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Abstract

We present a fuzzy (or quantitative) version of the van Ben-
them theorem, which characterizes propositional modal logic
as the bisimulation-invariant fragment of first-order logic.
Specifically, we consider a first-order fuzzy predicate logic
along with its modal fragment, and show that the fuzzy
first-order formulas that are non-expansive w.r.t. the natural
notion of bisimulation distance are exactly those that can be
approximated by fuzzy modal formulas.
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1 Introduction

Fuzzy logic is a form of many-valued logic originally studied
by Lukasiewicz and Tarski [27] and later popularized as a
logic of vagueness by Zadeh [54]. It is based on replacing the
standard set of Boolean truth values with a different lattice,
most often, like in the present paper, the unit interval. Saying
that a formula ¢ has truth value r € [0, 1] then means that ¢
holds with degree r, which would apply to typical vague
qualifications such as a given person being tall (in contrast
to assigning a probability p € [0, 1] to ¢, which would be read
as saying that ¢ is either completely true with probability p
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or completely false with probability 1—p, as in ‘the die under
the cup shows a 3 with probability p’).

Beyond the original propositional setup, fuzzy truth values
appear in variants of more expressive logics, notably in fuzzy
first-order logics [10, 20, 31] and in various fuzzy modal logics.
The latter go back to many-valued modal logics based on
making valuations in Kripke models [29, 30, 32, 36, 39, 42] or
additionally also the accessibility relation [19] many-valued,
and are nowadays maybe most popular in their incarnation
as fuzzy description logics (e.g. [21, 38, 43, 46, 53]; see [28]
for an overview). Many-valued modal fixpoint logics are also
used in software model checking (e.g. [7, 26]).

As in the classical case, fuzzy modal logics typically embed
into their first-order counterparts. In the classical setting,
the core result on this embedding is van Benthem’s theorem,
which states that a first-order formula ¢ is equivalent to a
modal formula if and only if ¢ is bisimulation-invariant [47].
This is a form of expressive completeness: Modal logic ex-
presses only bisimulation-invariant properties, but on such
properties it is as expressive as first-order logic. An alterna-
tive view of van Benthem’s theorem (e.g. [34]) is that modal
logic provides effective syntax for bisimulation-invariant
first-order properties, which first-order logic itself does not,
as bisimulation-invariance of first-order formulas is unde-
cidable. Briefly, the aim of the current paper is to provide a
counterpart of this theorem for a fuzzy modal logic.

There is a wide variety of possible semantics for the fuzzy
propositional connectives (see [28] for an overview), em-
ploying, e.g., the additive structure (Lukasiewicz logic), the
multiplicative structure (product logic) or the Heyting alge-
bra structure (Gddel logic) of the unit interval. For technical
reasons, we work with the simplest possible semantics where
conjunction is interpreted as minimum and all other connec-
tives are derived using the classical encodings, effectively
a fragment of Lukasiewicz logic often called Zadeh logic.
That is, we consider Zadeh fuzzy modal logic, more precisely
Zadeh fuzzy K or in description logic terminology Zadeh
fuzzy ALC [43], with Zadeh fuzzy first-order logic as the
first-order correspondence language, essentially the Zadeh
fragment of Novak’s Lukasiewicz fuzzy first order logic [31].

It has long been recognized that for quantitative systems,
notions of behavioural distance are more natural than two-
valued bisimilarity [49]. In such a metric setting, bisimulation
invariance becomes non-expansivity w.r.t. behavioural dis-
tance (e.g. if one views classical bisimilarity as a {0, 1}-valued
pseudometric, then non-expansivity means that distance 0
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is preserved, which is precisely bisimulation invariance).
The first step in our program is therefore to establish a no-
tion of behavioural distance for fuzzy relational systems. We
consider three different ways to define such a behavioural
metric: via the modal logic, via a bisimulation game (similarly
as in work on probabilistic systems [13]), or via a fixpoint
characterization based on the Kantorovich lifting (similarly
as in [4]). We show that they all coincide; in particular we
obtain a Hennessy-Milner type theorem (behavioural dis-
tance equals logical distance). This gives us a stable notion
of behavioural metric for fuzzy relational systems.

Our main result then says that the fuzzy modal formulas lie
dense in the bisimulation-invariant first-order formulas, where
by bisimulation-invariant we now mean non-expansive w.r.t.
behavioural distance. In other words, every bisimulation-
invariant fuzzy first-order formula can be modally approxi-
mated. The proof follows a strategy introduced for the clas-
sical case by Otto [33], going via locality w.r.t. an adapted
notion of Gaifman distance to show that every bisimulation-
invariant fuzzy first-order formula is already non-expansive
w.r.t. depth-k behavioural distance for some k (this distance
arises, e.g., by limiting the bisimulation game to k rounds).
The key part of our technical development is, then, to es-
tablish a fuzzy counterpart of what in the classical case is
a triviality: The classical proof ends in remarking that ev-
ery state property (without any assumption of first-order
definability) of relational transition systems that is invariant
under depth-k bisimilarity is expressible by a modal for-
mula of modal rank k. In the fuzzy setting, this becomes a
non-trivial result of independent interest: The fuzzy modal
formulas of modal rank k lie dense in the fuzzy state properties
that are non-expansive w.r.t. depth-k behavioural distance.

Proofs are mostly omitted or only sketched; a full version
of the paper is available [52].

Related Work Van Benthem’s theorem was later shown
by Rosen [35] to hold also over finite structures. Modal char-
acterization theorems have since been proved in various
settings, e.g. logics with frame conditions [11], coalgebraic
modal logics [41], fragments of XPath [1, 18, 45], neighbour-
hood logic [22], modal logic with team semantics [24], modal
p-calculi (within monadic second order logics) [15, 23], PDL
(within weak chain logic) [9], modal first-order logics [44, 48],
and two-dimensional modal logics with an S5-modality [51].
All these results concern two-valued logics; we are not aware
of any previous work of this type for fuzzy modal logics.
There is, however, work on behavioural distances and
fuzzy bisimulation in connection with fuzzy modal logic. We
discuss only fuzzy notions of bisimulation, omitting work
on classical behavioural equivalence for fuzzy transition
systems and fuzzy automata. Balle et al. [5] consider bisimu-
lation metrics for weighted automata in order to characterize
approximate minimization. Cao et al. [8] study a notion of
behavioural distance for fuzzy transition systems, where the
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lifting of the metric is derived from a transportation problem
(the dual of the Kantorovich metric), but without consider-
ing modal logics. Fan [16] proves a Hennessy-Milner type
theorem for a fuzzy modal logic with Godel semantics and
a notion of fuzzy bisimilarity. In [17] she considers an ap-
plication to social network analysis and also observes that
Lukasiewicz logic is problematic in this context (since the
operators do not preserve non-expansivity). Eleftheriou et
al. [14] show a Hennessy-Milner theorem for Heyting-valued
modal logics as introduced by Fitting [19].

Our work in the fuzzy setting takes some inspiration from
related work on probabilistic systems: Desharnais et al. study
behavioural and logical metrics on probabilistic systems and
processes [12] and provide a game characterization [13]. Van
Breugel and Worrell [49] establish a Hennessy-Milner theo-
rem for the probabilistic case, using coalgebraic methods.

2 Fuzzy Modal Logic

We proceed to recall the syntax and semantics of Zadeh
fuzzy K or equivalently Zadeh fuzzy ALC [43], along with
its first-order correspondence language. For simplicity we
restrict the exposition to the unimodal case; the development
extends straightforwardly to the multimodal case by just
adding more indices. Formulas ¢, i of fuzzy modal logic are
given by grammar

gy u=clplgoc|gloAy| O

where p ranges over a fixed set At of propositional atoms
and ¢ € Q N [0, 1] over rational truth constants. The syntax
is thus mostly the same as for standard modal logic; the only
additional ingredients are the truth constants and modified
subtraction © as used in real-valued modal logics for proba-
bilistic systems [49]. Further logical connectives are defined
by the classical encodings, e.g. ¢ V {/ abbreviates —(—=¢ A =),
and ¢ — ¢ abbreviates —¢ V ¢; also, we introduce a dual
modality O as O¢ := =O—¢. The rank rk(¢) of a formula ¢
is the maximal nesting depth of the modality <& and proposi-
tional atoms in ¢. Formally, rk(¢) is thus defined recursively
by rk(c) = 0, rk(p) = 1, rk(¢G¢) = 1 + rk(¢), and obvious
clauses for the remaining constructs. We write L for the
set of modal formulas of rank at most k.

The semantics of the logic is defined over fuzzy relational
models (or just models)

A= (A (pﬂ)peAt, Rﬂ)

consisting of a set A of states, a map p™ : A — [0, 1] for
each p € At, and a map RA: AXA - [0, 1]; we will
drop superscripts A when clear from the context. That is,
propositional atoms are interpreted as fuzzy predicates on
the state set, and states are connected by a binary fuzzy
transition relation, where fuzzy is short for [0, 1]-valued (as
usual, we use crisp as an informal opposite of fuzzy, i.e. crisp
means two-valued). Fuzzy relational models are a natural
fuzzification of Kripke models, and in fact the instantiation
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of latticed Kripke models over DeMorgan lattices [7, 26] to
the lattice [0, 1]; they arise from fuzzy transition systems
(e.g. [8]; fuzzy automata go back as far as [50]) by adding
propositional atoms. Unless stated otherwise, we adhere
to the convention that models are denoted by calligraphic
letters and their state sets by the corresponding italic.

We use A, V to denote meets and joins (i.e. minimum and
maximum) in [0, 1]. A modal formula ¢ is then assigned a
fuzzy truth value ¢ #(a), or just ¢(a), at every state a € A,
defined inductively by

c(a) =c p(a) =p”(a)
(¢ ©c)(a) = max(¢p(a) —c,0)  (~¢)(a) =1-¢(a)
(¢ AY)(a) = ¢(a) Ay(a)
(09)(a) = Vwea(R"(a,a') A §(a)).

For brevity, we often conflate formulas and their evaluation
functions in both notation and vernacular, e.g. in statements
claiming that certain modal formulas form a dense subset of
some set of state properties.

Remark 2.1. As indicated above, we thus equip the propo-
sitional connectives with Zadeh semantics. This corresponds
to widespread usage but is not without disadvantages in
comparison to Lukasiewicz semantics, which defines the
conjunction of a, b € [0, 1] as max(a + b — 1, 0); e.g. implica-
tion is the residual of conjunction in Lukasiewicz semantics
but not in Zadeh semantics (see [25] for a more detailed dis-
cussion). We will later point out where this choice becomes
most relevant; roughly speaking, Lukasiewicz semantics is
not easily reconciled with behavioural distance.

The modal syntax as given above is essentially identical
to the one used by van Breugel and Worrell to characterize
behavioural distance in probabilistic transition systems [49].
Semantically, fuzzy models differ from probabilistic ones in
that they do not require truth values of successor edges to
sum up to 1, and moreover in the probabilistic setting the
modality ¢ is interpreted by expected truth values instead
of suprema. The semantics of the propositional connectives,
on the other hand, is in fact the same in both cases.

Example 2.2. We can see fuzzy K as a logic of fuzzy transi-
tion systems (e.g. [8]). E.g. the formula ¢00 then describes,
roughly speaking, the degree to which a deadlocked state
can be reached in one step. Formally, (00)(y) is the degree
to which a state y in a model A is deadlocked, i.e. the infi-
mum over 1 — r where r ranges over the degrees R (y, z) to
which any state z is a successor of y. Then, (¢00)(x) is the
supremum of min(R™(x, y), (00)(y)) over all y.

In the reading of fuzzy K within the description logic
fuzzy ALC [43], the underlying fuzzy relation would be
seen as a vague connection between individuals, such as a
‘likes’ relation between persons. In this reading, the formula
O(soft-spoken A Oreasonable) describes people who only
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like people who are soft-spoken and like some reasonable
person, with all these terms understood in a vague sense.

As indicated previously, the first-order correspondence lan-
guage for fuzzy modal logic in this sense is Zadeh fuzzy
first-order logic over a single binary predicate R and a unary
predicate p for every propositional atom p. Formulas ¢,  of
what we briefly term fuzzy first-order logic or fuzzy FOL are
thus given by the grammar

¢ Y u=clpx) | Rx.y) [ x=yldocl=p|pAy]|Ix.é

where ¢ € [0,1] N Q, p € At, and x,y range over a fixed
countably infinite set of variables. We have the usual no-
tions of free and bound variables. The quantifier rank qr(¢)
of a formula ¢ is defined, as usual, as the maximal nesting
depth of quantifiers in ¢ (unlike for the modal rank, we do
not let atomic formulas count towards the quantifier rank).
The semantics is determined as the evident extension of
the modal semantics, with the existential quantifier inter-
preted as supremum and ‘=" as crisp equality. Formally, a
formula ¢(xy, ..., x,) with free variables among xi, ..., x,
is interpreted, given a fuzzy relational model A and a vector
a = (ay,...,an) of values for the free variables, as a truth
value ¢(a) € [0, 1], given by

p(x:)(@) = p™(as) R(xi,x;)(@) = R™(a;, a;)
(x; = xj)(a) = 1if a; = aj, and 0 otherwise
(Ixo.@(x0, - ... xn))(@) =V gyea $(ao, )

and essentially the same clauses as in the modal case for the
other connectives.

We thus have a variant of the classical standard translation,
that is, a truth-value preserving embedding ST, of fuzzy K
into fuzzy FOL, indexed over a variable x naming the current
state and defined inductively by ST (p) = p(x),

ST« (¢9) = Fy. (R(x,y) A STy (4)),

and commutation with all other constructs. Fuzzy K thus
becomes a fragment of fuzzy FOL, and the object of the
present paper is to characterize their relationship.

Coalgebraic view Recall that an F-coalgebra (A, ) for a
set functor F : Set — Set consists of a set A of states and
amap a : A — FA. The set FA is thought of as containing
structured collections over A, so that « assigns to each state a
a structured collection a(a) of successors. Coalgebras thus
provide a general framework for state-based systems [37]
where F defines the branching type. We will partly use coal-
gebraic techniques in our proofs, in particular final chain
arguments. We therefore note that fuzzy relational models
are coalgebras for the set functor G given by G = [0, 1]* x F
where FX = [0,1]% is the fuzzy version of the covariant
powerset functor. That is, F acts on maps f : X — Y by
taking fuzzy direct images,

FA@©) = Vrx)=y 9(x)-
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Explicitly, a fuzzy relational model A corresponds to the G-
coalgebra (A, &) given by a(a) = (h, g) where h(p) = p”(a)
for p € At and g(a’) = R*(a,a’) for a’ € A.

A G-coalgebra morphism f : (A, &) — (B, ) between G-
coalgebras (4, @), (B, f) (i.e. fuzzy relational models A, B) is
amap f : A— Bsuchthat Gfa = Sf. Explicitly, this means
that f is a bounded morphism, i.e. p?(f(a)) = p™(a) for all
atoms p and all a € A, and RZ(f(a), b) = Vr(a)=b RM(a,a’)
for every b € B. For models A and B, we define their
disjoint union A + B as the model with domain A + B
(disjoint union of sets), p**%(c) = p7(c) for ¢ € A and
p™8(c) = p?(c) otherwise, and R 8 (c,¢’) = R (c,¢’) if
c,c’ € AR™B(c,c¢’) = RB(c,¢)ifc,c’ € B,RB(c,c’) =0
otherwise. This is precisely the categorical coproduct of A
and B as G-coalgebras; in particular, the injection maps
A - A+ Band B - A+ B are bounded morphisms.

3 Pseudometric Spaces

We recall some basics on pseudometric spaces, which differ
from metric spaces in that distinct points can have distance 0:

Definition 3.1 (Pseudometric space, non-expansive maps).
Given a non-empty set X, a (bounded) pseudometric on X is
a function d: X X X — [0, 1] such that for all x,y,z € X,
the following axioms hold: d(x, x) = 0 (reflexivity), d(x,y) =
d(y, x) (symmetry), d(x,z) < d(x,y) + d(y, z) (triangle in-
equality). If additionally d(x,y) = 0 implies x = y, then d is
a metric. A (pseudo)metric space is a pair (X, d) where X is a
set and d is a (pseudo)metric on X. The diameter of A C X
is \V/x,yea d(x,y). We equip the unit interval [0, 1] with the
standard Euclidean distance d., d¢(x,y) = |x — y|.

A function f: X — Y between pseudometric spaces
(X,d1), (Y,ds) is non-expansive if dy o (f X f) < dy, ie.
d2(f (%), f(y)) < di(x,y) for all x,y. We then write

f: (X, d]) —1 (Y, dz)

The space of non-expansive functions (X,d;) —1 (Y, dy) is
equipped with the supremum (pseudo)metric d., defined by

doo(f.9) = sup d(f(x), 9(x))

In the special case (Y,d;) = ([0, 1],d.), we will also denote
doo(f.g) as || f = glle-

As usual we denote by Bc(a) = {x € X | d(a,x) < €}
the ball of radius € around a in (X, d). The space (X, d) is
totally bounded if for every € > 0 there exists a finite e-
cover, i.e. finitely many elements ay, . ..,a, € X such that
X = UL, Be(a).

Recall that a metric space is compact iff it is complete and
totally bounded.

Given a fuzzy relational model A, we extend the semantics
of ¢ to arbitrary functions f: A — [0, 1] by

of:A=[0.1]. (0f)@)=\/ R @d) A f@).

a’ €A
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Lemma 3.1. The map f +— < f is non-expansive.

4 Behavioural Distance
and Bisimulation Games

We proceed to define our notion of behavioural distance for
fuzzy relational models. We opt for a game-based definition
as the basic notion, and relate it to logical distance, showing
that fuzzy modal logic is non-expansive w.r.t. behavioural
distance. In Section 5 we will give an equivalent characteri-
zation in terms of fixed points, and show that all distances
coincide at finite depth. Following ideas used in probabilistic
bisimulation metrics [13], we use bisimulation games that
have crisp outcomes but are parametrized over a maximal
allowed deviation; we will then define the distance as the
least parameter for which duplicator wins.

Definition 4.1. Let A, B be fuzzy relational models, and let
agp € A, by € B. The e-bisimulation game for A, ay and B, by
(or just for ag, by) played by S (spoiler) and D (duplicator) is
given as follows.

Configurations: pairs (a, b) € A X B of states.

Initial configuration: (ao, by).

Moves: Player S needs to pick a new state in one of the models
A or B, say a’ € A, such that R%A(a,a’) > €, and then D
needs to pick a state in the other model, say b’ € B, such that
RB(b,b’) > R™(a,a’) - €. The new configuration is then
(a’,b").

Winning condition: Any player who needs to move but can-
not, loses. Player D additionally needs to maintain the follow-
ing winning condition before every round: For every p € At,
Ip7(a) - p? (b)| < e.

There are two variants of the game, the unrestricted game in
which D wins infinite plays, and the depth-n e-bisimulation
game, which is restricted to n rounds, meaning that D wins
after n rounds have been played.

Remark 4.2. Note that, since the invariant only needs to
hold before every round actually played, D always wins the
depth-0 game regardless of ay and b,.

The usual composition lemma for bisimulations then takes
the following form:

Lemma 4.3. Let A, B, C be models and ay € A, by € B, ¢y €
C such that D wins the e-bisimulation game for (ay, by) and
the &-bisimulation game for (by, cy). Then D also wins the
(e + &)-bisimulation game for (ag, co). The same holds for the
corresponding depth-n bisimulation games.

As indicated above, we then obtain a notion of behavioural
distance by taking infima:

Definition 4.4 (Behavioural distance). Let A, ay and B, by
be as in Definition 4.1. The behavioural distance d° (ay, by)
of ay and by is the infimum over all € such that D wins the
e-bisimulation game for ay and by. The depth-n behavioural
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distance d,‘f(ao, by) of ay and by is defined analogously, using
the depth-n bisimulation game.

This definition is justified by the following lemma, which
follows from Lemma 4.3:

Lemma 4.5. The behavioural distance d° and all depth-n
behavioural distances dS are pseudometrics.

Remark 4.6. We emphasize that d°(a, b) = 0 does not in
general imply that D wins the 0-bisimulation game on a, b. In
this sense, the notion of e-bisimulation is thus what enables
us to avoid restricting to models that are witnessed [21] in
the sense that all suprema appearing in the evaluation of
existential quantifiers are actually maxima.

We have the expected relationship between the various be-
havioural pseudometrics:

Lemma 4.7. For all models A, B, statesa € A, b € B, and
n>m> 0, we have

d%(a,b) < dS(a,b) < d°(a,b).

As usual, behavioural equivalence is invariant under coalge-
bra morphisms; this can now be phrased as follows:

Lemma 4.8. Let A, B be fuzzy relational models, and let
f: A — B be a bounded morphism. Then for every a € A,

d%(a, f(a) = 0.

Proof (sketch). Player D wins the e-bisimulation game for
every € > 0. ]

Since coproduct injections are bounded morphisms, a special
case is

Lemma 4.9. Given models A, B and a € A, the state a in A
and the corresponding state a in A + B have behavioural
distance 0.

Behavioural distance determines our notion of bisimulation
invariance, which we take to mean non-expansivity w.r.t. be-
havioural distance. To match this with the standard notion,
interpret classical crisp bisimilarity as a discrete pseudomet-
ric d assigning distance 0 to pairs of bisimilar states and 1 to
non-bisimilar ones, and similarly interpret crisp predicates P
as maps into {0, 1}; then P is bisimulation-invariant in the
usual sense iff P is non-expansive w.r.t. d. Formal definitions
for the fuzzy setting are as follows.

Definition 4.10 (Bisimulation-invariant formulas and pred-
icates). A formula ¢ (either in fuzzy modal logic or in fuzzy
FOL, with a single free variable) is bisimulation-invariant if
for all models A, B and all statesa € A, b € B,

|$(a) — $(b)| < d°(a, b).
Similarly, given a model A, a (fuzzy) state predicate on A,
i.e. a function P: A — [0, 1], is bisimulation-invariant if P is
non-expansive w.r.t. the bisimulation distance d°. In both
cases, depth-n bisimulation invariance is defined in the same
way using depth-n behavioural distance.
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As expected, Zadeh fuzzy modal logic is bisimulation invari-
ant; more precisely:

Lemma 4.11 (Bisimulation invariance). Every fuzzy modal
formula of rank at most n is depth-n bisimulation-invariant.

In particular, for every rank-n modal formula ¢ and ev-
ery fuzzy relational model A, the evaluation map ¢z :
A — [0,1] is a non-expansive map (A, dS) —; ([0,1],d.).
A forteriori (Lemma 4.7), every fuzzy modal formula ¢
is bisimulation-invariant, i.e. ¢(-) is non-expansive w.r.t.
(unbounded-depth) behavioural distance d°.

Example 4.12. The formula R(x, x) in fuzzy FOL fails to
be bisimulation-invariant (compare a loop with an infinite
chain), and is therefore neither expressible nor approximable
by fuzzy modal formulas.

Definition 4.13 (Logical distance). We further define logical
distances d* (w.r.t. all modal formulas) and d% (w.r.t. modal
formulas of rank at most n) by

d"(a,b) = Vg modal |$(a) — $(b)!,
dy(a,0) = Voqgy<n 19(a) = $()I.
We clearly have
dt (a,b) < dt(a,b) < d*(a,b) forn>m >0,

as well as

d"(a,b) = \/ 20 dj(a, b). (1)
Using (1) and Lemma 4.7, we can then rephrase bisimulation
invariance (Lemma 4.11) as

Lemma 4.14. For models A, B, statesa € A, b € B, and
n > 0, we have

d-(a,b) <d%(a,b) and d*(a,b) < d°(a,b).

Remark 4.15. Under Lukasiewicz semantics (Remark 2.1),
non-expansivity clearly breaks; e.g. if a and b are states
without successors in models A and B, respectively, such
that p™(a) = 0.9, p™(b) = 0.8, and a and b agree on all
other atoms, then d®(a,b) = 0.1 but |¢(a) — $(b)| = 0.2
for the formula ¢ = p A p, since under Lukasiewicz se-
mantics, ¢(a) = p(a) + p™(a) — 1 = 0.8 and $(b) =
pB(b) + pB(b) — 1 = 0.6. See also a similar example in [17].
For a treatment of Lukasiewicz fuzzy modal logic, one would
thus need to replace non-expansivity with Lipschitz continu-
ity (see also [40]). Additional problems, however, arise with
logical distance: Defining a logical distance for Lukasiewicz
modal logic in analogy to the above definition of d* gives a
discrete pseudometric. The reason is that small behavioural
differences between models can be amplified arbitrarily in
Lukasiewicz logic using conjunction, as illustrated precisely
by the above example (where we could also use p Ap Ap etc.).
The statement of a van Benthem theorem for Lukasiewicz
modal logic would thus presumably become quite compli-
cated, e.g. would need to stratify over Lipschitz constants.
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We now launch into the proof of our target result, which
states that every bisimulation-invariant fuzzy first-order prop-
erty can be approximated by fuzzy modal formulas, a converse
to bisimulation-invariance of fuzzy modal formulas. As al-
ready indicated, we follow a proof strategy established for
the classical setting by Otto [33]: We show that

e every bisimulation-invariant fuzzy first-order property
is ¢-local for some ¢, w.r.t. a suitable notion of Gaifman
distance (Section 7);

e every ¢-local bisimulation-invariant fuzzy first-order
property is already depth-n bisimulation-invariant for
some n (Section 8); and

e every depth-n bisimulation-invariant fuzzy state prop-
erty is approximable by fuzzy modal formulas of rank
at most n (Section 5).

We begin with the last step of this program.

5 Modal Approximation at Finite Depth

Having seen game-based and logical behavioural distances
dt, dC in the previous section, we proceed to introduce a
third, fixed-point based definition, and then show that all
three distances agree at finite depth. This happens in a large
simultaneous induction, in which we also prove that every
depth-n bisimulation-invariant fuzzy state property is approx-
imable by modal formulas of rank n. As indicated in the intro-
duction, this is in fact the technical core of the paper. This is
in sharp contrast with the classical setting, where the corre-
sponding statement — every depth-n bisimulation-invariant
crisp state property is expressible by a crisp modal formula —
is completely straightforward.

Assumption 5.1. As usual in proofs of van Benthem type
results, we assume from now on that At = {py,...,px} is
finite. This is w.l.o.g. for purposes of the proof of our main
result, as we will aim to show modal approximability of a
given formula, so only finitely many atoms are relevant. Note
that, e.g., Theorem 5.3.2 (total boundedness of finite-depth
behavioural distance) will presumably not hold without this
assumption.

Given a fuzzy relational model A = (A, (pﬂ)peAt, RA), we
inductively define a sequence (dX), ¢ of pseudometrics on A,
the Kantorovich distances, by df(a, b) = 0 and

df1(a.b) = \/ Ip(@) - p®)I v \/ 1(0)(@) = (0 )(B)!.

peAt f:(A,dK)—1([0,1],de)

(The dX can be seen as approximants of a fixed point, as we
explain later.)

Example 5.2. To illustrate the three forms of behavioural
distance (logical, game-based, Kantorovich), we use the fol-
lowing model A with one propositional atom p. In the di-
agram below, each state has the form x[p : p™(x)], and
transitions from x to y are labelled with their truth values
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R7(x,y).
1[p: 1] 4[p: 1]
0.5 \O.j 0.4 Y
2[p:1] 3[p:0.9] 5[p:0.8] 6[p :0.9]

Clearly, it suffices to look at depth 2 in this example. The
game-based distance of 1,4 is d°(1,4) = dZG(l, 4) = 0.2. To
see this, first note that D has a winning strategy for € = 0.2:
Player S may pick any transition, and D then always has a
transition available as a reply; irrespective of their choices,
they end up in a pair of states with values of p differing by at
most 0.2, and then S needs to move but cannot. The situation
is different for € < 0.2: In this case, S can take the transition
from 1 to 2, which D must answer by going from 4 to 5, since
R7A(4,6) # R™(1,2) —e. But [p(2) —p7'(5)| = 0.2 > €,50 S
wins.

This distance is witnessed by the formula ¢ = ¢ (p © 0.5):

$(1) = (0.5 A (p7(2) ©0.5)) v (0.5 A (p7(3) ©0.5)) = 0.5
$(4) = (0.4 A (p71(5) ©0.5)) v (0.3 A (p7(6) ©0.5)) = 0.3,

sodl(1,4) = dzL(l, 4) = 0.2 (recall rk(¢) = 2) by Lemma 4.14.
Note that &p would only yield a difference of 0.1.

As to the Kantorovich distances, we have df (1,4) =0,
so that the f over which the supremum in the definition
of dX(1,4) is taken are all constant; it is then easily seen
that df (1,4) = 0.1, the difference between the maximal
transition degree from 1 (0.5) and that from 4 (0.4). The
function corresponding to p © 0.5 then serves as a witness of
the behavioural distance at depth 2, so that df (1,4) > 0.2
one can check that in fact df(l, 4) =0.2.

The Kantorovich distances are motivated via the Kantorovich
lifting [4], a generalization of the Kantorovich metric from
probability theory. We view a fuzzy relational model A =
(A, (pﬂ)peAt,Rﬂ) as a coalgebra a: A — GA as discussed
in Section 2. The first step is to lift a pseudometric d on the
state space A to a pseudometric d© on GA. To this end, we
define an evaluation function ev: F[0,1] — [0, 1] (recall from
Section 2 that FX = [0,1]X and GX = [0, 1] x FX) by

ev(g) = Vsefo,1(9(s) A's)  forg: [0,1] — [0,1].
Then df and d€ can be defined as

d (g1, 92) = levo Ff(g1) —evoFf(ga)l
(X, d)—1([0,1],de)

dG((’"l,gl), (r2,92)) = dF(gl,gZ) N \/peAt Ir1(p) — r2(p)|

for r; € [0,1]A' and g; € FX. It follows from general re-
sults on lifting metrics along functors [4] that df and d© are
indeed pseudometrics. Then the relevant operator on pseu-
dometrics is simply the composite of the coalgebra with the
lifted pseudometric, and its least fixpoint is approximated by

dnKJrl = (d%)C o (axa).
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The main result proved in this section is the following the-
orem, which as indicated above states in particular that the
definitions of behavioural distance coincide at finite depth
and that the modal formulas lie dense in the non-expansive
state properties:

Theorem 5.3. Let A be a fuzzy relational model. Then the
following holds for alln > 0.

1.dS=dl=dX=d,onA.

2. The pseudometric space (A, dy,) is totally bounded.

3. The modal formulas of rank at most n form a dense

subset of the space (A, dn) —1 ([0, 1], d,).

(We note that the equality d~ = d¢ is effectively the finite-
depth part of a Hennessy- Mllner property; the infinite-depth
version will, of course, hold only under finite branching. This
contrasts somewhat with the probabilistic case [49].)

Proof (sketch). We prove all claims simultaneously by induc-
tion on n. The base case n = 0 is trivial. The proof of the
induction step is split over a number of lemmas proved next:

o Item 1 is proved in Lemmas 5.4 and 5.5.
e Item 2 is proved in Lemma 5.7.
e Item 3 is proved in Lemma 5.9. o

For the remainder of this section, we fix a model A as in
Theorem 5.3 and n > 0, and assume as inductive hypothesis
that all claims in Theorem 5.3 already hold for all n’ < n.

Lemma 5.4. We have dL dK on A.

Proof (sketch). Let a,b € A and put F :=
([0,1],d.). By Lemma 3.1, the map

H: (F,dw) = ([0,1], de), f = [(Of)(a) = (O ) (B)]

is continuous. Since by the induction hypothesis, £, is
dense in F, it follows that H[L,_1] is dense in H[F]. Thus,

(A, dpy) —1

dX(@,b) = \/ Ip(@ - p®)I v \/ [(0f)(@) = (0£)(B)]
PEAt f(A dn-1)—1([0,1],de)
=\/ Ip(@ - p®)I v \/ 1(09)(a) = (o) (b)]
pEAL rk¢<n-1
=\/ 19(a) - $(b)| = d%(a,b). o
rk¢<n
Lemma 5.5. We have dG d¥ on A.

Proof (sketch). First, dX(a,b) = dk(a,b) < dS(a,b) for all
a, b by Lemmas 5.4 and 4.11.

In the other direction, if dnK (a,b) < €, we need to show
that D wins the (e + §)-game on (a, b) for all § > 0. W.lo.g. S
moves from a to some a’. We can instantiate the function f
in the definition of dX as

[ (Adn-1) =1 ([0.1].de), f(b') = R(a,a’) © dp-1(a’,b).
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A winning reply for D can now be extracted by taking a
state b’ that approximates the supremum in (O f)(b) suffi-
ciently closely. One checks that b’ is a legal move and that
dp—1(a’,b’) < €+ 6, so D wins. m}
Having shown that the pseudometrics d%, dS, dX coincide,
we will now use d, to denote any of them, as indicated in
Theorem 5.3.

The next lemma is a version of the Arzela-Ascoli theo-
rem for total boundedness instead of compactness and non-
expansive instead of continuous functions; that is, we impose
weaker assumptions on the space but stronger assumptions
on the functions.

Lemma 5.6. Let (X, d1), (Y, dz) be totally bounded pseudo-
metric spaces. Then the space (X,d;) —1 (Y,d2), equipped
with the supremum pseudometric, is totally bounded.

The following lemma, the inductive step for Theorem 5.3.2,
then guarantees that our variant of Arzela-Ascoli will actu-
ally apply to (A, dy) in the next round of the induction.

Lemma 5.7. (A, d,) is a totally bounded pseudometric space.

Proof (sketch). Put F := (A,d,—1) —1 ([0,1],d.) and let € >

0. By Lemma 5.6, F is totally bounded, so as £,_1 is dense

in F, there exists a finite £-cover of F consisting of formulas
@15y ¢pm € Ly—1. One can now show that the map

I: A—[0,1]F™

arm (pl(a)a"-’pk <>¢1

is an %-isometry, ie. forall a,b € A,

ldn(a,b) = llI(a) = I(b)lle] < §

Using pre-images under I and a simple triangle inequality ar-
gument, we can then convert a finite 5-cover of the compact
space ([0, 1]¥*™, d,,) into a finite e-cover of (A, d,,). o

s (OPm)(a))

We next prove a variant of the lattice version of the Stone-
Weierstrafy theorem (e.g. [3, Lemma A.7.2]). Again, we only
assume the space to be totally bounded instead of compact
but require functions to be non-expansive rather than only
continuous. (A Stone-Weierstrafl argument appears also in a
probabilistic Hennessy-Milner result [49]).

Lemma 5.8. Let (X,d) be a totally bounded pseudometric
space, and let L be a subset of F := (X,d) —1 ([0, 1],d.) such
that fi, f» € L implies min(fi, f2), max(fi, f2) € L. If each
f € F can be approximated at each pair of points by functions
in L, then L is dense in F.

Lemma 5.9. The modal formulas of rank at most n form a
dense subset of the space (A, d,) —1 ([0,1],de).

Proof (sketch). We proceed as in [49], applying Lemma 5.8
to L,: Given a function f: (A, d,) —1 ([0, 1], d.) and points
a,b € A aformula ¢ approximating f at a and b can be con-
structed as follows: Let € L, be such that [{/(a) —¢/(b)| ap-
proximates | f(a) — f(b)| (such a  exists by non-expansivity
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of f). Then ¢ is defined from ¢ by means of modified sub-
traction ©, which preserves the rank of formulas. O

This concludes the proof of Theorem 5.3. The theorem still
leaves one loose end: The modal formulas that approximate
a given depth-n bisimulation-invariant state property on a
model A might depend on A. We eliminate this dependency
in the next section, using the final chain construction.

6 The Final Chain

The final chain [2, 6] of the functor G is a sequence of sets Fj
that represent all the possible depth-k behaviours. It is con-
structed as follows. We take F, to be a singleton Fy = {x}
(reflecting that all states are equivalent at depth 0), and

Fni1 = GF, = [0,1]" X FF,,.

Given a model A, seen as a coalgebra a: A — GA, we can
now define a sequence of projections 7z, : A — F,, to be
thought of as mapping states to their depth-n behaviours, by

my =! and m,4 =G, oa,

where ! denotes the unique map A — F,. Explicitly, 7,1 is

thus defined by

nr1(a) = (App”(a), 29V @)=y R (@), (2)
We next build a model ¥ realizing all finite-depth behaviours
by taking the union F = |Jeyn Fr (automatically disjoint).
We define the model structure on F by letting every element
behave as it claims to: For (h, g) € Fxy1 = [0, 1] X FF; and
y € F, we put p” (h, g) = h(p) for p € At and

R” ((h.9).y) = g(y) ify € Fy,

and R” ((h,g),y) = 0 otherwise. For * € F;, we just put
p7 (1) = R (v,3) = 0.

In the proof of our main result (Theorem 8.4), the following
lemma will allow us to choose approximating modal formulas
uniformly across models.

Lemma 6.1. Let A be a model. Then d$(a, m,(a)) = 0 for
alla € A.

Proof (sketch). Player D wins the depth-n e-bisimulation
game for every € > 0 by maintaining the invariant that
in round i, the configuration has the form (a’, 7,,—;(a’)) for
some a’ € A. One sees from (2) that this invariant implies the
winning condition and can actually be maintained by D. O

7 Locality

We proceed to show that every bisimulation-invariant for-
mula of fuzzy FOL is local. To this end, we introduce a notion
of Gaifman distance in fuzzy models, as well as a variant of
Ehrenfeucht-Fraissé games. The requisite notions of Gaif-
man graph and neighbourhood, as well as the definition of
locality, are, maybe unexpectedly, fairly crisp. This is techni-
cally owed to the fact that unlike continuity, non-expansivity
does not go well with chains of e-estimates.
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Definition 7.1. Let A be a fuzzy relational model.

o The Gaifman graph of A is an undirected graph with
set A of nodes and an edge {a, b} for every a,b € A such that
R(a,b) > 0 or R(a,b) > 0.

e For every a,b € A, the Gaifman distance D(a,b) e NU
{oo} is the minimal length (i.e. number of edges) of a path
between a and b in the Gaifman graph.

e Fora € Aand ¢ € N, the neighbourhood of a with
radius £ is the set U¢(a) given by

Uf(a) ={b e A| D(a,b) < €}.

Fora = (aj,...,an), we put U(a) = U;<p, Ul ().

Definition 7.2. Let A be a fuzzy relational model and
U C A. The restriction Aly of A to U is the fuzzy rela-
tional model (U, (pﬂ|U)p€At,Rﬂ|U) with p? (a) = p/(a)
and R (a,b) = R™(a,b) for a,b € U.IfU = U’(a) for
some vector d over A, we also write AL := Alyez)-

As indicated, the ensuing notion of locality is on-the-nose:
Definition 7.3. A formula ¢ is {-local for ¢ € N if
pa(a) = $ac(a)

for every fuzzy relational model A and every a € A.

It is easy to see that depth-k behaviour depends only on
k-neighbourhoods, i.e.

Lemma 7.4. For any model A, ay € A, and k > 0, D wins
the depth-k 0-bisimulation game for A, ay and A*

ay> 40-

In combination with Lemma 4.11, we obtain

Corollary 7.5. Every fuzzy modal formula of rank at most k
is k-local.

To establish the desired locality result, we employ
Ehrenfeucht-Fraissé games, introduced next. We phrase
Ehrenfeucht-Fraissé equivalence in terms of a pseudometric,
in line with our treatment of behavioural distance, as this
is the right way of measuring equivalence w.r.t. fuzzy FOL;
in the further technical development, we will actually need
only the case with deviation € = 0.

Definition 7.6. Let A, B be fuzzy relational models, and let
do and by be vectors of equal length over A and B respectively.
The e-Ehrenfeucht-Fraissé game for A,y and B, by played
by S (spoiler) and D (duplicator) is given as follows.
Configurations: pairs (a, b) of vectors a over A and b over B.
Initial configuration: (o, by).

Moves: Player S needs to pick a new state in one of the models,
say a € A, and then D needs to pick a state in the other model,
say b € B. The new configuration is then (aa, bb).

Winning condition: Any player who needs to move but can-
not, loses. Player D additionally needs to maintain the con-
dition that (a,b) is a partial isomorphism up to e: For all
0<i,j<n
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®a;,=a; b,':bj

e [p7(a;) — pB(b;)| < eforall p € At

e [R(a;,a;) —RE(bi, b))l < e.
Here, we need only the n-round e-Ehrenfeucht-Fraissé game,
which as the name indicates is played for at most n rounds,
and D wins after n rounds have been played.

In analogy to the classical setup, fuzzy FOL is invariant under
Ehrenfeucht-Fraissé equivalence in the sense that formula
evaluation is non-expansive:

Lemma 7.7 (Ehrenfeucht-Fraissé invariance). Let A, B be
fuzzy relational models and ay, by vectors of length m over A
and B, respectively. If D wins the n-round e-Ehrenfeucht-
Fraissé game on ay, by, then for every first-order formula ¢
with at most m free variables and qr(¢) < n,

|$(@0) = §(bo)| < e.
Lemma 7.8. Let ¢ be a bisimulation-invariant formula of

fuzzy FOL with quantifier rank qr(¢) < n. Then ¢ is k-local
fork =3".

Proof (sketch). Let A be a model, ay € A. Define models 8
and C by extending both A and ﬂgo by n disjoint copies
of both A and ?{’;ﬂ each. By Lemmas 4.9 and 7.7, it suffices
to show that D wins the 0-Ehrenfeucht-Fraissé game for
8B, ap and C, ay. Indeed, D wins by maintaining the following
invariant, where we put k; = 3" for0<i<nm

If (b,¢) = ((bo,...,b:),(co,...,c;)) is the cur-

rent configuration, then there is an isomorphism

between Bgi and Ccl‘f mapping each bj toc;. O

8 A Fuzzy van Benthem Theorem

To finish the proof of our main result, it remains only to
establish the implication from locality and bisimulation-
invariance to finite-depth bisimulation invariance, using a
standard unravelling construction.

Definition 8.1. The unravelling A* of a model A is the
model with set A* (non-empty lists over A) of states and

p™ (@) = p™(x(a), R™M(a aa)=R"(n(a),a),

fora € A*,a € A, where 7: A¥ — A projects to the last
element and all other values of R are 0.

Lemma 8.2. For any model A and ay € A, D wins the 0-
bisimulation game for A, ay and A*, ay.

The following lemma then completes the last step in our
program as laid out in Section 4.

Lemma 8.3. Let ¢ be bisimulation-invariant and k-local.
Then ¢ is depth-(k + 1) bisimulation-invariant.

Proof (sketch). Use locality and unravelling (Lemma 8.2) to
reduce to tree models of depth k, and then exploit that in
such models, winning the depth-(k + 1) e-bisimulation game
entails winning the unrestricted game. O
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We finally state our main result:

Theorem 8.4 (Fuzzy van Benthem theorem). Let ¢ be a
formula of fuzzy FOL with one free variable and qr(¢) = n.
If ¢ is bisimulation-invariant, then ¢ can by approximated by
fuzzy modal formulas of rank at most 3" + 1, uniformly over
all models; that is: For every € > 0 there exists a fuzzy modal
formula ¢ such that for every fuzzy relational model A and
everya € A, |p(a) — ¢e(a)| < e.

Proof (sketch). By Lemmas 7.8 and 8.3, ¢ is depth-k
bisimulation-invariant for k = 3" + 1. By Theorem 5.3, ¢
can be modally approximated in rank k on the model ¥
constructed from the final chain in Section 6. The claim then
follows by Lemma 6.1. O

Remark 8.5. We leave the Rosen version of the characteri-
zation theorem, i.e. whether Theorem 8.4 remains true over
finite models, as an open problem. As in the classical case,
the unravelling construction is easily made to preserve finite
models by using partial unravelling up to the locality distance.
However, the model construction from the final chain in Sec-
tion 6 and in fact already the stages of the final chain are
infinite, so cannot be used in this version. We thus do obtain
a local version of the Rosen theorem, stating that on a fixed
finite model, every first-order formula that is bisimulation-
invariant over finite models can be approximated by modal
formulas. However, it is unclear whether the approximation
works uniformly over models, as in Theorem 8.4.

9 Conclusions

We have established a fuzzy analogue of the classical van
Benthem theorem: Every fuzzy first-order formula that is
bisimulation-invariant in the sense that its evaluation map
is non-expansive w.r.t. a natural notion of behavioural dis-
tance can be approximated by fuzzy modal formulas. To our
knowledge this is the first modal characterization result of
this type for any many-valued modal logic. We do point
out that we leave a nagging open problem: We currently
do not know whether the result can be sharpened to claim
that every bisimulation-invariant fuzzy first-order formula
is in fact equivalent to a fuzzy modal formula. This contrasts
with the actual technical core of our argument: The key
step in our proof is to show that every state property that
is non-expansive w.r.t. depth-n behavioural distance can be
approximated, uniformly across models, by fuzzy modal for-
mulas of rank n, a result that certainly cannot be improved
to on-the-nose modal expressibility.

Further issues for future research include the question
whether our main result has a Rosen variant, i.e. holds also
over finite models, and coverage of other semantics of the
propositional operators, in particular Lukasiewicz logic. We
also aim to extend the modal characterization theorem to fur-
ther many-valued logics, such as [0, 1]-valued probabilistic
modal logics [49], ideally at a coalgebraic level of generality.



LICS 18, July 9-12, 2018, Oxford, United Kingdom

References

(1]

[25

—

[26]

S. Abriola, M. Descotte, and S. Figueira. Model theory of XPath on
data trees. Part II: Binary bisimulation and definability. Inf. Comput.,
255:195-223, 2017.

J. Adamek and V. Koubek. On the greatest fixed point of a set functor.
Theor. Comput. Sci., 150:57-75, 1995.

R. Ash. Real Analysis and Probability. Academic Press, 1972.

P. Baldan, F. Bonchi, H. Kerstan, and B. Konig. Behavioral metrics via
functor lifting. In Foundation of Software Technology and Theoretical
Computer Science, FSTTCS 2014, vol. 29 of LIPIcs, pp. 403-415. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2014.

B. Balle, P. Gourdeau, and P. Panangaden. Bisimulation metrics for
weighted automata. In Automata, Languages, and Programming, ICALP
2017, vol. 80 of LIPIcs, pp. 103:1-14. Schloss Dagstuhl — Leibniz Center
for Informatics, 2017.

M. Barr. Terminal coalgebras in well-founded set theory. Theor. Com-
put. Sci., 114:299-315, 1993.

G. Bruns and P. Godefroid. Model checking with multi-valued logics.
In Automata, Languages and Programming, ICALP 2004, vol. 3142 of
LNCS, pp. 281-293. Springer, 2004.

Y. Cao, S. Sun, H. Wang, and G. Chen. A behavioural distance for
fuzzy-transition systems. IEEE Trans. Fuzzy Sys., 21:735-747, 2013.

F. Carreiro. PDL is the bisimulation-invariant fragment of weak chain
logic. In Logic in Computer Science, LICS 2015, pp. 341-352. IEEE, 2015.
C. Chang and H. Keisler. Continuous model theory. Princeton University
Press, 1966.

A. Dawar and M. Otto. Modal characterisation theorems over special
classes of frames. In Logic in Computer Science, LICS 2005, pp. 21-30.
IEEE, 2005.

J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics
for labelled Markov processes. Theor. Comput. Sci., 318:323-354, 2004.
J. Desharnais, F. Laviolette, and M. Tracol. Approximate analysis of
probabilistic processes: Logic, simulation and games. In Quantitative
Evaluation of Systems, (QEST 2008), pp. 264-273. IEEE, 2008.

P. Eleftheriou, C. Koutras, and C. Nomikos. Notions of bisimulation for
Heyting-valued modal languages. J. Log. Comput., 22:213-235, 2012.

S. Engvist, F. Seifan, and Y. Venema. Monadic second-order logic and
bisimulation invariance for coalgebras. In Logic in Computer Science,
LICS 2015. IEEE, 2015.

T. Fan. Fuzzy bisimulation for Godel modal logic. IEEE Trans. Fuzzy
Sys., 23:2387-2396, Dec 2015.

T. Fan and C. Liau. Logical characterizations of regular equivalence in
weighted social networks. Artif. Intell., 214:66-88, 2014.

D. Figueira, S. Figueira, and C. Areces. Model theory of XPath on
data trees. Part I: Bisimulation and characterization. J. Artif. Intell. Res.
(JAIR), 53:271-314, 2015.

M. Fitting. Many-valued modal logics. Fund. Inform., 15:235-254, 1991.
P. Hajek. Metamathematics of fuzzy logic. Springer, 1998.

P. Hajek. Making fuzzy description logic more general. Fuzzy Sets Sys.,
154:1-15, 2005.

H. Hansen, C. Kupke, and E. Pacuit. Neighbourhood structures: Bisim-
ilarity and basic model theory. Log. Meth. Comput. Sci., 5(2), 2009.

D. Janin and I. Walukiewicz. Automata for the modal p-calculus and
related results. In Mathematical Foundations of Computer Science, MFCS
1995, vol. 969 of LNCS, pp. 552-562. Springer, 1995.

J. Kontinen, J. Miiller, H. Schnoor, and H. Vollmer. A van Benthem
theorem for modal team semantics. In Computer Science Logic, CSL
2015, vol. 41 of LIPIcs, pp. 277-291. Schloss Dagstuhl - Leibniz-Zentrum
fir Informatik, 2015.

S. Kundu and J. Chen. Fuzzy logic or Lukasiewicz logic: A clarification.
Fuzzy Sets Sys., 95:369 — 379, 1998.

O. Kupferman and Y. Lustig. Latticed simulation relations and games.
In Automated Technology for Verification and Analysis, ATVA 2007, vol.
4762 of LNCS, pp. 316-330. Springer, 2007.

Paul Wild, Lutz Schroder, Dirk Pattinson, and Barbara Konig

[27] J. Lukasiewicz and A. Tarski.

[28]

[29]
[30]

[31]
[32]

[33]
[34]
[35]

[36]
[37]

[38]

[39]

[40]

[41]
[42]
[43]
[44]
[45]
[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Untersuchungen tiber den Aus-
sagenkalkill. Comptes rendus des séances de la Société des Sciences
et des Lettres de Varsovie, Classe III, 23:1-21, 1930.

T. Lukasiewicz and U. Straccia. Managing uncertainty and vagueness
in description logics for the semantic web. J. Web Sem., 6:291-308,
2008.

C. Morgan. Local and global operators and many-valued modal logics.
Notre Dame §. Formal Log., 20:401-411, 1979.

O. Morikawa. Some modal logics based on a three-valued logic. Notre
Dame J. Formal Log., 30:130-137, 1988.

V. Novék. First-order fuzzy logic. Stud. Log., 46:87-109, 1987.

P. Ostermann. Many-valued modal propositional calculi. Math. Log.
Q., 34:343-354, 1988.

M. Otto. Elementary proof of the van Benthem-Rosen characterisation
theorem. Technical Report 2342, Dept. Math., TU Darmstadt, 2004.
M. Otto. Bisimulation invariance and finite models. In Logic Collo-
quium 2002, vol. 27 of Lect. Notes Log., pp. 276-298. ASL, 2006.
E.Rosen. Modal logic over finite structures. . Log. Lang. Inf., 6:427-439,
1997.

J. Rosser and A. Turquette. Many-Valued Logics. North Holland, 1952.
J. Rutten. Universal coalgebra: A theory of systems. Theor. Comput.
Sci., 249:3-80, 2000.

D. Sanchez and A. Tettamanzi. Reasoning and quantification in fuzzy
description logics. In Fuzzy Logic and Applications, WILF 2005, vol.
3849 of LNCS, pp. 81-88. Springer, 2006.

P. Schotch. Fuzzy modal logic. In International Symposium on Multiple-
Valued Logic, ISMV 1975, pp. 176-181. IEEE, 1976.

L. Schroder and D. Pattinson. Description logics and fuzzy probability.
In Int. Joint Conf. Artificial Intelligence, IJCAI 2011, pp. 1075-1081.
AAAI 2011.

L. Schréder, D. Pattinson, and T. Litak. A van Benthem/Rosen theorem
for coalgebraic predicate logic. J. Log. Comput., 27:749-773, 2017.

K. Segerberg. Some modal logics based on a three-valued logic. Theoria,
33:53-71, 1967.

U. Straccia. A fuzzy description logic. In Artificial Intelligence, AAAI
1998, pp. 594-599. AAAI Press / MIT Press, 1998.

H. Sturm and F. Wolter. First-order expressivity for S5-models: Modal
vs. two-sorted languages. §. Philos. Log., 30:571-591, 2001.

B. ten Cate, G. Fontaine, and T. Litak. Some modal aspects of XPath. 7.
Appl. Non-Classical Log., 20:139-171, 2010.

C. Tresp and R. Molitor. A description logic for vague knowledge. In
Europ. Conf. Artificial Intelligence, ECAI 1998, pp. 361-365. Wiley, 1998.
J. van Benthem. Modal Correspondence Theory. PhD thesis, Universiteit
van Amsterdam, 1976.

J. van Benthem. Correspondence theory. In D. Gabbay and F. Guenth-
ner, eds., Handbook of Philosophical Logic, vol. 3, pp. 325-408. Springer,
2001.

F. van Breugel and J. Worrell. A behavioural pseudometric for proba-
bilistic transition systems. Theor. Comput. Sci., 331:115-142, 2005.

W. Wee and K. Fu. A formulation of fuzzy automata and its application
as a model of learning systems. IEEE Trans. Sys. Sci. Cyb., 5:215-223,
1969.

P. Wild and L. Schréder. A characterization theorem for a modal
description logic. In Int. Joint Conf. Artificial Intelligence, [JCAI 2017,
pp- 1304-1310. ijcai.org, 2017.

P. Wild, L. Schréder, D. Pattinson, and B. Kénig. A van Benthem
theorem for fuzzy modal logic, 2018. arXiv e-print 1802.00478.

J. Yen. Generalizing term subsumption languages to fuzzy logic. In Int.
Joint Conf. on Artificial Intelligence, IJCAI 1991, pp. 472-477. Morgan
Kaufmann, 1991.

L. Zadeh. Fuzzy sets. Inf. Control, 8:338-353, 1965.



	Abstract
	1 Introduction
	2 Fuzzy Modal Logic
	3 Pseudometric Spaces
	4 Behavioural Distanceand Bisimulation Games
	5 Modal Approximation at Finite Depth
	6 The Final Chain
	7 Locality
	8 A Fuzzy van Benthem Theorem
	9 Conclusions
	References

