thus solvable
for many powerful system models. In the second main result, we
apply the framework to show decidability of separability of regular
languages by BΣ1[<,mod], a fragment of first-order logic with
modular predicates.

CCSConcepts •Theory of computation→ Formal languages
and automata theory; Models of computation;

Keywords separability, piecewise testable languages, downward
closures, well-quasi-orderings
ACM Reference Format:
Georg Zetzsche. 2018. Separability by piecewise testable languages and
downward closures beyond subwords. In LICS ’18: 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, July 9–12, 2018, Oxford, United
Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3209108.3209201

1 Introduction
In the verification of infinite-state systems, it is often useful to con-
struct finite-state abstractions. This is because finite-state systems
are much more amenable to analysis. For example, if a pertinent
property of our system is reflected in a finite-state abstraction, then
we canworkwith the abstraction instead of the infinite-state system
itself. Another example is that the abstraction acts as a certificate
for correctness: A violation-free overapproximation of the set of
behaviors of a system certifies absence of violations in the system
itself. Here, we study two types of such abstractions: downward

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00
https://doi.org/10.1145/3209108.3209201

closures, which are overapproximations of individual languages and
separators as certificates of disjointness.

Downward closures A particularly appealing abstraction is the
downward closure, the set of all (not necessarily contiguous) sub-
words of themembers of a language.Whatmakes this abstraction in-
teresting is that since the subword ordering is a well-quasi-ordering
(WQO), the downward closure of any language is regular [16, 17].
Recently, there has been progress on when the downward clo-
sure is not only regular but can also be effectively computed. It
is known that downward closures are computable for context-free
languages [7, 28], Petri net languages [14], and stacked counter au-
tomata [30]. Moreover, recently, a general sufficient condition for
computability was presented in [29]. Using the latter, downward
closures were then shown to be computable for higher-order push-
down automata [15] and higher-order recursion schemes [6]. Hence,
downward closures are computable for very powerful models.

If we want to use downward closures to prove absence of vi-
olations, then using the downward closure in this way has the
disadvantage that it is not obvious how to refine it, i.e. system-
atically construct a more precise overapproximation in case the
current one does not certify absence of violations. Therefore, we
wish to find abstractions that are refinable in a flexible way and
still guarantee regularity and computability.

Separability Another type of finite-state abstractions is that of
separators. Since safety properties of multi-threaded programs can
often be formulated as the disjointness of two languages, one ap-
proach to this task is to use regular languages to certify disjoint-
ness [2, 4, 22]. A separator of two languages K and L is a set S such
that K ⊆ S and L ∩ S = ∅. Therefore, especially in cases where
disjointness of languages is undecidable or hard, it would be useful
to have a decision procedure for the separability problem: Given two
languages, it asks whether they are separable by a language from a
particular class of separators. In particular, if we want to apply such
algorithms to infinite-state systems, it would be desirable to find
large classes of separators (and systems) for which the separability
problem is decidable.

It has long been known that separability of context-free lan-
guages is undecidable already for very simple classes of regular
languages [18, 27] and this stifled hope that separability would
be decidable for any interesting classes of infinite-state systems
and classes of separators. However, the subword ordering turned
out again to have excellent decidability properties: It was shown
recently that for a wide range of language classes, it is decidable
whether two given languages are separable by a piecewise testable
language (PTL) [9]. A PTL is a finite Boolean combination of up-
ward closures (with respect to the subword ordering) of single
words. In fact, in turned out that (under mild closure assumptions)

https://doi.org/10.1145/3209108.3209201
https://doi.org/10.1145/3209108.3209201
https://doi.org/10.1145/3209108.3209201

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Georg Zetzsche

separability by PTL is decidable if and only if downward closures
are computable [10].

However, while this separability result applies to very expres-
sive models of infinite-state systems, it is still limited in terms of
the separators: The small class of PTL will not always suffice as
disjointness certificates.

Contribution This work makes two contributions, a conceptual
one and a technical one. The conceptual contribution is the introduc-
tion of a fairly flexible class of WQOs on words. These are refinable
and provide generalizations of the subword ordering. These or-
ders are parameterized by transducers, counter automata or other
objects and can be chosen to reflect various properties of words.
Moreover, the classes of corresponding PTLs are a surprisingly rich
collection of classes of regular languages.

Furthermore, it is shown that all these orders have the same
pleasant properties in terms of downward closure computation and
decidability of PTL-separability as the subword ordering. Specif-
ically, it is shown that (under mild assumptions) decidability of
the abovementioned unboundedness problem again characterizes
(i) those language classes for which downward closures are com-
putable and (ii) those classes where separability by PTL is decidable.

In addition, it turns out that this framework can also be used to
obtain decidable separability of regular languages by BΣ1[<,mod],
a fragment of first-order logic with modular predicates. This is tech-
nically relatively involved and generalizes the fact that definability
of regular languages in BΣ1[<,mod] is decidable [5].

2 Preliminaries
If Σ is an alphabet, Σ∗ denotes the set of words over Σ. The empty
word is denoted ε ∈ Σ∗. A quasi-ordering is an ordering that is
reflexive and transitive. An ordering (X , ⪯) is called a well-quasi-
ordering (WQO) if for every sequence x1,x2, . . . ∈ X , there are
indices i < j with xi ⪯ x j . This is equivalent to requiring that
every sequence x1,x2, . . . ∈ X contains an infinite subsequence
x ′1,x

′
2, . . . ∈ X that is ascending, meaning x ′i ⪯ x ′j for i ≤ j. For

a subset L ⊆ X , we define ↓⪯L = {x ∈ X | ∃y ∈ L : x ⪯ y} and
↑⪯L = {x ∈ X | ∃y ∈ L : y ⪯ x}. These are called the downward
closure and upward closure of L, respectively. If the ordering ⪯ is
clear from the context, we sometimes just write ↓L or ↑L. A set
L ⊆ X is called downward closed (resp. upward closed) if ↓⪯L = L
(resp. ↑⪯L = L). A (defining) property of well-quasi-orderings is
that for every non-empty upward-closed set U , there are finitely
many elements x1, . . . ,xn ∈ U such that U = ↑⪯{x1, . . . ,xn }.
See [20] for an introduction. An ordering (Σ∗, ⪯) on words is called
multiplicative if u1 ⪯ v1 and u2 ⪯ v2 implies u1u2 ⪯ v1v2. For
u,v ∈ Σ∗, we write u ≼ v if u = u1 · · ·un and v = v0u1v1 · · ·unvn
for some u1, . . . ,un ,v0, . . . ,vn ∈ Σ∗. This ordering is called the
subword ordering and it is well-known to be a WQO [17].

A well-studied class of regular languages is that of the piecewise
testable languages. Classically, a language L ⊆ Σ∗ is a piecewise
testable language (PTL) [25] if it is a finite Boolean combination of
sets of the form ↑≼w forw ∈ Σ∗. However, this notion makes sense
for any WQO (X , ⪯) [13] and we call a set L ⊆ X piecewise testable
if it is a finite Boolean combination of sets ↑⪯x for x ∈ X .

3 Parameterized WQOs and examples
In this section, we introduce the parameterized WQOs on words,
state the main results of this work, and present some applications.

We define the class of parameterized WQOs inductively using rules
(Rules 1 to 3). The simplest example is Higman’s subword ordering.

Rule 1. For each Σ, (Σ∗,≼) is a parameterized WQO.

Orderings defined by transducers To make things more interesting,
we have a type of WQOs that are defined by functions. Suppose X
and Y are sets and we have a function f : X → Y . A general way of
constructing a WQO on X is to take a WQO (Y , ⪯) and set x ⪯f x ′

if and only if f (x) ⪯ f (x ′). It is immediate from the definition that
then ⪯f is a WQO on X . We apply this idea to transducers.

A finite-state transducer over Σ and Γ is a tupleT = (Q, Σ, Γ,E, I , F),
whereQ is a finite set of states, E ⊆ Q × (Σ∪ {ε}) × (Γ ∪ {ε}) ×Q is
its set of edges, I ⊆ Q is the set of initial states, and F ⊆ Q is the set
of final states. Transducers accept sets of pairs of words. A run of
T is a sequence (q0,u1,v1,q1)(q1,u2,v2,q2) · · · (qn−1,un ,vn ,qn)
of edges such that q0 ∈ I , qn ∈ F . The pair read by the run is
(u1 · · ·un ,v1 · · ·vn). Then, T realizes the relation

T (T) = {(u,v) ∈ Σ∗ × Γ∗ | (u,v) is read by a run of T }.

Relations of this form are called rational transductions. A transduc-
tion is functional if for everyu ∈ Σ∗, there is exactly onev ∈ Γ∗ with
(u,v) ∈ T (T). In other words, T (T) is a function T (T) : Σ∗ → Γ∗

and we can use it to define a WQO.

Rule 2. Let f : Σ∗ → Γ∗ be a functional rational transduction. If
(Γ∗, ⪯) is a parameterized WQO, then so is (Σ∗, ⪯f).

Conjunctions Another way to build a WQO on a set is to combine
two existing WQOs. Suppose (X , ⪯1) and (X , ⪯2) are WQOs. Their
conjunction is the ordering (X , ⪯) with x ⪯ x ′ if and only if x ⪯1 x ′

and x ⪯2 x ′. Then (X , ⪯) is a WQO via the characterization using
ascending subsequences.

Rule 3. If (Σ∗, ⪯1) and (Σ∗, ⪯2) are parameterized WQOs, then so
is their conjunction (Σ∗, ⪯).

Using the three building blocks in Rules 1 to 3, we can con-
struct a wealth of WQOs on words. Let us mention a few examples,
including the accompanying classes of PTL.

Labeling transductions Our first class of examples concerns
orderings whose PTLs are fragments of first-order logic with ad-
ditional predicates. A labeling transduction is a functional trans-
duction f : Σ∗ → (Σ × Λ)∗ for some alphabet Λ labels such that
for each w = a1 · · ·an ∈ Σ∗, a1, . . . ,an ∈ Σ, we have f (w) =

(a1, ℓ1) · · · (an , ℓn) for some ℓ1, . . . , ℓn ∈ Λ.
In this case, we can interpret ≼f -PTLs logically. To each word

w = a1 · · ·an , a1, . . . ,an ∈ Σ, we associate a finite relational struc-
tureMf ,w as follows. Its domain isD = {1, . . . ,n} and as predicates,
it has the binary <, unary letter predicates Pa for a ∈ Σ, and for
each ℓ ∈ Λ, we have a unary predicate πℓ . While the predicates
< and Pa are interpreted as expected, we have to explain πℓ . If
f (w) = (a1, ℓ1) · · · (an , ℓn), then πℓ(i) expresses that ℓi = ℓ. Hence,
the πℓ give access to the labels produced by f . We denote the BΣ1-
fragment (Boolean combinations of Σ1-formulas) as BΣ1[<, f].

Suppose M1 and M2 are relational structures over the same
signature. An embedding ofM1 inM2 is an injective mapping from
the domain of M1 to the domain of M2 such that each predicate
holds for a tuple inM1 if and only the predicate holds for the image
of that tuple. This defines a quasi-ordering: We writeM1 ↪→ M2 if
M1 can be embedded intoM2. Observe that for u,v ∈ Σ∗, we have
u ≼f v if and only ifMf ,u ↪→ Mf ,v .

Separability by PTL and downward closures beyond subwords LICS ’18, July 9–12, 2018, Oxford, United Kingdom

It was observed by Goubault-Larrecq and Schmitz [13] that if
the embedding order is a WQO on a set of structures, then the BΣ1-
fragment (i.e. Boolean combinations of Σ1 formulas) can express
precisely the PTLwith respect to ↪→. This implies that the languages
definable in BΣ1[<, f] are precisely the ≼f -PTL.

To illustrate the utility of the fragments BΣ1[<, f], suppose we
are given regular languagesWi , Pi , Si , for i ∈ [1,n]. Suppose we
have for each i ∈ [1,n] a 0-ary predicate wi that expresses that our
whole word belongs toWi . For each i ∈ [1,n] we also have unary
predicates prei and sufi , which express that the prefix and suffix,
respectively, corresponding to the current position, belongs to Pi
and Si , respectively. Then the corresponding fragment

BΣ1[<, (wi)i ∈[1,n], (prei)i ∈[1,n], (sufi)i ∈[1,n]]

can clearly be realized as BΣ1[<, f].
Of course, we can capture many other predicates by labeling

transducers. For example, it is easy to realize a predicate for “the
distance to the closest position to the left with an a is congruent k
modulo d” (for some fixed d).

Finally, let us observe in passing that instead of enrichingBΣ1[<],
we could also construct fragments that do not have access to let-
ters. Suppose we perform the construction of Mf ,w for length-
preserving transductions f that only produce labels and do not
reproduce the output, meaning f : Σ∗ → Λ∗. Then, one can choose
f so that ≼f -PTLs correspond to a logic where, for example, we
can only express whether “this position is even and carries an a”.

Orderings defined by finite automata Our second example
slightly specializes the first example. The reason we make it explicit
is that we shall present explicit ideal representations that will be
applied to decide separability of regular languages byBΣ1[<,mod].
The example still generalizes the subword order. While in the latter,
a smaller word is obtained by deleting arbitrary infixes, these orders
use an automaton to restrict the permitted deletions.

A finite automaton is a tuple A = (Q, Σ,E, I , F), where Q is a
finite set of states, Σ is the input alphabet, E ⊆ Q × Σ × Q is the
set of edges, I ⊆ Q is the set of initial states, and F ⊆ Q is the
set of final states. The language L(A) is defined in the usual way.
Here, we use automata as a means to assign a labeling to an input
word. A labeling is defined by a run. A run of A onw = a1 · · ·an ,
a1, . . . ,an ∈ Σ, is a sequence

(q0,a1,q1)(q1,a2,q2) · · · (qn−1,an ,qn) ∈ E∗

with q0 ∈ I and qn ∈ F . By Runs(A), denote the set of runs of A.
Since we wantA to label every word from Σ∗, we call an automaton
A a labeling automaton if for each word w ∈ Σ∗, A has exactly
one run onw . In this case, we write A(w) for the run of A onw .
Moreover, we define σA (w) = (p,q), where p and q are the first
and last state, respectively, visited duringw’s run. Hence, such an
automaton defines a map A : Σ∗ → E∗.

Letu ⪯A v if and only ifv is obtained fromu by “inserting loops
of A”. In other words, v can be written as v = u0v1u1 · · ·vnun
with u = u0 · · ·un such that the run of A on v occupies the same
state before reading vi and after reading vi . Equivalently, we have
u ⪯A v if and only if σA (u) = σA (v) and A(u) ≼ A(v). The
ordering ⪯A is a parameterized WQO: The ordering ⪯ with u ⪯ v
if and only if σA (u) = σA (v) is parameterized because we can use
a functional transduction f that mapsu to the length-1 word σA (u)
in (Q ×Q)∗. Moreover, with with a functional transduction д that

maps a wordw to its runA(w), the ordering ⪯A is the conjunction
of ≼f and ≼д .

• If A consists of just one state and a loop for every a ∈ Σ,
then ⪯A is the ordinary subword ordering.

• Suppose B is a complete deterministic automaton accepting
a regular language L ⊆ Σ∗. Then L is simultaneously upward
closed and downward closed with respect to ⪯A , where A
is obtained from B by making all states final. In particular,
every regular language can occur as an upward closure and
as a downward closure with respect to some ⪯A .

As for labeling transducers, we can consider logical fragments
where ⪯A is the embedding order. Again, our signature consists
of <, Pa for a ∈ Σ. Furthermore, for each q ∈ Q , we have the
0-ary predicates ιq and τq and unary predicates λq and ρq . Let
(q0,a1,q1) · · · (qn−1,an ,qn) be the run of A on w . Then λq (i) is
true iff qi−1 = q. Moreover, ρq (i) holds iff qi = q. Hence, λq and ρq
give access to the state occupied byA to the left and to the right of
each position, respectively. Accordingly, ιq and τq concern the first
and the last state: ιq is satisfied iff q0 = q and τq is true iff qn = q.

As an example, letMd be the automaton that consists of a single
cycle of length d so that on each input letter,Md moves one step
forward in the cycle. This is equivalent to having a predicate for
each k ∈ [1,d] that express that the current position is congruent
k modulo d . Moreover, we have a predicate for each k ∈ [1,d] to
express that the length of the word is k modulo d . This is sometimes
denoted BΣ1[<,modd]. If these predicates are available for every
d , the resulting class is denoted BΣ1[<,mod] [5] and will be the
subject of Theorem 4.5.

Regularity and multiplicative well-partial-orderings Ehren-
feucht et al. [11] have characterized the regular languages as those
sets of words that are upward upward closed with respect to some
multiplicative WQO. To show necessity, they provide the syntac-
tic congruence, which, as a finite-index equivalence, is a WQO.
Since finite-index equivalences are somewhat pathological exam-
ples of WQOs, this raises the question of whether the same holds
for well-partial-orders, i.e. WQOs that are also antisymmetric. It
does, and we exhibit a natural way to construct such well-partial-
orders. Suppose M is a finite monoid and θ : Σ∗ → M is a mor-
phism that recognizes the language L ⊆ Σ∗, i.e. L = θ−1(θ (L)). Let
f : Σ∗ → (M2 × Σ ×M2)∗ be the functional transduction such that
forw = a1 · · ·an , a1, . . . ,an ∈ Σ:

f (w) = (ℓ0, r0,a1, ℓ1, r1) · · · (ℓn−1, rn−1,an , ℓn , rn),

where ℓi = θ (a1 · · ·ai) and ri = θ (ai+1 · · ·an). Then we have
u ≼f v if and only if v can be written as v = u0v1u1 · · ·vnun
such that u = u0 · · ·un and θ (u0 · · ·ui−1vi) = θ (u0 · · ·ui−1) and
θ (viui · · ·un) = θ (ui · · ·un) for every i ∈ [1,n]. In this case, we
write ⪯θ for≼f . Note that ⪯θ is multiplicative and L is ⪯θ -upward
closed. Thus, the ordering ⪯θ is a natural example that shows: A
language is regular if and only if it is upward closed with respect
to some multiplicative well-partial order.

Remark 3.1. Another source of WQOs on words a work of Bucher
et. al. [3], in which they study a class of multiplicative orderings on
words arising from rewriting systems. They show that all WQOs
considered there can be represented by finite monoids equipped
with a multiplicative quasi-order. For such a monoid (M, ≤) and a
morphism θ : Σ∗ → M , they set u ⊑θ v if and only if u = u1 · · ·un ,
u1, . . . ,un ∈ Σ, andv = v1 · · ·vn such that θ (ui) ≤ θ (vi). However,

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Georg Zetzsche

they leave open for which monoids (M, ≤) the ordering ⊑θ is a
WQO. In the case that θ above is a morphism into a finite group
(whose order is the equality), the ordering ⪯θ coincides with ⊑θ .
However, while the orderings considered by Bucher et al. are always
multiplicative, this is not always the case for parameterized WQOs.

Orderings defined by counter automata In addition, we can
use automata with counters to obtain parameterized WQOs. A
counter automaton is a tuple A = (Q, Σ,C,E, I , F), where Q is a
finite set of states, Σ is the input alphabet, C is a set of counters,
E ⊆ Q×(A∪{ε})×NC ×Q is the finite set of edges, I ⊆ Q is the set of
initial states, and F ⊆ Q is the set of final states. A configuration ofA
is a tuple (q,w, µ), whereq ∈ Q ,w ∈ A∗, µ ∈ NC . The step relation is
defined as follows. Let (q,w, µ) →A (q′,w ′, µ ′) iff there is an edge
(q,v,ν ,q′) ∈ E such thatw ′ = wv and µ ′ = µ+ν . A run (arriving at
µ) on an input word w is a sequence (q0,w0, µ0), . . . , (qn ,wn , µn)
where (qi−1,wi−1, µi−1) →A (qi ,wi , µi) for i ∈ [1,n], q0 ∈ I ,
w0 = ε , µ0 = 0, qn ∈ F ,wn = w , and µn = µ.

We use counter automata not primarily as accepting devices,
but rather to define maps or to specify unboundedness properties.
We call A a counting automaton if it has exactly one run for every
wordw ∈ Σ∗. In this case, it defines a function A : Σ∗ → NC : We
have A(w) = µ iff A has a run onw arriving at µ.

This gives rise to an ordering: Let A be a counting automaton.
Then, given u,v ∈ Σ∗, let u ⪯A v if and only if A(u) ≤ A(v). This
is a parameterized WQO for the following reason. For each c ∈ C ,
we can build a functional transduction fc : Σ∗ → {c}∗ that operates
like A, but instead of incrementing c , it outputs a c . Then, ⪯A is
the conjunction of all the WQOs ≼fc for c ∈ C .

Let k ∈ N and Ck = {au ,bu , cu | u ∈ Σ≤k }. We say that a word
u occurs at position ℓ in v if v = xuy with |x | = ℓ − 1. It is easy
to construct a counting automaton Pk with counter set Ck that
satisfies Pk (w) = µ iff for each u ∈ Σ≤k ,
• if u is a prefix ofw , then µ(au) = 1, otherwise µ(au) = 0,
• if u is a suffix ofw , then µ(bu) = 1, otherwise µ(bu) = 0,
• µ(cu) is the number of positions inw where u occurs.

Using this counting automaton, we can realize another class of
regular languages. Let k ∈ N. A k-locally threshold testable language
is a finite Boolean combination of sets of the form

• uΣ∗ for some u ∈ Σ≤k ,
• Σ∗u for some u ∈ Σ≤k , or
• {w ∈ Σ∗ | u occurs at ≥ ℓ positions inw} for someu ∈ Σ≤k

and ℓ ∈ N.
The class of k-locally threshold testable languages is denoted LTTk .
Observe that the ⪯Pk -PTL are precisely the k-locally threshold
testable languages. Indeed, each of the basic building blocks of
k-locally threshold testable languages is ⪯Pk -upward closed and
hence a ⪯Pk -PTL. Conversely, for eachw ∈ Σ∗, the upward closure
ofw with respect to ⪯Pk is clearly in LTTk .

Conjunctions Let us illustrate the utility of conjunctions. Let S
be a finite collection of WQOs on Σ∗. We call a language L ⊆ Σ∗ an
S-PTL if it is a finite Boolean combination of sets of the form ↑⪯w ,
where ⪯ belongs to S andw ∈ Σ∗. Our framework also applies to
S-PTLs for the following reason.

Observation 3.2. Let ⪯ be the conjunction of the WQOs in S . Then
a language is an S-PTL iff it is a ⪯-PTL.

Proof. Suppose S consists of the WQOs ⪯i for i ∈ [1,n]. Every
⪯-PTL is an S-PTL, because the set ↑⪯{w} can be written as the
intersection

⋂
i ∈[1,n] ↑⪯i {w}. Conversely, an S-PTL is a Boolean

combination of sets of the form ↑⪯iw withw ∈ Σ∗. Clearly, ↑⪯iw
is upward closed also with respect to ⪯ and can thus be written as
↑⪯{w1, . . . ,wm } for somew1, . . . ,wm ∈ Σ∗, which is a ⪯-PTL. □

As an example, suppose we have subsets Σ1, . . . , Σn ⊆ Σ and
the functional transductions πi , i ∈ [1,n], such that πi : Σ∗ → Σ∗i is
the projection onto Σi , meaning πi (a) = a for a ∈ Σi and πi (a) = ε
for a < Σi . If S consists of the ≼πi for i ∈ [1,n], then the S-PTL
are precisely those languages that are Boolean combinations of
sets ↑≼w for w ∈ Σ∗1 ∪ · · · ∪ Σ∗i . Hence, we obtain a subclass of
the classical PTL. Of course, there are many other examples. One
can, for example, combine WQOs for logical fragments with WQOs
defined by counting automata and thus obtain logics that refer to
positions as well as counter values, etc.

4 Main results
In this section, we present the main results of this work.

Computing downward closures The first problemwewill study
is that of computing downward closures. As in the case of the
subword ordering, we will see that for all parameterized WQOs,
every downward closed language is regular. While mere regularity
is often easy to see, it is not obvious how, given a language L ⊆ Σ∗,
to compute a finite automaton for ↓⪯L. We are insterested in when
this can be done algorithmically. If ⪯ is a WQO on words, we say
that ⪯-downward closures are computable for a language class C
if there is an algorithm that, given a language L ⊆ Σ∗ from C,
computes a finite automaton for ↓⪯L. This is especially interesting
when C is a class of languages of infinite-state systems.

Until now, downward closure computation has focused mainly
on the case where ⪯ is the subword ordering. In that case, there is a
charaterization for when downward closures are computable [29].
For a rational transduction T ⊆ Σ∗ × Γ∗ and a language L ⊆ Σ∗, let
TL = {v ∈ Γ∗ | ∃u ∈ L : (u,v) ∈ T }. When we talk about language
classes, we always assume that there is a way of representing their
languages such as by automata or grammars. We call a language
class C a full trio if it is effectively closed under rational transduc-
tions, i.e. given a representation of L from C, we can compute a
representation ofTL in C. The simultaneous unboundedness problem
(SUP) for C is the following decision problem.
Given A language L ⊆ a∗1 · · ·a

∗
n from C.

Question Does a∗1 · · ·a
∗
n ⊆ ↓≼L hold?

The aforementioned characterization now states that downward
closures for the subword ordering are computable for a full trio
C if and only if the SUP is decidable. The SUP is decidable for
many important and very powerful infinite-state systems. It is
known to be decidable for Petri net languages [10, 14, 29] and
matrix languages [29]. Moreover, it was shown to be decidable for
second-order pushdown automata [29], which was generalized to
higher-order pushdown automata [15] and then further to higher-
order recursion schemes [6].

Separability by PTL We also consider separability problems. We
say that two languages K ⊆ Σ∗ and L ⊆ Σ∗ are separated by a
language R ⊆ Σ∗ if K ⊆ R and L∩R = ∅. If two languages are sepa-
rated by a regular language, we can regard this regular language as

Separability by PTL and downward closures beyond subwords LICS ’18, July 9–12, 2018, Oxford, United Kingdom

a finite-state abstraction of the two languages. We therefore want
to decide when two given languages can be separated by a language
from some class of separators. More precisely, we say that for a
language class C and a class of separators S, separability by S is
decidable if given language K and L from C, it is decidable whether
there is an R in S that separates K and L. In the case where S is
the class (subword) PTL, it is known when separability is decidable:
In [10], it was shown that in a full trio, separability by PTL is decid-
able if and only if the SUP is decidable (the “if” direction had been
obtained in [9]).

We are now ready to state the first main result.
Theorem 4.1. For every full trio C, the following are equivalent:

1. The SUP is decidable for C.
2. For every parameterized WQO ⪯, ⪯-downward closures are

computable for C.
3. For every parameterized WQO ⪯, separability by ⪯-PTL is

decidable for C.

This generalizes the two aforementioned results on downward
closures and PTL separability. In addition, Theorem 4.1 applies to
all the examples of ⪯-PTL described above.

Recall that for each regular languageR, there is a labeling automa-
ton A such that R is ⪯A -upward closed and thus a ⪯A -PTL. Thus,
for languages K and L, the following are equivalent: (i) There exists
a labeling automaton A such that K and L are separable by a ⪯A-
PTL and (ii)K and L are separable by a regular language. Already for
one-counter languages, separability by regular languages is unde-
cidable [8] (for context-free languages, this was shown in [18, 27]).
However, Theorem 4.1 tells us that for each fixed A, separability
by ⪯A-PTL is decidable. We make a few applications explicit.
Corollary 4.2. Let C be a full trio with decidable SUP. For each
d ∈ N, separability by BΣ1[<,modd] is decidable for C.

Note that since a language L ⊆ Σ∗ is separable from its com-
plement Σ∗ \ L by some ⪯-PTL if and only if L is a ⪯-PTL itself,
Theorem 4.1 implies the following.
Corollary 4.3. Let ⪯ be a parameterized WQO. Given a regular
language L, it is decidable whether L is an ⪯-PTL.

It was shown by Place et al. [24] that for context-free languages,
separability by LTTk is decidable for each k ∈ N. Their algorithm
uses semilinearity of context-free languages and Presburger arith-
metic. Since models like Petri nets and higher-order pushdown
automata do not have semilinear Parikh images, their proof method
does not apply to them. Here, we extend this result to all full trios
with a decidable SUP.
Corollary 4.4. Let C be a full trio with decidable SUP. For each
k ∈ N, separability by LTTk is decidable for C.

Separability beyond PTLs Our framework can also be applied
to separators that do not arise as PTLs for a particular WQO. This
is because we can sometimes apply the developed ideal representa-
tions to separator classes that are infinite unions of invidual classes
of PTLs. For example, consider the fragment BΣ1[<,mod] of first-
order logic on words with modular predicates. In terms of express-
ible languages, it is the union over all fragments BΣ1[<,modd]
with d ∈ N. Using a non-trivial algebraic proof, it was shown by
Chaubard, Pin, and Straubing [5] that it is decidable whether a
regular language is definable in BΣ1[<,mod]. Here, we show the
following generalization using a purely combinatorial proof.

Theorem 4.5. Given two regular languages, it is decidable whether
they are separable by BΣ1[<,mod].

Of course, this raises the question of whether separability by
BΣ1[<,mod] reduces to the SUP, as it is the case of separability
by BΣ1[<,modd] for fixed d . However, this is not the case, as is
shown here as well.

Theorem4.6. Separability byBΣ1[<,mod] is undecidable for second-
order pushdown languages.

Since the second-order pushdown languages constitute a full
trio [1, 23] and have a decidable SUP [29], this means separability
by BΣ1[<,mod] does not reduce to the SUP.

5 Computing closures and deciding
separability

In this section, we present the algorithms used in Theorem 4.1.
We apply the abstract framework for computing downward clo-
sures and deciding separability by PTL by Goubault-Larrecq and
Schmitz [13], which is applicable to WQOs with particular effective-
ness assumptions. In this section, we explain how these assumptions
translate to our setting. In section 6, we will then show that all
parameterized WQO indeed satisfy these properties.

Our algorithms for computing downward closures and decid-
ing separability rely heavily on the concept of ideals, which have
recently attracted attention [12, 13, 21]. Observe that, when de-
ciding separability of languages from a class C by a recursively
enumerable class of regular languages, it is usually easy to devise
a semi-algorithm for the separability case: We can just enumerate
separators. Verifying them is possible as soon as C has decidable
emptiness of intersections with regular sets. The non-trivial part is
to show that inseparability can be witnessed and in our case, this
role will be played by the concept of ideals.

Let us define ideals. Suppose (X , ⪯) is a WQO. An ⪯-ascending
chain is a sequence x1,x2, . . . with xi ⪯ xi+1 for every i ∈ N. A
subset Y ⊆ X is called (⪯-)directed if for any x ,y ∈ Y , there is a
z ∈ Y with x ⪯ z and y ⪯ z. An (⪯-)ideal is a non-empty subset
I ⊆ X that is ⪯-downward closed and ⪯-directed. Equivalently, a
non-empty subset I ⊆ X is an ⪯-ideal if I is ⪯-downward closed
and for any two ⪯-downward closed sets Y ,Z ⊆ X with I ⊆ Y ∪ Z ,
we have I ⊆ Y or I ⊆ Z . It is well-known that every downward
closed set can be written as a finite union of ideals.

In order to explain how ideals canwitness inseparability, we need
the notion of adherences. For a set L ⊆ X , its adherence Adh⪯(L)
is defined as the set of those ideals I of X for which there exists a
directed set D ⊆ L with I = ↓⪯D. Equivalently, I ∈ Adh⪯(L) if and
only if I ⊆ ↓⪯(L ∩ I) [13, 21]. In this work, we also use a slightly
modified version of adherences in order to describe ideals of con-
junctions of WQOs. Let (⪯s)s ∈S be a family of well-quasi-orderings
on a common set X . Moreover, let ⪯ denote the conjunction of
(⪯s)s ∈S . For L ⊆ X , AdhS (L) is the set of all families (Is)s ∈S of
ideals for which there exists a ⪯-directed set D ⊆ L such that
Is = ↓⪯sD for each s ∈ S .

Unboundedness reductions We use counter automata (that are not
necessarily counting automata) to specify unboundedness prop-
erties. Let A be a counter automaton with counter set C . Let
Nω = N ∪ {ω} and extend ≤ to Nω by setting n < ω for all n ∈ N.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Georg Zetzsche

We define a function Ā : Σ∗ → Nω by

Ā(w) = sup
{

inf
c ∈C

µ(c)

����A has a run onw arriving at µ ∈ NC
}

We say that a counter automaton A is unbounded on L ⊆ Σ∗ if for
every k ∈ N, there is aw ∈ L with Ā(w) ≥ k . In other words, iff for
every ν ∈ NC , there is aw ∈ L such thatA has a run onw arriving
at some µ ≥ ν .

We say that a language L ⊆ Σ∗ has the diagonal property if for
every k ∈ N, there is aw ∈ L that contains every letter from Σ at
leastk times. The diagonal problem for a language class C [9, 10] is to
decide whether a given language from C has the diagonal property.
Via computing downward closures, it is known that in full trios, the
diagonal problem reduces to the SUP [29]. Since unboundedness
of a counter automata easily reduces to the diagonal problem, we
have the following.

Lemma 5.1. Let C be a full trio with decidable SUP. Then, given
a counter automaton A and a language L from C, it is decidable
whether A is unbounded on L.

We are now ready to state the effectiveness assumptions on
which our algorithms rely. Let Σ be an alphabet and (Σ∗, ⪯) be a
WQO. We say that (Σ∗, ⪯) is an effective WQO with an unbounded-
ness reduction (EWUR) if the following are satisfied:

(a) For eachw ∈ Σ∗, the set ↑⪯w is effectively regular.
(b) The set of ideals of (Σ∗, ⪯) is a recursively enumerable set

of regular languages.
(c) Given an ideal I ⊆ Σ∗, one can effectively construct a counter

automatonAI such that for every L ⊆ Σ∗,AI is unbounded
on L if and only if I belongs to Adh⪯(L).

In order to decide separability by ⪯-PTL and compute downward
closures, it would have sufficed to require decidability of adherence
membership in full trios with decidable SUP. The reason why we
require the stronger condition (c) is that in order to show that all
parameterized WQOs satisfy these conditions, we want the latter
to be passed on to conjunctions and to WQOs ⪯f .

The conditions imply that every upward closed language (hence
every downward closed language) is regular: IfU is upward closed,
then we can write U = ↑⪯{w1, . . . ,wn } =

⋃n
i=1 ↑⪯{wi }, which is

regular because each ↑⪯{wi } is regular. Moreover, wemay conclude
that given a regular language R ⊆ Σ∗ it is decidable whether R is an
ideal: IfR is an ideal, we find it in an enumeration; if it is not an ideal,
we find words that violate directedness or downward closedness.

According to the definition of EWUR, given an ideal I , we can
construct a counter automaton A such that I belongs to the adher-
ence of L if and only if A is unbounded on L. Hence, Lemma 5.1
implies the following.

Proposition 5.2. Let (Σ∗, ⪯) be an EWUR and let C be a full trio
with decidable SUP. Then, given an ⪯-ideal I ⊆ Σ∗ and L ∈ C, it is
decidable whether I ∈ Adh⪯(L).

In section 6, we develop ideal representations for all parameter-
ized WQOs and thus show that they are EWUR.

Proof sketch for Theorem 4.1 Let us now outline how to show
Theorem 4.1 assuming that every parameterized WQO is an EWUR.
The implication “2⇒1” holds because computing downward clo-
sures clearly allows deciding the SUP. This was shown in [29]. The
implication “3⇒1” follows from [10], which presents a reduction

of the SUP to separability by PTL. Thus, it remains to prove that
downward closures are computable and PTL-separability is decid-
able for EWUR and full trios with decidable SUP. For the former, we
can use an algorithm for downward closure computation from [13],
which reduces the computation to adherence membership.

Proposition 5.3. Let C be a full trio with decidable SUP and let
⪯ be an EWUR. Then ⪯-downward closures of languages in C are
computable.

We continue with the decidability of separability by ⪯-PTL for
EWUR ⪯. We employ the following characterization of separability
in terms of adherences [13] for reducing the separability problem
to adherence membership.

Proposition 5.4. Let (X , ⪯) be a WQO. Then, K ⊆ X and L ⊆ X
are separable by a ⪯-PTL iff Adh⪯(K) ∩ Adh⪯(L) = ∅.

We can now use the algorithm from [13] for deciding separability
of languages K and L in our setting. By Proposition 5.4, we can
use two semi-decision procedures. On the one hand, we enumerate
potential separators S and check whether K ⊆ S and L ∩ S = ∅. On
the other hand, we enumerate ⪯-ideals I and check if I belongs to
Adh⪯(K) ∩ Adh⪯(L).

Proposition 5.5. Let C be a full trio with decidable SUP and ⪯ be
an EWUR. Then separability by ⪯-PTL is decidable for C.

6 Ideal representations
In this section, we show that every parameterizedWQO is an EWUR.
The fact that the subword ordering is an EWUR follows using ideal
representations for subwords [19] and arguments from [10, 29].

Proposition 6.1. The subword ordering (Σ∗,≼) is an EWUR.

The next step is to show that whenever (Γ∗, ⪯) is an EWUR and
f : Σ∗ → Γ∗ is a functional rational transduction, then (Σ∗, ⪯f) is
an EWUR. We begin with some general observations about ideals
inWQOs of the shape ⪯f , where f : X → Y is an arbitrary function
and (Y , ⪯) is a WQO. First, we describe ideals of (X , ⪯f) in terms
of ideals of (Y , ⪯).

It is easy to see that every ideal of (X , ⪯f) is of the form f −1(J)
for some ideal J of (Y , ⪯). However, a set f −1(J) is not always
an ideal of (X , ⪯f). For example, suppose f : Σ∗ → N × N has
f (w) = (|w |, 0) if |w | is even and f (w) = (0, |w |) if |w | is odd. Then
f −1(N × N) is not upward directed although N × N is an ideal.

Lemma 6.2. I ⊆ X is an ideal of (X , ⪯f) if and only if I = f −1(J)
for some ideal J of (Y , ⪯) such that ↓ f (f −1(J)) = J .

Proof. If I ⊆ X is an ideal, then the set J := ↓ f (I) is downward
closed by definition and upward directed because I is. Hence, J is an
ideal. Moreover, I = f −1(J), because I ⊆ f −1(J) is immediate and
f −1(J) ⊆ I holds because I is downward closed. This also implies
↓ f (f −1(J)) = ↓ f (I) = J .

Conversely, let I = f −1(J) for an ideal J ⊆ Y that satisfies
↓ f (f −1(J)) = J . First, I = f −1(J) is downward closed because J is.
Moreover, we have ↓ f (I) = J , which means given x ,y ∈ I , we can
find a common upper bound z ∈ J for f (x) ∈ J and f (y) ∈ J and
then a z′ ∈ f (I) with z ⪯ z′. Then z′ = f (w) for some w ∈ I and
hence x ⪯f w and y ⪯f w . Thus I is upward directed. □

Lemma 6.2 tells us how to represent ideals of (X , ⪯f) when
we have a way of representing ideals of (Y , ⪯). Hence, if the set

Separability by PTL and downward closures beyond subwords LICS ’18, July 9–12, 2018, Oxford, United Kingdom

of ideals of (Γ∗, ⪯) is recursively enumerable, then so is the set of
ideals of (Σ∗, ⪯f): As an ideal, J is regular, meaning that ↓ f (f −1(J))
is effectively regular and can be compared with J . We also need to
transfer membership in adherences from (Y , ⪯) to (X , ⪯f).

Lemma 6.3. If J ⊆ Y is an ideal of (Y , ⪯) with ↓ f (f −1(J)) = J ,
then f −1(J) ∈ Adh(L) if and only if J ∈ Adh(f (L)).

Proof. Let f −1(J) ∈ Adh(L), equivalently, f −1(J) ⊆ ↓(L ∩ f −1(J)).
We prove that J ⊆ ↓(f (L)∩ J). Fory ∈ J , we can findy′ ∈ f (f −1(J))
with y ⪯ y′. Say y′ = f (x ′) with x ′ ∈ f −1(J). Thus, there exists an
x ′′ ∈ L∩ f −1(J) with x ′ ⪯f x ′′. Since y ⪯ y′ = f (x ′) ⪯ f (x ′′) and
f (x ′′) ∈ f (L) ∩ J , we have shown J ⊆ ↓(f (L) ∩ J).

Conversely, let J ∈ Adh(f (L)), i.e. J ⊆ ↓(f (L) ∩ J). This means,
for x ∈ f −1(J), we can find x ′ ∈ L with f (x) ⪯ f (x ′) and f (x ′) ∈ J .
Thus, f −1(J) ⊆ ↓(L ∩ f −1(J)) and hence f −1(J) ∈ Adh(L). □

Equipped with Lemmas 6.2 and 6.3, it is now straightforward to
show that (Σ∗, ⪯f) is an EWUR.

Proposition 6.4. If (Γ∗, ⪯) is an EWUR and f : Σ∗ → Γ∗ is a
functional rational transduction, then (Σ∗, ⪯f) is an EWUR.

It remains to be shown that being an EWUR is preserved by
taking a conjunction. Our first step is to characterize which sets
are ideals of a conjunction. Once the statement is found, the proof
is relatively straightforward.

Proposition 6.5. Let S = (⪯s)s ∈S be a finite family of WQOs over
X and let (X , ⪯) be the conjunction of S . Then I ⊆ X is an ideal of
(X , ⪯) iff it can be written as I =

⋂
s ∈S Is , where each Is is an ideal

of (X , ⪯s) and (Is)s ∈S belongs to AdhS (I).

The next step describes how to reduce the adherence member-
ship problem for conjunctions to the adherence membership prob-
lem for the participating orderings.

Proposition 6.6. Let S = (⪯s)s ∈S be a finite family of WQOs over
X and let (X , ⪯) be the conjunction of S . Suppose Is is an ⪯s -ideal
for each s ∈ S and I =

⋂
s ∈S Is and that (Is)s ∈S belongs to AdhS (I).

Then I belongs to Adh⪯(L) iff (Is)s ∈S belongs to AdhS (L).

As expected, a product construction allows us to characterize
the adherence membership for conjunction.

Lemma 6.7. Suppose (Σ∗, ⪯i) is an EWUR for i = 1, 2. Given ideals
I1 and I2 for ⪯1 and ⪯2, respectively, we can construct a counter
automaton A such that for every language L ⊆ Σ∗, A is unbounded
on L iff (I1, I2) belongs to Adh⪯1,⪯2 (L).

The following is now a consequence of the previous steps.

Proposition 6.8. If ⪯1 and ⪯2 are EWUR, then their conjunction is
an EWUR as well.

Orderings defined by labeling automata The preceding results
already show that every parameterizedWQO is an EWUR. However,
since wewill study separability byBΣ1[<,mod], it will be crucial to
have an explicit, i.e. syntactic representation of ideals of a particular
type of parameterized WQOs, namely those defined by labeling
automata. Here, we develop such a syntax.

Let A be a labeling automaton over Σ∗, u0, . . . ,un ∈ Σ∗, and
v1, . . . ,vn ∈ Σ∗. The word w = u0v1u1 · · ·vnun (more precisely:
this particular decomposition) is a loop pattern (for A) if the run
of A on w loops at each vi , i ∈ [1,n]. In other words, A is in the
same state before and after reading vi .

Theorem 6.9. Let A be a labeling automaton. The ⪯A-ideals are
precisely the sets ↓⪯A

u0v∗1u1 · · ·v∗nun , where u0v1u1 · · ·vnun is a
loop pattern for A.

By standard arguments, it suffices to show that those sets are ideals
and that every downward closed set is a finite union of such sets.

7 Separability by BΣ1[<,mod]
In this section, we prove Theorem 4.5 and Theorem 4.6. The lat-
ter will be shown in section 7.1 and the former is an immediate
consequence of the following.

Proposition 7.1. Let A1,A2 be finite automata with ≤ m states.
L(A1) and L(A2) are separable by BΣ1[<,mod] if and only if they
are separable by BΣ1[<,modd], where d = 2m3!.

Recall that BΣ1[<,modd] are the ⪯Md -PTL, whereMd is the
labeling automaton defined on page 3. From now on, we write ⪯d
for ⪯Md . Proposition 7.1 follows from:

Proposition 7.2. Let Ai be a finite automaton for i = 1, 2 with
≤ m states and let d be a multiple of 2m3!. If

Adh⪯d (L(A1)) ∩ Adh⪯d (L(A2)) , ∅,

then
Adh⪯ℓ·d (L(A1)) ∩ Adh⪯ℓ·d (L(A2)) , ∅

for every ℓ ≥ 1.

The “if” direction of Proposition 7.1 is trivial and the “only if”
can be derived from Proposition 7.2 as follows. If L(A1) and L(A2)
are separable by BΣ1[<,modℓ] for some ℓ ∈ N, then this sepa-
rator is also expressible in BΣ1[<,modℓ ·d]. Moreover, together
with Proposition 5.4, Proposition 7.2 tells us that separability by
BΣ1[<,modℓ ·d] implies separability by BΣ1[<,modd].

The rest of this section outlines the proof of Proposition 7.1.
Note that according to Theorem 6.9, the ideals for ⪯d are the sets
of the form I = ↓⪯du0v∗1u1 · · ·v∗nun where vi ∈ (Σd)∗. The ideal I
belongs to Adh⪯d (L) if and only if for each k ∈ N, there is a word
w ∈ L such that u0vk1u1 · · ·vknun ⪯d w and w ∈ I . We call such
wordsw witness words.

It is tempting to think that Proposition 7.2 just requires a simple
pumping argument: Given witness words for adherence member-
ship of an ⪯d -ideal ↓⪯du0v∗1u1 · · ·v∗nun , we pump the gaps in be-
tween embedded letters from the word u0vℓ ·k1 u1 · · ·vℓ ·kn un . These
gaps, after all, always have length divisible by d . For a d with suffi-
ciently many divisors, we would be able to pump the gaps up to a
length divisible by ℓ ·d so that we can embedu0(vℓ1)

ku1 · · · (vℓn)
kun

via ⪯ℓ ·d and conclude membership of the ideal ⪯ℓ ·d -ideal

I ′ = ↓⪯ℓ·d
u0(v

ℓ
1)

∗u1 · · · (v
ℓ
n)

∗un .

However, in order to show that I ′ contained in the ⪯ℓ ·d -adherence,
we also have to make sure that resulting witness words aremembers
of I ′. This makes the proof challenging.

Part I: Small periods Our proof of Proposition 7.2 consists of
three parts. In the first part, we show that if two regular languages
share an ideal in their adherences, then there exists one in which
all loops (the words vi) are, in a certain sense, highly periodic. Let
P(Σ) denote the power set of Σ and let P(Σ)[1,d] denote the set of
mappings µ : [1,d] → P(Σ). For each wordw ∈ Σ∗ and d ∈ N, let
κd (w) ∈ P(Σ)[1,d] be defined as follows. For i ∈ [1,d], we set

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Georg Zetzsche

κd (w)(i) = {a ∈ Σ | a occurs inw at a position p ≡ i mod d}.

The function κd lets us characterize inclusion among simple ideals.

Lemma 7.3. Suppose v,w ∈ (Σd)∗. Then ↓⪯dv
∗ ⊆ ↓⪯dw

∗ if and
only if κd (v) ⊆ κd (w).

For each wordw ∈ Σ∗, let ρ(w) be obtained from rotatingw by
one position to the right. Hence, for v ∈ Σ∗ and a ∈ Σ we have
ρ(va) = av , and ρ(ε) = ε . Let λ be the inverse map of ρ, i.e. rotation
to the left. For v ∈ Σ∗ and d ∈ N, let πd (v) ∈ [1,d] be the smallest
t ∈ [1,d] that divides d such that κd (v)(i + t) = κd (v)(i) for all
i ∈ [1,d − t]. Thus, t can be thought of as a period of κd (v). An
automaton A = (Q, Σ,E, I , F) is cyclic if I = F and |I | = 1. The
first step towards ideals with high periodicity is to achieve high
periodicity in single-loop ideals in cyclic automata:

Lemma 7.4. Let Ai be a cyclic automaton with ≤ m states for
each i = 1, 2 and let d be a multiple of m2!. If ↓⪯dv

∗ belongs to
Adh⪯d (L(Ai)) for i = 1, 2, then there is a w ∈ (Σd)∗ such that
(i) ↓⪯dv

∗ ⊆ ↓⪯dw
∗, (ii) ↓⪯dw

∗ also belongs to Adh⪯d (L(Ai)) for
i = 1, 2, and (iii) πd (w) ≤ m2.

Proof of Lemma 7.4. Write v = v1 · · ·vn , v1, . . . ,vn ∈ Σ. Since the
ideal ↓⪯dv

∗ belongs to Adh⪯d (L(Ai)) for i = 1, 2, we can find
v ∈ ↓⪯d (L(Ai)∩↓⪯dv

∗) for i = 1, 2. This means there are witnesses

v̄i = ūi,0v1ūi,1 · · ·vnūi,n ∈ L(Ai) ∩ ↓⪯dv
∗

such that ūi, j ∈ (Σd)∗ for j ∈ [1,n] and i = 1, 2. Note that since
v̄i ∈ ↓⪯dv

∗ and v ⪯d v̄i , we have ↓⪯d v̄
∗
i = ↓⪯dv

∗ and thus we
have κd (v̄i) = κd (v) according to Lemma 7.3.

In the run of Ai for ūi,0v1ūi,1 · · ·vnūi,n , let qi, j be the state
occupied after reading ūi, j , for j ∈ [0,n] and i = 1, 2. Since m2!
divides d , which in turn divides n, we have n+1 > m2! ≥ m2. There-
fore, there are j,k ∈ [0,n], j < k , with (q1, j ,q2, j) = (q1,k ,q2,k).
Moreover, they can be chosen so that t := k − j < m2. Since
m2! divides d , we know that t < m2 divides d and may define
r = d/t . Let xi = ūi,0v1ūi,1 · · ·vjūi, j , yi = vj+1ūi, j+1 · · ·vkūi,k ,
zi = vk+1ūi,k+1 · · ·vnūi,n . Then, by the choice of j,k , we have
(xiy

∗
i zi)

∗ ⊆ L(Ai). In particular, the word

wi =

r−1∏
ℓ=0

xiyiy
ℓ
i zixiyiy

r−ℓ
i zi

belongs to L(Ai). Moreover, since |yi | ≡ t mod d , we can conclude
|wi | ≡ r (2|xiyizi | + rt) ≡ 0 mod d . We claim that

κd (wi) =

r−1⋃
ℓ=0

κd (ρ
ℓt (v̄i)).

We begin with the inclusion “⊇”. For each ℓ ∈ [0, r−1] and i ∈ {1, 2},
• the word xi occurs in wi at a position p ≡ |xiyizi | + ℓt
(mod d) and hence p ≡ ℓt (mod d),

• the word yi occurs inwi at a position p ≡ |xi | + ℓt (mod d),
• the word zi occurs inwi at a positionp ≡ |xiyi |+ℓt (mod d).

Hence, for each position p in v̄i and each ℓ ∈ [0, r − 1], there is
a position p′ ≡ p + ℓt (mod d) with κd (v̄i)(p) ⊆ κd (wi)(p

′). This
prove the inclusion “⊇”.

On the other hand, every factor xi , yi , and zi that occurs in the
definition of wi at a position p ∈ [1, |wi |] also occurs in v̄i at a
position p′ ∈ [1,n] with p′ ≡ p − ℓt (mod d) for some ℓ ∈ [0, r − 1].
Therefore, we also have the inclusion “⊆”.

The identity κd (wi) =
⋃r−1

ℓ=0 κd (ρ
ℓ ·t (v̄i)) clearly implies that

πd (wi) ≤ t and also ↓⪯d (v̄i)
∗ ⊆ ↓⪯dw

∗
i , which in turn yields

↓⪯dv
∗ ⊆ ↓⪯dw

∗
i . Moreover, since (xiy

∗
i zi)

∗ ⊆ L(Ai), we have
w∗
i ⊆ L(Ai) and in particular ↓⪯dw

∗
i ⊆ ↓⪯d L(Ai). This clearly

implies that ↓⪯dw
∗
i belongs to Adh⪯d (L(Ai)) for i = 1, 2. Hence, if

we can show ↓⪯dw
∗
1 = ↓⪯dw

∗
2 , the proof is complete. We use ρ also

as a rotation map on P(Σ)[1,d]: For µ ∈ P(Σ)[1,d] and i ∈ [1,d], let
ρ(µ)(i) = µ(i ′), where i ′ ∈ [1,d] is chosen so that i ′ ≡ i − 1 mod d .
Note that κd (ρ(z)) = ρ(κd (z)) for every z ∈ Σ∗. Observe that since
κd (v̄i) = κd (v) for i ∈ {1, 2}, we have

κd (wi) =

r−1⋃
ℓ=0

κd (ρ
ℓt (v̄i)) =

r−1⋃
ℓ=0

ρℓt (κd (v̄i)) =
r−1⋃
ℓ=0

ρℓt (κd (v)),

and thus κd (w1) = κd (w2), which, according to Lemma 7.3, implies
↓⪯dw

∗
1 = ↓⪯dw

∗
2 . □

Associated patterns In order to extend this to general ideals and
automata, we needmore guarantees on howwordsu0vk1u1 · · ·vknun
embed into witness words.

Let u0v1u1 · · ·vnun be a loop pattern for Md and let L ⊆ Σ∗.
We say that the loop pattern is associated to L if for every k ≥ 0,
there is a word ū0v̄1ū1 · · · v̄nūn ∈ L such that vki ⪯d v̄i ∈ ↓⪯dv

∗
i

for every i ∈ [1,n] and ui ⪯d ūi ∈ ↓⪯dv
∗
i uiv

∗
i+1 for i ∈ [1,n − 1]

and u0 ⪯d ū0 ∈ ↓⪯du0v∗1 and un ⪯d ūn ∈ ↓⪯dv
∗
nun .

Of course, if the pattern u0v1u1 · · ·vnun is associated to L, then
the ideal I = ↓⪯du0v∗1u1 · · ·v∗nun belongs to Adh⪯d (L). However,
the converse is not true. Consider, for example, the case d = 2
and the loop pattern ε · (aa) · ε · (abba) · ε , where aa and abba
are loops and the constant parts are all empty. The resulting ideal
↓⪯2 (aa)

∗(abba)∗ belongs to Adh⪯2 ((abba)
∗) because of the iden-

tity ↓⪯2 (aa)
∗(abba)∗ = ↓⪯2 (abba)

∗: Both sets contain precisely the
words in {a,b}∗ of even length. Note that the pattern ε · (aa) · ε ·
(abba) · ε is not associated to (abba)∗, because no word in the latter
contains (aa)2 as an infix, let alone arbitrarily high powers of aa.

However, we will see that every ideal admits a representation
by a loop pattern so that membership in the adherence implies
association of the loop pattern. A loop pattern u0v1u1 · · ·vnun for
Md is irreducible if removing any loop would induce a strictly
smaller ideal. This means, for each i ∈ [1,n], the loop pattern
u0(v1)u1 · · · (vi−1)ui−1ui · · · (vn)un induces a strictly smaller ideal
than u0v1u1 · · ·vnun . Every ideal is induced by some irreducible
loop pattern: Just pick one with a minimal number of loops.

We shall prove that for an irreducible loop pattern, member-
ship in the adherence of a language L implies association to L
(Lemma 7.6). To that end, we prove first that if the loop pattern
u0v1u1 · · ·vnun is irreducible, then for each k ∈ N, any embedding
of u0v

x1
1 u1 · · ·v

xn
n un into u0v

y1
1 u1 · · ·v

yn
n un for sufficiently large

xi forces at least k copies of each vi to be embedded into vyii .
Let us make this precise. Suppose x ,y ∈ Σ∗, x = x1 · · · xr , and

y = y1 · · ·ys , where x1, . . . ,xr ,y1, . . . ,yr are letters in Σ. A strictly
monotone map α : {1, . . . , r } → {1, . . . , s} is a d-embedding of x in
y if r ≡ s (mod d),xi = yα (i) for i ∈ [1, r], and for each i ∈ [1, r], we
have α(i) ≡ i (mod d). Clearly, we have x ⪯d y if and only if there
is ad-embedding ofx iny. Now letu0v1u1 · · ·vnun be a loop pattern
for Md and x = u0v

x1
1 u1 · · ·v

xn
n un and y = u0v

y1
1 u1 · · ·v

yn
n un . A

d-embedding of x in y is called k-normal if for each i ∈ [1,n], α
maps at least k-many factors vi in x to vyii . Clearly, if k ≤ xi ≤ yi

Separability by PTL and downward closures beyond subwords LICS ’18, July 9–12, 2018, Oxford, United Kingdom

for all i ∈ [1,n], then there exists a normal d-embedding of x in y.
However, not every d-embedding has to be k-normal.

Lemma 7.5. Let u0v1u1 · · ·vnun be an irreducible loop pattern for
Md . For each k ∈ N, there is a constant ℓ ∈ N such that if α is a
d-embedding of u0v

x1
1 u1 · · ·v

xn
n un in u0v

y1
1 u1 · · ·v

yn
n un and xi ≥ ℓ

for i ∈ [1,n], then α is k-normal.

Here, the idea is the following. If there were a k such that for
simultaneously unbounded vectors (x1, . . . ,xn), we can embed
u0v

x1
1 u1 · · ·v

xn
n un into u0v

y1
1 u1 · · ·v

yn
n un while sending at most

k copies ofvi tov
yi
i for some i ∈ [1,n], then an unbounded amount

of copies of vi has to be placed either to the left or to the right of
v
yi
i . From that, one can deduce that the loop vi in the pattern can
be removed without shrinking the generated ideal.

Lemma 7.6. Let u0v1u1 · · ·vnun be an irreducible loop pattern for
Md . Then ↓⪯du0v∗1u1 · · ·v∗nun belongs to Adh⪯d (L) if and only if
u0v1u1 · · ·vnun is associated to L.

Using Lemma 7.6, we can complete the first proof part:

Lemma 7.7. Let Ai be a finite automaton with ≤ m states for
each i = 1, 2 and let d be a multiple of m2!. If Adh⪯d (L(A1)) ∩
Adh⪯d (L(A2)) , ∅, then there is a loop pattern u0v1u1 · · ·vnun
forMd such that ↓⪯du0v∗1u1 · · ·v∗nun belongs to Adh⪯d (L(Ai)) for
i = 1, 2 and πd (vj) ≤ m2 for j ∈ [1,n].

Part II: Almost perfect witnesses In the second part, we place
further restrictions on the structure of ideals that witness insep-
arability. In return, we get stronger guarantees on the shape of
witness words. Using Lemma 7.7, proving Proposition 7.2 would
not be difficult if for a loop pattern u0v1u1 · · ·vnun , we could guar-
antee witness words of the shape u0v̄1u1 · · · v̄nun with v̄i ∈ ↓⪯dv

∗
i .

Let us call such witnesses perfect. Unfortunately, even for irre-
ducible loop patterns, we cannot guarantee perfect witnesses: Con-
sider the ideal I = ↓⪯2a(abba)

∗. The loop pattern a · (abba) · ε
(with the loop abba) is clearly irreducible. Moreover, I belongs to
Adh⪯2 (L) for L = b{a,b}∗: For k ∈ N, the word b(abba)k+1 ∈ L

satisfies a(abba)k ⪯2 b(abba)k+1 ⪯2 a(abba)k+2, which proves
I ⊆ ↓⪯2 (L ∩ I). Here, the witness words b(abba)k+1 are not perfect
because they start in b instead of a.

We shall see later that, with an extended syntax for loop patterns
and an adapted notion of irreducibility, we can guarantee almost
perfect witnesses. An extended loop pattern (forMd) is an expres-
sion of the form u0v

[r1]
1 u1 · · ·v

[rn]
n un , in which u0v1u1 · · ·vnun is

a loop pattern for Md (i.e. vi ∈ (Σd)∗ for i ∈ [1,n]) and where
r1, . . . , rn ∈ [0,d − 1]. The ideal generated by the extended loop
pattern is defined as ↓⪯du0v∗1w1u1 · · ·v∗nwnun , where wi is the
length-ri prefix of vi for i ∈ [1,n]. Slightly abusing notation, we
use ↓⪯du0v

[r1]
1 u1 · · ·v

[rn]
n un to denote the generated ideal. When

we use such an expression with ri > d , this stands for the pattern
u1v

[s1]
1 u1 · · ·v

[sn]
n un , where si ∈ [0,d − 1] and si ≡ ri (mod d).

Let us now introduce our notion of “almost perfect witnesses”.
Consider an extended loop pattern u0v

[r1]
1 u1 · · ·v

[rn]
n un for Md

and let wi be the length-ri prefix of vi for i ∈ [1,n]. The pattern
is said to be associated to a language L if for every k ∈ N, there
is a word ū0v̄1ū1 · · · v̄nūn ∈ L so that for every i ∈ [1,n], we have
vki wi ⪯d v̄i and v̄i ∈ ↓⪯dv

[ri]
i . Moreover, ū0 = u0, ūn = un , and

for each i ∈ [1,n − 1]: (i) if ui is not empty, then ūi = ui and (ii) if

ui is empty, then ūi ∈ ↓⪯d λ
ri (vi)

∗v∗i+1. Let us call such witnesses
almost perfect.

As in Lemma 7.6, we have a notion of irreducible extended loop
patterns. Consider an extended loop pattern u0v

[r1]
1 u1 · · ·v

[rn]
n un

and letwi be the length-r prefix ofvi for i ∈ [1,n]. We say that this
extended loop pattern is irreducible if

1. the corresponding loop pattern u0(v1)w1u1 · · · (vn)wnun is
irreducible and

2. for each i ∈ [0,n − 1], ui is either empty or the last letter of
ui is not contained in κd (vi+1)(d) and

3. for each i ∈ [1,n], ui is either empty or the first letter of ui
is not contained in κd (vi)(ri + 1).

Irreducible extended loop pattern admit almost perfect witnesses:

Lemma 7.8. The ideal generated by an irreducible extended loop
pattern p forMd belongs to Adh⪯d (L) iff p is associated to L.

However, irreducible extended loop patterns do not guarantee
perfect witnesses. In other words, we cannot guarantee ūi = ui
if ui = ε but have to allow ūi ∈ ↓⪯d λ

ri (vi)
∗v∗i+1. Consider, for

example, the extended loop pattern (ab)[0](cd)[0]. It is irreducible
and its ideal I = ↓⪯2 (ab)

∗(cd)∗ belongs to Adh⪯2 ((ab)
∗ad(cd)∗),

but the witness words (ab)kad(cd)k ∈ I always contain a factor
ad ∈ ↓⪯2 (ab)

∗(cd)∗.
To complete the second part, we need to show that every ideal

can be represented by an irreducible extended loop pattern. More-
over, the construction of the pattern should not destroy the pre-
viously established upper bound on πd (vi). The following can be
shown straighforwardly by choosing an extended loop pattern with
a suitable minimality condition.

Lemma 7.9. Let x0y
[s1]
1 · · ·y

[sℓ]
ℓ

xℓ be an extended loop pattern for
Md for which πd (yi) ≤ B for every i ∈ [1, ℓ]. Then there is an
irreducible extended loop pattern u0v

[r1]
1 u1 · · ·v

[rn]
n un forMd gen-

erating the same ideal where also πd (vi) ≤ B for every i ∈ [1,n].

Part III: Pumping up The final part of the proof of Proposi-
tion 7.2 is to construct ⪯ℓ ·d -ideals using pumping.

Lemma 7.10. Let A be a finite automaton with ≤ m states and
let d be a multiple of 2m3!. If u0v

[r1]
1 u1 · · ·v

[rn]
n un is an irreducible

extended loop pattern with πd (vi) ≤ m2 such that its ideal belongs
to Adh⪯d (L(A)), then for each ℓ ∈ N, the ideal

↓⪯ℓ·d
u0(v

ℓ
1)

[r1]u1 · · · (v
ℓ
n)

[rn]un (1)
belongs to Adh⪯ℓ·d (L(A)).

Here, the strong guarantees of associated extended loop patterns
allow us to focus on two types of factors in which we must pump:
factors v̄i and factors ūi for empty ui . One can show that repeating
subfactors thereof whose length is divisible by a particular πd (vi)
will not lead out of the ⪯ℓ ·d -ideal. Moreover, since we established in
the first part that each period πd (vi) is small (≤ m2), we can always
find a subfactor of length divisible by πd (vi) that is pumpable.

7.1 Undecidability
In this section, we prove Theorem 4.6. Second-order pushdown lan-
guages are those accepted by second-order pushdown automata [23].
In order to prove that separability of second-order pushdown lan-
guages by BΣ1[<,mod] is undecidable, we need no detailed defini-
tion of second-order pushdown automata. All we need is that their

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Georg Zetzsche

languages form a full trio (shown by Aho [1] for the equivalent
indexed grammars) and that we can construct automata for two
particular types of languages. Let us describe these languages. For
w ∈ {1, 2}∗, let ν (w) be the number obtained by interpreting the
word as a reverse 2-adic representation. Thus, forw ∈ {1, 2}∗, let

ν (ε) = 0, ν (1w) = 2 · ν (w) + 1, ν (2w) = 2 · ν (w) + 2.

Note that ν : {1, 2}∗ → N is a bijection. In the full version of [29],
it was shown1 that given two morphisms α , β : Σ∗ → {1, 2}∗, one
can construct in polynomial time an indexed grammar generating
{aν (α (w))bν (β (w)) | w ∈ Σ+}. Applying a simple transduction yields

Lα,β = {aν (α (w))cbν (β (w)) | w ∈ Σ+}

and hence an indexed grammar for Lα,β . The context-free language
E = {ancbn | n ∈ N} is also a second-order pushdown language.
We apply a technique introduced by Hunt [18] and simplified by
Czerwiński and Lasota [8]. The idea is to show that every decidable
problem reduces to our problem in polynomial time:

Proposition 7.11. For each decidableD ⊆ Γ∗, there is a polynomial-
time algorithm that, given u ∈ Γ∗, computes morphisms α , β such
that Lα,β is inseparable from E by BΣ1[<,mod] if and only ifu ∈ D.

Thus, decidability of separability by BΣ1[<,mod] would contra-
dict the time hierarchy theorem (see, e.g. [26, Thm 9.10]).

Let us prove Proposition 7.11. Recall that the Post Correspondence
Problem asks, given two morphisms α , β : Σ∗ → {1, 2}∗, whether
there is a word w ∈ Σ+ such that α(w) = β(w). The standard
undecidability proof [26] constructs, given a Turing machine M ,
morphisms α , β such that forw ∈ Σ∗, any common prefix of α(w)

and β(w) encodes a prefix of a computation history ofM . Thus, ifM
is terminating, there is a bound on the length of common prefixes
of α(w) and β(w) forw ∈ Σ∗. For our decidable set D, there exists
a fixed terminating Turing machine, so we can proceed as follows.
Given a word u ∈ Γ∗, we apply the construction to compute in
polynomial time morphisms α , β : Σ∗ → {1, 2}∗ such that

(i) u ∈ D iff there is aw ∈ Σ+ with α(w) = β(w) and
(ii) there exists k ∈ N so that for everyw ∈ Σ∗, the words α(w)

and β(w) have no common prefix longer than k .
We claim that u ∈ D if and only if Lα,β and E are inseparable by
BΣ1[<,mod]. Clearly, if u ∈ D, then the languages Lα,β and E
intersect and cannot be separable. Suppose u < D. Then (ii) implies
that Lα,β is included in

Sk = {ar cbs | r . s mod 2k+1}

∪ {ar cbs | min(r , s) < 2k+1 − 1, r , s}

because x ,y ∈ {1, 2}∗, |x |, |y | > k , have a common prefix of
length > k iff ν (x) ≡ ν (y) mod 2k+1. Moreover, for x ∈ {1, 2}∗,
we have |x | ≤ k iff ν (x) < 2k+1 − 1. Since Sk is clearly definable in
BΣ1[<,mod] and disjoint from E, this shows that Lα,β and E are
separable by BΣ1[<,mod].

Acknowledgments
The author is grateful to Wojciech Czerwiński, Sylvain Schmitz,
and Marc Zeitoun for discussions that yielded important insights.

This work is supported by a fellowship from the Fondation Sci-
ences Mathématiques de Paris (FSMP) and partially funded by the
1To be precise, this was shown for the unreversed 2-adic representation, but the
reversed case follows by just reversing the images of the morphisms.

DeLTA project (ANR-16-CE40-0007). The results were partially ob-
tained when the author was affiliated with LSV (ENS Paris-Saclay)
and supported by a fellowship within the Postdoc-Program of the
German Academic Exchange Service (DAAD) and by Labex Digi-
Cosme, Université Paris-Saclay, project VERICONISS.

References
[1] Alfred V Aho. 1968. Indexed grammars—an extension of context-free grammars.

J. ACM 15, 4 (1968), 647–671.
[2] Ahmed Bouajjani, Javier Esparza, and Tayssir Touili. 2003. A generic approach to

the static analysis of concurrent programs with procedures. Int. J. Found. Comput.
S. 14, 04 (2003), 551–582.

[3] Walter Bucher, Andrzej Ehrenfeucht, and David Haussler. 1985. On total regula-
tors generated by derivation relations. Theoretical Computer Science 40 (1985),
131–148.

[4] Sagar Chaki, Edmund M. Clarke, Nicholas A. Kidd, Thomas W. Reps, and Tayssir
Touili. 2006. Verifying Concurrent Message-Passing C Programs with Recursive
Calls. Springer-Verlag, Berlin Heidelberg, 334–349.

[5] Laura Chaubard, Jean Éric Pin, and Howard Straubing. 2006. First Order Formulas
with Modular Predicates. In LICS 2006. 211–220.

[6] Lorenzo Clemente, Paweł Parys, Sylvain Salvati, and Igor Walukiewicz. 2016.
The Diagonal Problem for Higher-Order Recursion Schemes is Decidable. In LICS
2016. ACM, New York, NY, USA, 96–105.

[7] Bruno Courcelle. 1991. On constructing obstruction sets of words. Bulletin of the
EATCS 44 (1991), 178–186.

[8] Wojciech Czerwinski and Slawomir Lasota. 2017. Regular separability of one
counter automata. In LICS 2017. 1–12.

[9] Wojciech Czerwiński, Wim Martens, Lorijn van Rooijen, and Marc Zeitoun. 2015.
A Note on Decidable Separability by Piecewise Testable Languages. In FCT 2015.
Springer-Verlag, Berlin Heidelberg, 173–185.

[10] Wojciech Czerwiński, Wim Martens, Lorijn van Rooijen, Marc Zeitoun, and
Georg Zetzsche. 2017. A Characterization for Decidable Separability by Piecewise
Testable Languages. (2017). To appear in Discrete Mathematics & Theoretical
Computer Science.

[11] Andrzej Ehrenfeucht, David Haussler, and Grzegorz Rozenberg. 1983. On regu-
larity of context-free languages. Theor. Comput. Sci. 27, 3 (1983), 311–332.

[12] Alain Finkel and Jean Goubault-Larrecq. 2009. Forward Analysis for WSTS, Part
I: Completions. In STACS 2009, Vol. 3. 433–444.

[13] Jean Goubault-Larrecq and Sylvain Schmitz. 2016. Deciding Piecewise Testable
Separability for Regular Tree Languages. In ICALP 2016.

[14] Peter Habermehl, Roland Meyer, and Harro Wimmel. 2010. The Downward-
Closure of Petri Net Languages. In ICALP 2010.

[15] Matthew Hague, Jonathan Kochems, and C.-H. Luke Ong. 2016. Unboundedness
and Downward Closures of Higher-order Pushdown Automata. In POPL 2016.
ACM, New York, NY, USA, 151–163.

[16] Leonard H. Haines. 1969. On free monoids partially ordered by embedding.
Journal of Combinatorial Theory 6, 1 (1969), 94–98.

[17] Graham Higman. 1952. Ordering by divisibility in abstract algebras. P. Lond.
Math. Soc. 2 (1952), 326–336.

[18] Harry B. Hunt III. 1982. On the decidability of grammar problems. J. ACM 29, 2
(1982), 429–447.

[19] Pierre Jullien. 1969. Contribution à létude des types d’ordres dispersés. Ph.D.
Dissertation. Université de Marseille.

[20] Joseph B. Kruskal. 1972. The theory of well-quasi-ordering: A frequently discov-
ered concept. J. Comb. Theory A 13, 3 (1972), 297–305.

[21] Jérôme Leroux and Sylvain Schmitz. 2015. Demystifying Reachability in Vector
Addition Systems. In LICS 2015. 56–67.

[22] Zhenyue Long, Georgel Calin, Rupak Majumdar, and Roland Meyer. 2012.
Language-Theoretic Abstraction Refinement. In FASE 2012 (Lecture Notes in
Computer Science), Vol. 7212. Springer-Verlag, 362–376.

[23] A. N. Maslov. 1976. Multilevel stack automata. Problems of Information Transmis-
sion 12, 1 (1976), 38–42.

[24] Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. 2013. Separating Regular
Languages by Locally Testable and Locally Threshold Testable Languages. In
FSTTCS 2013, Vol. 24. 363–375.

[25] Imre Simon. 1975. Piecewise Testable Events. In Proceedings of the 2nd GI Confer-
ence on Automata Theory and Formal Languages. Springer-Verlag, Berlin Heidel-
berg, 214–222.

[26] Michael Sipser. 2013. Introduction to the Theory of Computation. Cengage Learn-
ing.

[27] Thomas G. Szymanski and John H. Williams. 1976. Noncanonical extensions of
bottom-up parsing techniques. SIAM J. Comput. 5, 2 (1976), 231–250.

[28] Jan van Leeuwen. 1978. Effective constructions in well-partially-ordered free
monoids. Discrete Mathematics 21, 3 (1978), 237–252.

[29] Georg Zetzsche. 2015. An Approach to Computing Downward Closures. In ICALP
2015. Full version available at http://arxiv.org/abs/1503.01068.

[30] Georg Zetzsche. 2015. Computing downward closures for stacked counter au-
tomata. In STACS 2015, Vol. 30. 743–756.

http://arxiv.org/abs/1503.01068

	Abstract
	1 Introduction
	2 Preliminaries
	3 Parameterized WQOs and examples
	4 Main results
	5 Computing closures and deciding separability
	6 Ideal representations
	7 Separability by []
	7.1 Undecidability

	Acknowledgments
	References

