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Abstract
Nakano’s later modality can be used to specify and define recursive

functions which are causal or synchronous; in concert with a notion

of clock variable, it is possible to also capture the broader class of

productive (co)programs. Until now, it has been difficult to combine

these constructs with dependent types in a way that preserves

the operational meaning of type theory and admits a hierarchy of

universes Ui .
We present an operational account of guarded dependent type

theory with clocks called CTT�, featuring a novel clock intersec-

tion connective {k ÷ clk} → A that enjoys the clock irrelevance

principle, as well as a predicative hierarchy of universes Ui which
does not require any indexing in clock contexts. CTT� is simulta-

neously a programming language with a rich specification logic, as

well as a computational metalanguage that can be used to develop

semantics of other languages and logics.

CCSConcepts •Theory of computation→Type theory;Modal
and temporal logics;

Keywords guarded recursion, clocks, type theory, operational

semantics, dependent types
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1 Introduction
In a functional programming language, every definable function is

continuous in the following sense: each finite quantity of output is

induced by some finite quantity of input. To make this more precise,

if we consider the case of stream transformers F : S→ S, we can
see that finite prefixes of the output depend only on finite prefixes

of the input:

∀α : S. ∀i : N. ∃n : N. ∀β : S. α ≡n β ⇒ F (α)i ≡ F (β)i (1)

From a programming perspective, this can be rephrased in terms

of reads and writes: for each write, the program is permitted to

perform a finite but unbounded number of reads.
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Causality Another possible class of functionals are the ones that

can be implemented by a program which performs at most one

read for every write. These are called the causal functionals, and
in the case of stream transformers, they are characterized by the

following causality principle:

∀α : S. ∀i : N. ∀β : S. α ≡i β ⇒ F (α)i ≡ F (β)i (2)

In other words, causal programs are the ones whose reads and

writes proceed in lock-step. While we can surely carve out this class

of functionals using predicates like (2) above, it is actually possible

to define a new notion of stream S▶ such that all functionals F :

S▶ → S▶ are automatically causal in the sense of (2). This kind

of stream is called a “guarded stream”, and we will use the term

“sequence” to refer to ordinary streams.

Whereas ordinary streams or sequences are usually formed as

the greatest solution to the isomorphism S � N × S, the guarded
streams are formed using a special “latermodality”▶ due toNakano,

1

solving the isomorphism S▶ � N ×▶S▶. Modalities of this kind

usually enjoy at least the following principles:

A→ ▶A ▶(A × B) � (▶A ×▶B)

▶(A→ B) → (▶A→ ▶B) (▶A→ A) → A

The ratio of reads and writes specified in the type of a stream

transformer can be modulated by adjusting the number of later

modalities in the input and the output to the function.

Nakano’s modality in semantics What is remarkable about

Nakano’s latermodality is that fixed points for functions F : ▶A→ A
always exist, without placing any restriction on F (such as mono-

tonicity or positivity). Applied within a type-theoretic metalan-

guage, then, the later modality induces solutions to recursive do-

main equations which are not set-theoretically interpretable, such

as the following classic definition of semantic types for a program-

ming language with mutable store [5, 9]:

Type �
(
Loc

fin
−−→ ▶Type

)
→ P(Val)

The later modality captures and internalizes the basic features of

less abstract techniques like step-indexing, enabling more stream-

lined definitions and proofs that elide the bureaucratic performance

of explicit indexing and monotonicity obligations. Today, modali-

ties of this kind are of the essence for modern program logics like

Iris [24].

Programming applications The fact that functions F : ▶A→ A
always have fixed points has beneficial consequences for the prac-

tice of (total) functional programming on infinite data. In particular,

clumsy syntactic guardedness conditions which ensure productiv-

ity (such as those used in Coq [35], Agda [29] and Idris [15]) can be

1
The notation • was originally used in Nakano [28].
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∆,κ; Γ ⊢ e : A

∆; Γ ⊢ Λκ . e : ∀κ . A

∆; Γ ⊢ e : ∀κ . A
κ ′ ∈ ∆ κ ′ < FreeClocks(A)

∆; Γ ⊢ e[κ ′] : A[κ ↪→ κ ′]

∆; Γ ⊢ e : A

∆; Γ ⊢ pure(e) : ▶κA

∆; Γ ⊢ f : ▶κ (A→ B)
∆; Γ ⊢ e : ▶κA

∆; Γ ⊢ f ⊛ e : ▶κB

∆; Γ ⊢ e : ∀κ . ▶κA

∆; Γ ⊢ force(e) : ∀κ . A
∆; Γ ⊢ f : ▶κA→ A

∆; Γ ⊢ fix(f ) : A

(∀κ . A) ≡ A (κ < FreeClocks(A))

∀κ . A × B ≡ (∀κ . A) × (∀κ . B)

Figure 1. Selection of rules from Atkey and McBride [6].

replaced with type structure, enabling more compositional styles

of programming.
2

However, the later modality is too restrictive to be used on its

own, because it rules out the functions which are not causal; but

acausal functions on infinite data are perfectly sensible, and are

very common in the real world. Consider, for instance, the function

which drops every second element from a stream! To define this

function, one would need a way to delete the modality; but without

suitable restrictions, such an elimination principle would trivialize

the modality and render it useless.

To resolve this problem, Atkey and McBride have introduced

a notion of abstract clock κ to represent “time streams” together

with universal quantification ∀κ over clocks, replacing Nakano’s

modality with a clock-indexed family of modalities ▶κ [6].

Defining the type of κ-guarded streams as the solution to the

equation Sκ ≡ N ×▶κSκ , it is possible to define the acausal

function that drops every other element of a stream, with type

(∀κ . Sκ ) → (∀κ . Sκ ). The reason that this is possible is that their

calculus exhibits the isomorphism (∀κ . ▶κA) � (∀κ . A), as well as
a clock irrelevance principle: (∀κ . A) ≡ A assuming that κ is not free

in A; we summarize the constructs of this calculus in Figure 1.

1.1 Dependent type theory and guarded recursion
It has been surprisingly difficult to cleanly extend the account

of guarded recursion with clocks to a full-spectrum dependently

typed programming language which enjoys any combination of

the following properties:

1. Computational canonicity: any closed element of type bool
computes to either tt or ff.

2. Simple universes: a single predicative and cumulative hier-

archy of universes Ui closed under base types, dependent

function types, dependent pair types, lower universes, later
modalities and clock quantifiers.

3. Clock irrelevance: if k is not mentioned in A and A is a type,

then ∀k . A is equal to A.3

2
A very closely related idea, sized types, has been deployed in the Agda proof assistant

for exactly this purpose [36].

3
Depending on the specific type theory, it may be desirable to realize this principle

either as an isomorphism or as a definitional equality.

However, a dependent type theory with support for guarded re-

cursion and clocks is desirable for multiple reasons; here, we have

focused on causality as a useful construct for developing types qua

behavioral specifications on program behavior, but there is also

the potential to use such a dependent type theory as a computa-

tional metalanguage for developing and proving the semantics of

other languages and logics, vaporizing the highly-bureaucratic step-

indexed Kripke Logical Relations which usually must be employed.

The latter perspective is elaborated in the context of guarded

dependent type theory without clocks in Paviotti et al. [30] as well

as Bizjak et al. [11], and we anticipate that the addition of clocks

will enable further developments along these lines.

1.2 Guarded Computational Type Theory
We contribute a new extensional and behavioral dependent type

theoryCTT� (pronounced “Guarded Computational Type Theory”)

for guarded recursion and clocks in the Nuprl tradition [2], enjoying

the following characteristics:

1. Operational semantics and an immediate canonicity result

at base types.

2. A clock-indexed later modality ▶k A which requires no spe-

cial syntax for introduction or destruction.

3. A decomposition of the clock quantifier from Bizjak and

Møgelberg [14] into a parametric part {k ÷ clk} → A and a

non-parametric part (k : clk) → A. The former is an inter-

section, and enjoys the crucial clock irrelevance principle;

the latter is the cartesian product of a clock-indexed family

of sets (right adjoint to weakening).

4. A guarded fixed point combinator which can be assigned

the type (▶k A→ A) → A.
5. A predicative hierarchy of universes Ui closed under all the

connectives, free of indexing by clock contexts.

Our operational account and canonicity result (Theorem 7)means

that CTT� can be regarded simultaneously as a programming lan-

guage with a rich specification logic, and as a computational meta-

language for developing operational and denotational semantics of

other languages and logics.

Coq formalization and synthetic approach
Using the Coq proof assistant, we have formalized the fragment

of our type theory that contains universes, dependent function

and pair types, booleans, the later modality, and the two clock

quantifiers (intersection and product); the full Coq development

is available in Sterling and Harper [34]. Throughout this paper,

theorems and rules will be related to their Coq analogues using a

reference like Module.theorem_name.
We have used Coq’s type theory as a proxy for the internal lan-

guage of the presheaf topos that we develop herein, axiomatizing

in Coq whatever objects and principles come not from the standard

type theoretic constructions, but are instead imported into the sys-

tem via forcing. The entire construction of CTT�, then, is carried

out within the internal language of the topos, an anti-bureaucratic

measure which has made an otherwise daunting formalization ef-

fort feasible.

The idea of developing operational models of programming lan-

guages within the internal language of a topos is not new; see for

instance Staton [32], Bizjak et al. [11] and Paviotti et al. [30]. How-

ever, we believe that ours is the first instance of this technique being
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applied toward the development of semantics for a full-spectrum

dependent type theory.

Full details and proofs of our construction can be found in our

report [33].

2 Programming in CTT�
Following the computational meaning-theoretic tradition initiated

by Martin-Löf [26], and developed further in the Nuprl project [2],

we build Guarded Computational Type theory (CTT�) on the basis

of an untyped programming language, whose syntax is summarized

in Figure 2.

In this paper, we distinguish between the syntax of formal
terms and the language of programs; formal terms are used by

clients of a formalism for type theory, whereas programs are the

things which are actually endowed with operational meaning. For

many languages, the difference between formal terms and pro-

grams is not so great, but for us the difference is essential; to avoid

confusion, we distinguish between these levels using colors.

Formal Terms The grammar includes operators for both terms

and types, which are not distinguished syntactically in any way.

Typehood, equality and type membership are semantic proper-

ties which will be imposed after we propound the meaning ex-

planation in Section 3.6. We include syntax for dependent func-

tion types (x : A) → B, dependent pair types (x : A) × B, wellorder-
ing types W(x : A)B, extensional equality types EqA(M ;N ), clock-
indexed later modalities ▶k A, clock product types (k : clk) → A,
clock intersection types {k ÷ clk} → A, booleans, natural num-

bers, and a countable hierarchy of type universes Ui . We define

the following derived forms for non-dependent function and pair

types:

A→ B ≜ (x : A) → B A × B ≜ (x : A) × B

Forming fixed points and primitive recursors General fixed

points can be programmed in CTT� exactly as in the untyped

λ-calculus, but in order to simplify our metatheorems we have

provided a primitive fixed point operator fix x inM . This can, for

instance, be used to realize the induction principle for the natural

numbers.

When a function has type ▶κ A→ A, its guarded fixed point

always exists and has type A. Because CTT� is dependently typed,

it is very easy for us to write a program that computes the type of

guarded streams of bits relative to a clock k , using the fixed point

operator in concert with the later modality; and using the clock

intersection type, we can transform this into the type of infinite

sequences of bits:

stream ∈ (k : clk) → Ui

stream ≜ λk . fix A in bool ×▶k A

sequence ∈ Ui

sequence ≜ {k ÷ clk} → stream k

Wewill see in Section 3.8 that these expressions are indeed types

in CTT�.

3 Mathematical Meaning Explanation
In the type-theoretic tradition of Martin-Löf, formal language is

endowed with computational meaning through what is called a

“meaning explanation”; this style of definition, which was first de-

ployed byMartin-Löf in his seminal paper Constructive Mathematics
and Computer Programming [26], is closely related to PER semantics

and the method of computability. This computational perspective

was developed to its fullest extent in Nuprl’s CTT [2, 18], which

adds a theory of computational congruence to the picture, together

with many new connectives including intersections, unions, subset

comprehensions, quotients and image types.

A meaning explanation provides a semantics for types as speci-

fications of the execution behavior of untyped programs. As such,

the judgments of type theory express the compliance of a program

with a specification, which can be of arbitrary quantifier complexity,

and will not generally be decidable. Any implementation of type

theory involves, in one form or another, a formal system for deriv-

ing correct judgments that is, by definition, recursively enumerable

and often decidable.

To achieve various properties that are desirable of a formal sys-

tem (sometimes including decidability), programs are often deco-

rated with type information that is not needed during execution.

The meaning explanation is, then, lifted to the formalism along an

erasure map ∥−∥ that removes these decorations.

A similar, but more elaborate transformation of syntax (from

formal terms to programs) is used here to facilitate the meaning

explanation for guarded type theory in terms of the settings of a

collection of clocks. During the verification of a program specifica-

tion, the value of a clock may change (for instance, underneath the

later modality); the most direct way to express this is to explicitly

formulate the meaning explanation using a Kripke or presheaf-style

semantics: a “possible world” consists of a collection of clocks and

their settings, and we require specifications to account for the ex-

pansion of the world with new clocks and the alterations of their

settings.

Doing so tends to clutter themeaning explanation by distributing

the conditioning on clocks throughout the semantics, and disrupts

a basic principle of type theory in the Martin-Löf tradition, which

is that types should do little more than internalize the structures

which are already present in the judgmental base.

An alternative, which we adopt here, is to formulate the seman-

tics in a presheaf topos S� which accounts all at once for clocks

and the passage of time, so that the specifications given by types are

implicitly conditioned on them. This conditioning, which is implicit

when viewed from inside the topos, can be externalized and made

explicit using the Kripke-Joyal forcing semantics of S� [25].

To ensure that programs evolve appropriately along the transi-

tions between clockworlds simultaneously with their specifications,

we introduce a kind of “higher-order abstract syntax” which links

clocks in programs directly to their meaning in the presheaf topos,

as elements of the presheaf of clocks K : S�. The passage to this

new kind of syntax at the interface between the formalism and the

semantics is managed by an elaboration function ∥−∥.

3.1 The semantic universe S�
We will develop our semantic universe as a presheaf topos called

S� over a category of clock contexts and clock context morphisms.

We will require the following things to exist in S�:

1. An object K : S� of clock names.
2. A family of logical modalities ▷κϕ for clock names κ : K and

predicates ϕ in S�.
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k ::= k (clocks)

M,A ::= x | λx .M | λk .M | M N | M k | ⟨M,N ⟩ | M .1 | M .2 (terms)

fix x inM | ⋆ | tt | ff | if(M ;N ;O)
ze | su(M) | ifze(M ;N ;x .O) | sup(M ;x .N ) | recW(M ;x ,y, z.N )
(x : A) → B | (x : A) × B | W(x : A)B | EqA(M ;N )
(k : clk) → A | {k ÷ clk} → A | ▶k A
void | unit | bool | nat | Ui

∆ ::= · | ∆,k (clock contexts)

Ψ ::= · | Ψ,x (variable contexts)

Γ ::= · | Γ,x : A (typing contexts)

Figure 2. The syntax of formal terms in Guarded Computational Type Theory (CTT�). Formal termsM are identified up to renamings of

their bound variables; by convention, bound variables are always assumed fresh.

When we defineS�, we will arrange for the following principles

to hold in its internal logic:

∃κ : K. ⊤

∀ϕ : ΩK. (∀κ : K. ▷κϕ(κ)) ⇒ ∀κ : K.ϕ(κ)

∀κ : K. ∀ϕ : Ω. ϕ ⇒ ▷κϕ

∀κ : K. ∀ϕ,ψ : Ω. ▷κ (ϕ ∧ψ ) ≡ (▷κϕ ∧ ▷κψ )

∀κ : K. ∀ϕ,ψ : Ω. ▷κ (ϕ ⇒ ψ ) ≡ (▷κϕ ⇒ ▷κψ )

∀κ : K. ∀ϕ : Ω. (▷κϕ ⇒ ϕ) ⇒ ϕ

We require one additional axiom to hold for any object Y : S�
which is total and inhabited in a sense analogous to the notion

from Birkedal et al. [9]:

∀κ : K. ∀ϕ : ΩY . ▷κ (∃y : Y . ϕ(y)) ⇒ ∃y : Y . ▷κϕ(y)

To constructS� as a topos of presheaves, first define F+ : Cat as
the free categorywith strictly associative binary products generated

by a single object; explicitly, objects of F+ are U ≡ •n for n > 0.

A map f : •n → •m is a vector of projections, but can dually be

regarded as a function between finite sets N<m → N<n .

Observe that the opposite category F
op
+ is a skeleton of the cate-

gory of non-empty finite sets and all functions between them. F+ is
also a full subcategory of F : Cat, the free strict cartesian category

generated by a single object (whose opposite is likewise a skeleton

of the category of finite sets and all maps between them).

Define the presheaf of clock names N : F̂+ as the representable
functor y

(
•1
)
. Next, define a functor �[−] : F+ → Pos (with Pos

the category of partially ordered sets) which will interpret assign-

ments of times to clock names:

�[−] : F+ → Pos

�[U : F+] ≜ ωN(U )

�[f : V → U ](∂V : ωN(V )) ≜ (κ : N(U )) 7→ ∂V
(
f ∗κ

)
Thinking of elements of F+ as signifying finite and non-empty

cardinalities of clock names, the action of �[−] on objects takes

such a cardinality U : F+ to the U -fold product of the poset ω,
ordered pointwise: in other words, it assigns the amount of “time

left” to each clock.

Finally, using the covariant Grothendieck construction [20] we

can build the total category � : Cat ≜
∫ F+ �[−] in the following

way. Objects are pairs (U : F+, ∂U : �[U ]), i.e. collections of clock
names togetherwith an assignment; morphisms f : (V , ∂V ) → (U , ∂U )
are F+-morphisms f : V → U such that �[f ](∂V ) ≤ ∂U in �[U ].

At this time it will be helpful to impose some notation: we will write

ℓ : �→ F+ for the induced projection functor, and we will use

boldface letters U,V to range over objects (U , ∂U ), (V , ∂V ) : � .

The semantic universe S� Finally, we define our semantic uni-

verse as the presheaf topos S� ≜ �̂. This “topos of clocks” defined

above inherits a rich internal logic which corresponds to a combina-

tion of cartesian/structural nominal logic
4
and guarded recursion.

The topos S� is related to the models considered by Bizjak and

Møgelberg [13], except that rather than constructing a family of

presheaf toposes fibered over clock contexts, we combine clock

contexts with time assignments into a single base category, and

take the topos of presheaves over that; our topos is nearly identical

to the presheaf category considered independently in Bizjak and

Møgelberg [14].

One minor difference between our model and those of Bizjak

and Møgelberg is that in order to close the internal logic of S�
under the clock irrelevance axiom described above, we decided to

rule out empty clock contexts; this condition is equivalent to taking

a sheaf subtopos of the presheaves over all clock contexts.

The object of clock names We need to exhibit an object in the

presheaf topos S� whose elements are the “available” clock names
(without regard to their time assignments). First observe that the

representable objectN plays exactly this role in the category F̂+: at
clock context •n it consists in the set of morphisms •n → •1, which

has cardinality n. However, this object resides in the wrong topos,

since we need to define an object K : S�. To achieve this, we use

the reindexing functor ℓ∗ : F̂+ → S� induced by precomposing

the projection ℓ : S� → F+, defining K ≜ ℓ∗N .

Notations andmorphisms WewriteU[κ 7→ n] tomean (U , ∂U [κ 7→
n]), where ∂U [κ 7→ n] means the adjustment to ∂U which replaces

∂U (κ)with n. Finally, for the map that increments the time assigned

to a clock, we write [κ += 1] : U→ U[κ 7→ ∂U (κ) + 1].

Defining the ▷κ modalities We define the ▷κ modalities by their

forcing clause in the Kripke-Joyal semantics of S�:
5

U ⊩ ▷κϕ(α) ≜

{
⊤ if ∂U (κ) ≡ 0

U[κ 7→ n] ⊩ ϕ([κ += 1]∗α) if ∂U (κ) ≡ n + 1

4
That is, the logic of nominal substitution sets [22, 32].

5
Usually the forcing clauses should be taken as theorems rather than as definitions.

However, in a Grothendieck topos, it is possible to define a subobject by its forcing

clause: the result is well-defined when the definition is monotone (and also local, in

the case of sheaf toposes).
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By a similar definition, it is possible to define an analogous

operator in the internal type theory ofS�, i.e. a fibered endofunctor

▶ : S�/X × K→ S�/X × K; however, we have only needed the

logical modality in our construction.

All the other forcing clauses are completely standard; for a ref-

erence on Kripke-Joyal forcing, see Mac Lane and Moerdijk [25].

3.2 Programming language and operational semantics
In Section 2 (Figure 2) we gave a grammar for the formal terms of

CTT�; however, in our semantics, we employ a second notion of

syntax which is constructed as an inductive definition internal to

S�; this is the language of programs, and differs from the syntax

of formal terms in two respects:

1. Clocks in programs are imported directly from the metathe-

oretic object of clocks K : S�; so the family of operators

▶κ − is indexed in κ : K in exactly the same way that Ui is

indexed in i : N.
2. The binding of clocks (such as in the clock intersection oper-

ator) is represented using the exponential −K : S� → S�.
6

Remark 1 (Generalized Syntax). The idea of using the exponential
of the metalanguage in the syntax of a programming language is not
new. Infinitary notions of program syntax can be traced back as far
as Brouwer’s 𭟋-inference in the justification of the Bar Principle [16],
and have more recently been developed in Nuprl semantics [31], as
well as in the context of higher-order focusing [37].

Wewill define the inductive family Progn of programs with n free
variables in S� using an internal inductive definition, summarized

in Figure 3.

Our syntax forms a substitution algebra, and we write p(−) :
Varn → Progn for the injection of variables into terms; we write

M ·γ : Progn for the action of the substitution γ : ProgVarmn in

M : Progm .

Internal operational semantics Programs are endowed with

operational meaning through the definition of a transition system,

an illustrative fragment of which we present in Figure 3. This de-

fines predicates − val : P
(
Prog

0

)
and − 7→ − : P

(
Prog

0
× Prog

0

)
in S�. WriteVal : S� for the subobject {M : Prog

0
| M val}.

Write − 7→⋆ − for the reflexive-transitive closure of − 7→ − .

We now define approximation and computational equivalence judg-

ments − ≼ − , − ≈ − : P
(
Prog

0
× Prog

0

)
respectively for closed

programs as follows:

M0 ≼ M1 ≜ ∀Mv : Val. M0 7→
⋆ Mv ⇒ M1 7→

⋆ Mv

M0 ≈ M1 ≜ M0 ≼ M1 ∧ M1 ≼ M0

The latter is extended to a computational equivalence judgment

for open programs − ≈n − : P
(
Progn × Progn

)
by quantifying

over total substitutions.

M0 ≈n M1 ≜ ∀γ : Progn
0
. M0 ·γ ≈ M1 ·γ

It would be desirable to extend this relation to a theory of com-

putational congruence, as pioneered by Howe [23]; however, for

our immediate purposes it has sufficed to require types only to

respect the approximation relation defined above.

6
While this construction cannot be called “ordinary syntax”, it is an inductive definition

that can be built up explicitly using the fact that S� models indexed W-types [27].

Definition 2 (Computational PERs). A partial equivalence relation

is a binary relation which is both symmetric and transitive. Such

a relation R on Prog
0
is called computational when it respects

approximation in the following sense: if (M0,M1) ∈ R and M0 ≼

M ′
0
, then

(
M ′

0
,M1

)
∈ R.

Telescopes To capture the syntax of contexts and we define the

inductive family Tℓn of telescopes of length n as follows:

· : Tℓ0

Γ : Tℓn A : Progn
Γ.A : Tℓn+1

Elaborating terms We now sketch the elaboration of the pro-

gram terms of Section 2 into programs; approximately, a termM
with free formal clock variables ∆ and free term variables Ψ will

be elaborated to a morphism ∥∆ | Ψ ⊢ M ∥ : K |∆ | → Prog |Ψ | .

Notation 3. When Ψ is a list, we write |Ψ| for its length, and we

write Ψ[x] for the index i < |Ψ| of the element x in Ψ, presupposing
Ψ ∋ x .

We present here only a few of the most illustrative cases; the

remainder of the elaboration can be found in technical report, and

in our Coq formalization [34].

∥∆ | Ψ ⊢ x ∥ϱ = pΨ[x ]
∥∆ | Ψ ⊢ λx .M ∥ϱ = λ(∥ϱ | Ψ,x ⊢ M ∥ϱ)

∥∆ | Ψ ⊢ λk .M ∥ϱ = λ�(κ 7→ ∥∆,k | Ψ ⊢ M ∥(ϱ,κ))

∥∆ | Ψ ⊢ M k ∥ϱ = (∥∆ | Ψ ⊢ M ∥ϱ)(ρ∆[k])

∥∆ | Ψ ⊢ ▶k A∥ϱ = ▶ϱ∆[k ] ∥∆ | Ψ ⊢ A∥ϱ

∥∆ | Ψ ⊢ (k : clk) → A∥ϱ = Π�(κ 7→ ∥∆,k | Ψ ⊢ A∥(ϱ,κ))

∥∆ | Ψ ⊢ {k ÷ clk} → A∥ϱ = (κ 7→ ∥∆,k | Ψ ⊢ A∥(ϱ,κ))

Elaborating contexts Next, we elaborate contexts Γ with free

formal clock variables ∆ as morphisms ∥∆ | Γ∥ : K |∆ | → Tℓ |Γ | ,

writing π (Γ) for the sequence ®xi when Γ ≡
−−−−−→
xi : Ai .

∥∆ | ·∥ϱ = ·

∥∆ | Γ,x : A∥ϱ = (∥∆ | Γ∥ϱ).(∥∆ | π (Γ) ⊢ A∥ϱ)

To save space, we may write ∥M ∥ or ∥Γ∥ for the elaboration of

a term or a context respectively, when the parameters are obvious.

3.3 Full type system hierarchy
At a high level, a type system in the sense of Allen [3] is an object

which distinguishes some programs as types, and specifies what

programs will be the elements of those types, and when they will

be considered equal. Writing rel(X ) for P(X × X ), we define a can-
didate type system to be a relation τ : P

(
Prog

0
× rel

(
Prog

0

) )
in

S�. We will write TScand for the collection of such candidate type

systems, i.e. TScand : S� ≜ P
(
Prog

0
× rel

(
Prog

0

) )
.

Let us now define notation for some assertions about candidate

type systems τ : TScand :

τ |= A � B ≜ ∃A : rel
(
Prog

0

)
. (A,A) ∈ τ ∧ (B,A) ∈ τ

τ |= M0 � M1 ∈ A ≜ ∃A : rel
(
Prog

0

)
. (A,A) ∈ τ ∧ (M1,M2) ∈ A

A candidate type system τ : TScand can have the following

characteristics:

1. It is called extensional if it is the graph of a partial function

Prog
0
⇀ rel

(
Prog

0

)
.
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Varn ≜ {i | i < n}

i : Varn
pi : Progn

M : Progn+1
λ(M) : Progn

M : Progn
K

λ�(M) : Progn

M0 : Progn M1 : Progn
M0(M1) : Progn

M : Progn κ : K

M(κ) : Progn

M : Progn+1
fix(M) : Progn

κ : K A : Progn
▶κ A : Progn

A : Progn
K

A : Progn

A : Progn
K

Π�A : Progn

i : N

Ui : Progn

λ(M) val ▶κ A val A val Ui val

M0 7→ M ′
0

M0(M1) 7→ M ′
0
(M1)

(
λ
(
Mf

))
(M) 7→ Mf ·M

fix(M) 7→ M ·fix(M)

Figure 3. An illustrative fragment of the inductive definition of the programs with n free variables Progn : S�, and their operational

semantics. For the full definition, see either our report [33] or our Coq formalization [34].

2. It is called computational PER-valued if whenever (A,A) ∈ τ ,
the relation A is a computational PER (see Definition 2).

3. It is called type-computational when, if (A,A) ∈ τ and A ≼
A′, then also (A′,A) ∈ τ .

Finally a candidate type system is called a type system if it is

extensional, computational PER-valued, and type-computational.

We write TS : S� for the collection of such type systems.

Sequents and functionality Next, we briefly sketch the mean-

ing of type functionality sequents Γ ≫ A0 � A1 and functionality

sequents Γ ≫ M0 � M1 ∈ A using a simple notion of functionality

derived from Martin-Löf [26], with respect to any candidate type

system τ : TScand .
When Γ : Tℓn is a telescope and γ0,γ1 : Progn

0
are sequences of

programs, we define similarity of instantiations γ0 � γ1 ∈
⋆ Γ by

recursion on Γ. · � · ∈⋆ · is true, and γ0.M0 � γ1.M1 ∈
⋆ Γ.A is

true when both γ0 � γ1 ∈
⋆ Γ andM0 ·γ0 � M1 ·γ1 ∈ A·γ0 are true.

Open type similarity Γ ≫ A0 � A1 is true when for all instan-

tiations γ0 � γ1 ∈
⋆ Γ, we have A0 ·γ0 � A1 ·γ1. Likewise, open

member smilarity Γ ≫ M0 � M1 ∈ A is true when for all such

instantiations, we haveM0 ·γ0 � M1 ·γ1 ∈ A·γ0.
Finally, context validity Γ ctx is given by recursion on Γ using

open type similarity in the inductive case.

3.4 Closure under type formers other than universes
Next, we will show how to close a candidate type system under

the type formers of CTT�, namely booleans, natural numbers,

dependent functions types, dependent pair types, equality types,

later modalities, clock intersection types and universes.

The simplest way to carry out this construction, as pioneered

by Crary [19] and formalized by Anand and Rahli [4], is to use an

inductive definition of a closure operator c[−] : TScand → TScand
on candidate type systems. However, this method does not imme-

diately extend to the type systems that we consider in this paper,

because it is not clear how to fit the clause for the later modality
into the usual schemata for inductive definitions based on strictly

positive signatures.

Therefore, as advocated by Allen [3], we will build up our closure

operator manually by taking the least fixed point of a monotone op-

erator on candidate type systems; this construction can be carried

out in any topos, because the Knaster-Tarski theorem guarantees

a least fixed point for any monotone operator on a complete lat-

tice [21].

First, we define some notation for closing relations and type

systems under evaluation to canonical form:

−⇓ : rel
(
Prog

0

)
→ rel

(
Prog

0

)
A⇓ ≜

{
(M0,M1) | ∃Mv

0
,Mv

1
: Val. Mi 7→

⋆ Mv
i ∧

(
Mv

0
,Mv

1

)
∈ A

}
−⇓ : TScand → TScand

τ⇓ ≜
{
(A,A) | ∃Av : Val. A 7→⋆ Av ∧ (Av ,A) ∈ τ

}
In Figure 4, for an initial candidate type system σ : TScand , we de-

fine an endomorphism on candidate type systemsFσ : TScand → TScand
which extends a type system with all the non-universe connectives

of CTT�.

Theorem4 (Closure.Clo.monotonicity). For any candidate type
system σ : TScand , the function Fσ : TScand → TScand is monotone.

Proof. By case on the type closure clauses above, which are them-

selves each monotone. □

Corollary 5 (Closure.Clo.t, Closure.Clo.roll). By the Knaster-
Tarski theorem, the function Fσ has a least fixed point µ(Fσ ).

We will write c[−] : TScand → TScand for the operator that takes
σ : TScand to the fixed point µ(Fσ ).

3.5 The full universe hierarchy
The next step in the construction is to build up the universe hier-

archy. Following Allen [3], we define the “spine” of the universe

hierarchy as a sequence of type systems ν : TSNcand that contains at

each level only types which evaluate to universes:

ν0 = ⊥

νn+1 =
{
(Ui ,U) | i ≤ n ∧U ≡

{
(A0,A1) | c[νi ] |= A0 � A1

}}⇓
The sequence above is well-defined by complete induction on

the index. We are now equipped to define a new sequence of type

systems which is at each level closed under all the ordinary type

formers as well as smaller universes:

τn ≜ c[νn ]
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Fσ : TScand → TScand

Fσ (τ ) ≜ σ ∪ (Void(τ ) ∪ Unit(τ ) ∪ Bool(τ ) ∪ Nat(τ ) ∪ Prod(τ ) ∪ Fun(τ ) ∪ Eq(τ ) ∪ Ltr(τ ) ∪ Isect(τ ) ∪ KFun(τ ) ∪ Tree(τ ))⇓

Ltr(τ ) ≜
{
(▶κ A,X) | ∃A:rel

(
Prog

0

)
. ▷κ ((A,A) ∈ τ ) ∧ X ≡

{
(M0,M1) | ▷κ ((M0,M1) ∈ A)

}}
Isect(τ ) ≜

{ (
A,X

)
| ∃A:rel

(
Prog

0

)K
. (∀κ:K. (A(κ),A(κ)) ∈ τ ) ∧ X ≡ {

(M0,M1) | ∀κ:K. (M0,M1) ∈ A(κ)
}}

KFun(τ ) ≜
{ (

Π�A,X
)
| ∃A:rel

(
Prog

0

)K
. (∀κ:K. (A(κ),A(κ)) ∈ τ ) ∧ X ≡ {

(M0,M1) | ∀κ:K. (M0(κ),M1(κ)) ∈ A(κ)
}}

Figure 4. A monotone operator on candidate type systems; for the sake of space, we elide the interpretations of the standard connectives.

For the remainder, please see our report [33].

Finally, we can capture the entire countable hierarchy in a single

type system τω , which is the join of the entire sequence:

τω ≜
∨
i :N

τi

When we explain the meaning of judgments, it will always be

done with respect to this maximal type system.

Theorem 6 (τω type system). The ultimate candidate type system
τω is in fact a type system.

3.6 Meaning explanation
In this section, we give a mathematical meaning explanation to the

formal judgments of CTT�:

1. Functional equality of elements ∆ | Γ ≫ M0 � M1 ∈ A
means that in clock context ∆ and variable context Γ, M0

andM1 are equal elements of type A. This form of judgment

requires that Γ,M0,M1,Amention only clocks from ∆, and
thatM0,M1,Amention only variables from Γ.

2. Untyped open conversion ∆ | Ψ ⊢ M0 ↔ M1 means thatM0

andM1 are Kleene equivalent in all their instantiations. This

form of judgment requires thatM0,M1 mention only clocks

from ∆ and variables from Ψ.

The meaning of judgments We interpret each formal judgment

J as a proposition JJK : Ω in S�.

J∆ | Γ ≫ M0 � M1 ∈ AK ≜

∀ϱ : K |∆ | .

τω |= ∥Γ∥ϱ ctx

⇒ τω |= ∥Γ∥ϱ ≫ ∥A0∥ϱ � ∥A1∥ϱ

⇒ τω |= ∥Γ∥ϱ ≫ ∥M0∥ϱ � ∥M1∥ϱ ∈ ∥A∥ϱ

J∆ | Ψ ⊢ M0 ↔ M1K ≜ ∀ϱ : K |∆ | . ∥M0∥ϱ ≈ |Ψ | ∥M1∥ϱ

Observe that the usual presuppositions of the equality judgment

(context validity and type functionality) are taken as assumptions:
the principle can be summarized as “garbage in, garbage out”. Du-

ally, we could have chosen to regard them as consequences, which

would lead to a slightly different collection of validated rules.

Canonicity at base type Write 2 : S� for the boolean object in

our semantic framework which has two global elements 20, 21 : 2.
Define an embedding ⌊−⌋2 from this object into our formal term

language as follows:

⌊20⌋2 = tt

⌊21⌋2 = ff

Now we can state the canonicity theorem for CTT�.

Theorem 7 (Canonicity.canonicity). For any closed expression
M such that J· | · ≫ M � M ∈ boolK, there exists some b ∈ 2 such
that J· | · ⊢ M ↔ ⌊b⌋2K.

Corollary 8. The type theory CTT� is consistent in the sense that
there is no inhabitant of void.

3.7 Validated rules
In Figure 5, we present a small selection of the rules which we have

validated in our Coq formalization of CTT�; we omit most of the

standard rules of ordinary extensional type theory, which are also

valid in our semantics.

3.8 Examples: revisiting streams
Using these rules, we can derive some typing lemmas for guarded

streams and coinductive sequences of bits.

stream ≜ λk . fix A in bool ×▶k A

sequence ≜ {k ÷ clk} → stream k

ones ≜ fix x in ⟨tt,x⟩

Examples.BitStream_wf

∆ | Γ ≫ stream ∈ (k : clk) → Ui

Examples.BitSeq_wf

∆ | Γ ≫ sequence ∈ Ui

Examples.BitStream_unfold

∆,k | Γ ≫ stream k � bool ×▶k stream k ∈ Ui

Examples.BitSeq_unfold

∆ | Γ ≫ sequence � bool × sequence ∈ Ui

Examples.Ones_wf_guarded

∆,k | Γ ≫ ones ∈ stream k
Examples.Ones_wf_infinite

∆ | Γ ≫ ones ∈ sequence

4 Survey of Related Work
4.1 Guarded Dependent Type Theory
The standard model of guarded recursion without clocks is the topos
of trees ω̂, the presheaves on the poset of natural numbers regarded

as a category [9]. This topos can be regarded as a denotational model

for a variant of Martin-Löf’s extensional type theory equipped with

the ▶ modality. By indexing this topos over a category of clock

contexts ∆, it is possible to develop a model of extensional type
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Isect.univ_eq

∆,k | Γ ≫ A0 � A1 ∈ Ui

∆ | Γ ≫ {k ÷ clk} → A0 � {k ÷ clk} → A1 ∈ Ui

Isect.intro
∆,k | Γ ≫ M0 � M1 ∈ A ∆,k | Γ ≫ A ∈ Ui

∆ | Γ ≫ M0 � M1 ∈ {k ÷ clk} → A

Isect.irrelevance
∆ | Γ ≫ A ∈ Ui (k < ∆)

∆ | Γ ≫ A � {k ÷ clk} → A ∈ Ui

Isect.preserves_sigma

∆,k | Γ ≫ A0 � A1 ∈ Ui ∆,k | Γ ≫ B0 � B1 ∈ Ui

∆ | Γ ≫ {k ÷ clk} → ((x : A0) × B0) � (x : {k ÷ clk} → A0) × {k ÷ clk} → B0 ∈ Ui

KArr.univ_eq

∆,k | Γ ≫ A0 � A1 ∈ Ui

∆ | Γ ≫ (k : clk) → A0 � (k : clk) → A1 ∈ Ui

KArr.intro
∆,k | Γ ≫ A � A ∈ Ui ∆,k | Γ ≫ M0 � M1 ∈ A

∆ | Γ ≫ λk .M0 � λk .M1 ∈ (k : clk) → A

KArr.elim
∆,k ′,k | Γ ≫ A � A ∈ Ui ∆,k ′ | Γ ≫ M0 � M1 ∈ (k : clk) → A

∆,k ′ | Γ ≫ M0(k
′) � M1(k

′) ∈ [k ′/k]A

Later.univ_eq

∆,k | Γ ≫ A0 � A1 ∈ ▶k Ui

∆,k | Γ ≫ ▶k A0 � ▶k A1 ∈ Ui

Later.intro
∆,k | Γ ≫ M0 � M1 ∈ A ∆,k | Γ ≫ A ∈ Ui

∆,k | Γ ≫ M0 � M1 ∈ ▶k A

Later.force
∆ | Γ ≫ {k ÷ clk} → A0 � {k ÷ clk} → A1 ∈ Ui

∆ | Γ ≫ {k ÷ clk} → ▶k A0 � {k ÷ clk} → A1 ∈ Ui

Later.preserves_pi

∆ | Γ ≫ A0 � A1 ∈ Ui ∆ | Γ,x : A ≫ B0 � B1 ∈ ▶k Ui

∆ | Γ ≫ ▶κ ((x : A0) → B0) � (x : ▶k A1) → ▶k B1 ∈ Ui

Later.preserves_sigma

∆ | Γ ≫ A0 � A1 ∈ Ui ∆ | Γ,x : A ≫ B0 � B1 ∈ ▶k Ui

∆ | Γ ≫ ▶κ ((x : A0) × B0) � (x : ▶k A1) ×▶k B1 ∈ Ui

Later.induction
∆,k | Γ,x : ▶k A ≫ M0 � M1 ∈ A

∆,k | Γ ≫ fix x inM0 � fix x inM1 ∈ A

General.conv_mem

∆ | Γ ≫ M01 � M1 ∈ α π (Γ) ≡ Ψ ∆ | Ψ ⊢ M00 ↔ M01

∆ | Γ ≫ M00 � M1 ∈ α

General.conv_ty

∆ | Γ ≫ M0 � M1 ∈ A1 π (Γ) ≡ Ψ ∆ | Ψ ⊢ A0 ↔ A1

∆ | Γ ≫ M0 � M1 ∈ A0

Figure 5. A selection of the rules which we have proved correct for our type theory.

theory with clock quantification called GDTT [12, 13]. In order to

justify a crucial clock irrelevance principle, it is necessary to index

universes in clock contexts, i.e.U∆.

In the dependent setting, some difficulties arise when devising

a syntax for the semantic type theory of this indexed category. In

order to make sense of the “delayed application” operator ⊛ in the

context of dependent function types, it was necessary to introduce

a notion of delayed substitution ξ ≡ [−−−−−→x ← e] which pervades the

term language, introducing term formers like ▷k ξ .A and nextk ξ .e .
On the bright side, delayed application can be defined in terms of

delayed substitution.

However, the equational theory for delayed substitutions is fairly

sophisticated, and an operational (computational) interpretation

of GDTT has not yet been proposed at the time this article was

written; as such, a canonicity theorem for this system is still forth-

coming.

4.2 Orthogonality and clock irrelevance
In a more recent development [14], a denotational model of GDTT
has been developed that differs from that of Bizjak and Møgelberg

[13] in a few crucial ways.

Unified base category The fibered topos presentation of the Biz-

jak and Møgelberg [13] work has been replaced with a presheaf

topos over a single unified base category, discovered independently

from the unified base category which we introduce in Section 3.1.

Taking presheaves over this unified base category simplifies the

model significantly, and also makes available the standard solution

to the substitution coherence problem for (denotational) presheaf

models of dependent type theory.
7

The proposed base category of Bizjak and Møgelberg [14] differs

from ours mainly in that they allow empty worlds, whereas we

restrict our base category to those worlds which contain at least a

single clock.

Orthogonality Bizjak and Møgelberg define a presheaf of clocks

C which is the same as our object of clocksKwhich we introduce in

Section 3.1; then, the clock quantifier is represented in the internal

language of their presheaf topos as a dependent product over C, i.e.∏
x :C A(x).
Defined in this way, the clock quantifier cannot be a priori para-

metric with respect to clocks / time objects; therefore, in order

to validate the clock irrelevance axiom, the authors have identi-

fied an orthogonality condition on objects, which in essence closes

the internal language of the presheaf topos under just those types

7
This is to use an alternative construction of the slice categories Ĉ/X , as the presheaves

on the total category of X .
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which are compatible with the irrelevance principle for the clock

quantifier.

Unfortunately, the subtopos of time-orthogonal objects does

not contain the standard Hofmann-Streicher universes, because

universes necessarily classify types that depend on clocks in an es-

sential way. In order to resolve this problem, the standard presheaf-

theoretic universeU is replaced with a family of universesU∆ for

each clock context ∆; each universeU∆ classifies the types which

may depend only on the clocks in ∆.

Discussion Temporarily abstracting away from the differences

between a denotational account of GDTT and our operational

account of type theory, we can briefly summarize the difference

between our approaches to clock quantification and irrelevance.

The approach of Bizjak and Møgelberg [14] is in essence to

define clock quantification as a dependent (cartesian) product, and

then restrict the available semantic constructions to precisely those

which treat clocks parametrically; then, within this subcategory,

the clock quantifier can itself be regarded as a parametric quantifier

(because all counterexamples have been muted).

Our approach is instead to define clock quantifiers which in-
trinsically behave in the desired way, rather than starting with

only a proof-relevant quantifier and ruling out observations of its

non-parametric character using a global orthogonality condition.

To that end, we have defined two separate clock quantifiers which

decompose the two disjoint uses of ∀κ from GDTT:

1. A parametric quantifier {k ÷ clk} → A for expressing that a

program exhibits a behavior relative to all clocks simultane-

ously. Semantically, this is an intersection, though we expect

that a more refined perspective will arise as we explore other

kinds of model where the intersection may not be available.

2. A non-parametric quantifier (k : clk) → A for internalizing

a family of objects which varies in a clock; semantically this

is the cartesian product of a clock-indexed family of types

(i.e. the right adjoint to weakening). A priori there is no need
for this quantifier to behave parametrically, as this is neither

demanded nor desired when forming families of objects.

In this way, we have managed to avoid imposing any global or-

thogonality condition on the objects of our semantic model, leading

to a smoother treatment of universes that avoids indexing in clock

contexts.

4.3 Guarded Cubical Type Theory
One way to achieve a decidable typing judgment for GDTT is

to adopt an intensional equality, and replace various judgmental
principles with propositional axioms (such as the unfolding rule for

fix, as well as several other principles having to do with identity

types which are validated in extensional GDTT). However, such
axioms are disruptive to the computational character of type theory.

A more refined and well-behaved version of this idea can be

found in Guarded Cubical Type Theory (GCTT) by Birkedal et al.

[8], where fix is actually exhibited as a higher-dimensional term, a

line or path between a formal fixed point and its one-step unfolding.

GCTT currently supports only a single clock, but it is plausible

that it could be extended in the same way as GDTT extends the

internal type theory of the topos of trees. AlthoughGCTT does not

at the time of writing have a decidable typing result, nor a strong

normalization theorem, we are confident that these can be achieved

in the future in light of the intensional judgmental equality and the

restricted unfoldings of fixed points.

4.4 Clocked Type Theory
Recently, an alternative toGDTT calledClocked Type Theory (CloTT)
has been proposed, which enjoys a computational interpretation

with a canonicity result [7]; it is plausible that Clocked Type The-

ory shall have a decidable typing relation. Notably, Clocked Type

Theory does not validate any clock irrelevance rule; the authors

propose to address this in a cubical version of CloTT by adding a

special path axiom which realizes this principle, by analogy with

the technique used in GCTT to account for restricted unfoldings

of fixed points. In the presence of this axiom, canonicity for CloTT
can still be made to hold in the context which contains only a single

clock.

Discussion Clocked Type Theory looks like a promising path

toward a well-behaved intrinsic account of guarded recursion with

clocks. In the present paper, our efforts have been focused exclu-

sively on developing the behavioral account of guarded type theory

in the style of Martin-Löf’s meaning explanation, in which pro-

grams can be regarded as existing separately from their types; here,

general recursive programs can be written and shown to be (causal,

productive, total) in a semantic sense, using the type theory as a

program logic.

We perceive, however, that virtue lies in pursuing the intrin-

sic path, especially as far as implementability are concerned. The

calculus developed in Bahr et al. [7] (and more recently, the ideas

contained in Clouston et al. [17]) are likely to provide the basis for

a syntactic account of guarded recursion which is sound for our

model, but closer to implementation.

4.5 Sized Types and size quantifiers
Our decomposition of the quantifier ∀κ fromGDTT into a paramet-

ric part {k ÷ clk} → A and a non-parametric part (k : clk) → A
mirrors the state of affairs in the literature on sized types, which is

another account of type-based guarded recursion [1].

5 Perspective and Future Work
We have developed and formalized a computational account of

guarded dependent type theory with clocks, enjoying several de-

sirable characteristics not found together in other existing models:

computational canonicity, clock irrelevance and ordinary universes.

We have made the following contributions toward a simpler, more

computational account of guarded dependent type theory:

Implementation, proof theory, and syntax We have not yet

tackled the project of developing an ergonomic proof theory for

CTT� which can be used to interact with the semantics presented

here. The natural deduction style rules which we have given here

are, while convenient for paper presentations, not what one would

use in a serious implementation. To build a proof theory for CTT�,

we must negotiate new forms of judgment with decidable presup-

position.

Therefore, while we have indeed developed a programming lan-

guage for guarded type theory with clocks that omits explicit syntax

for delayed substitutions, this should be understood in terms of the

conceptual order of semantics and proof theory which is endemic

in computational type theory. In particular, while our programming



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Jonathan Sterling and Robert Harper

language and type theory has no need for such a construct, in a

proof language for CTT� it would be necessary to account for the

syntactic structure of the later modality’s elimination; we anticipate

that ideas from Bahr et al. [7] and Clouston et al. [17] will be highly

relevant.

Application to denotational semantics In the future, we are in-

terested in extending our work to a denotational account of guarded

dependent type theory with clocks which uses the ordinary non-

indexed presheaf-topos-theoretic universe. While our results have

been developed in the context of computational type theory and

operational semantics, we believe that the insight which enabled

us to combine clock irrelevance with ordinary universes is more

broadly applicable.
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