
A functional interpretation with state
Thomas Powell

Department of Mathematics
Technische Universität Darmstadt

powell@mathematik.tu-darmstadt.de

Abstract
We present a new variant of Gödel’s functional interpretation in
which extracted programs, rather than being pure terms of system
T, interact with a global state. The purpose of the state is to store
relevant information about the underlying mathematical environ-
ment. Because the validity of extracted programs can depend on
the validity of the state, this offers us an alternative way of dealing
with the contraction problem. Furthermore, this new formulation
of the functional interpretation gives us a clear semantic insight
into the computational content of proofs, and provides us with a
way of improving the efficiency of extracted programs.

Keywords Functional interpretation, program extraction, state
monad

1 Introduction
Proof interpretations are well known techniques for extracting
programs from proofs. Not only are they central to the proof mining
program [9], but they have been used as a means of synthesising
verified programs, to which end specialised proof assistants such
as Minlog [1] have been developed.

Traditionally, proof interpretations take as input some logical
theory such as Peano arithmetic, and translate proofs in this system
to realizing terms written in some lambda calculus, typically a
variant of Gödel’s system T. As such, when viewed as programs, it
is natural to think of these as being implemented in a functional
language.

However, more recently, researchers in this area have been lean-
ing towards extracting programs in languages with imperative fea-
tures such as stacks and continuations, which is exemplified, for
instance, in Krivine’s classical realizability [11]. Not only do imper-
ative structures lend themselves very well towards expressing the
computational content of classical reasoning, but writing extracted
programs in languages of this kind brings them much closer to pro-
gramming paradigms used in practise, which is particularly relevant
if one aims to use proof interpretations for program synthesis.

The purpose of this article is to present a variant of Gödel’s
famous functional (or ‘Dialectica’) interpretation, which extracts
programs that, rather than being purely functional, can access and
change a global state. The idea is that our state will represent a ‘state
of knowledge’ which contains computational information about
our mathematical environment. For example, if we are sorting some

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00
https://doi.org/10.1145/3209108.3209134

data structure, the state might contain a list of comparisons which
have already been made; if we are computing over some sequence
of rationals in the unit interval, the state might contain information
about where certain elements of the sequence are located. However,
we work in a general framework that allows considerable flexibility
in characterising both the state and how our programs interact
with it.

Our work is motivated by a number of separate factors, each of
which we explore in a more detail towards the end of the article.

First of all, we believe that our interpretation is of theoretical
interest in its own right, as is constitutes a broad generalisation
of the original functional interpretation whose realizers can now
potentially take as an additional input a sequence of conditions
which are forced to be true, and in turn add further conditions
to the state as they evaluate. On the most simple level, we can
define these conditions to be lists of atomic formulas, and as such
our realizing terms can be viewed as programs which traverse a
Herbrand tree. However, much more intricate characterisations of
the state are possible, and we hope to explore potential applications
of our interpretation in pure logic in the future.

A different motivation for introducing a state to the functional in-
terpretation was to connect it to the range of elegant computational
interpretations of classical logic which are based on ‘backtracking’
or ‘learning’ (such as [2, 4, 7]). These interpretations are oriented
towards giving a semantic meaning to classical reasoning, charac-
terising realizing terms as programs which build successively better
approximations to ideal objects. This is in stark contrast to the func-
tional interpretation, for which the corresponding semantics lies
hidden in the structure the extracted terms via the case-distinction
functions. The main results of this paper address this by using the
state to capture how programs extracted by the functional inter-
pretation interact with the mathematical environment.

Finally, we have a number of practical objectives in mind, and
hope that our functional interpretation with state will take a step
further towards successfully applying proof interpretations for pro-
gram synthesis. Firstly, we can improve the efficiency of extracted
programs by using the state to avoid unnecessary computations,
something which has already been studied in e.g. [8, 14]. Secondly,
by producing terms which interact with a state we end up with
programs closer in style to those a normal programmer would
write, something which has already been explored in the context
of modified realizability in [3].

The article is structured as follows: In Sections 2 and 3 respec-
tively we define our main logical systems (which include a variant
of System T extended with a state type), and outline the usual func-
tional interpretation. Then, in Section 4, we construct a monadic
interpretation of System T based on the state monad, and charac-
terise how the resulting state-sensitive terms relate to their pure
counterparts via a logical relation. We then give our new formula-
tion of the functional interpretation in Section 5 and present the
main soundness theorem. This forms our central contributions, and

1

https://doi.org/10.1145/3209108.3209134

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Thomas Powell

a detailed study of the aforementioned applications are beyond
the scope of the paper. We nevertheless conclude, in Section 6, by
presenting several concrete examples of how our state could be
implemented, and pose a number of specific open questions which
we hope can be addressed in the future.

1.1 A preliminary example
Before we begin, we consider a very simple example which will
be treated in more detail in Section 6.1. This is a variant of the
so-called drinkers paradox:

∃x0∀y0 (P (y) → P (x)). (1)

In general, we cannot effectively compute a witness for x . However,
it is possible to give a computational interpretation of the follow-
ing reformulation of the drinkers paradox, which is essentially its
functional interpretation:

∀f 0→0∃x0 (P (f x) → P (x)). (2)

Assuming that P is decidable, we can define a realizer ΦGödel : (0→
0) → 0 for (2) by

ΦGödel f :=



0 if ¬P (f 0)
f 0 otherwise,

(3)

where ΦGödel f serves as an exact witness for ∃x in (2). Alternatively,
we can produce a realizer for (2) which is independent of P (and so
works even when P is not decidable), which instead returns a finite
sequence of potential witnesses for ∃x , in this case ΦHerbrand : (0→
0) → 0∗ defined by

ΦHerbrand f := [0, f 0] .

These two choices give rise to two distinct flavours of the func-
tional interpretation: The original interpretation, which relies on
case distinctions, and the many Herbrand style interpretations
(which include e.g. the Diller-Nahm variant), which work for theo-
ries whose atomic formulas are undecidable, such as nonstandard
arithmetic [15].

In this article, we consider a third possibility, in which we pro-
duce both an exact witness but at the same time do not necessarily
rely on the decidability of P . Instead, we make assumptions about P
and collect these in a global state. The validity of our realizer will
then depend on the validity of the end state. More specifically, let S
be some set of possible states, where π ∈ S consists of a sequence of
predicates. We can define two terms ΦiState : (0→ 0) → S → 0 × S
for i = 1,2, which take an arbitrary input state π and return as
output a state-realizer pair:

Φ1
State f π := ⟨0,π :: ¬P (f 0)⟩ and Φ2

State f π := ⟨f 0,π :: P (f 0)⟩.

where π :: P (f 0) denotes the extension of the state π with P (f 0).
Each of these realizers is valid provided the corresponding state is,
and can be characterised as traversing a branch in the tree which
underlies the corresponding Herbrand normal form of (1).

This extremely simplistic example does not illustrate the full
potential of our state, which we present on a much more abstract
level. However, we hope that it at least gives the reader some in-
sight into the basic mechanism of the interpretation, whose formal
construction involves a monadic translation in all finite types and
a rather intricate set of logical relations.

2 Formal systems
Three formal systems will play a role in this paper: The logical
theory HA+ of Heyting arithmetic with predicate parameters (to-
gether with its classical counterpart PA+), which will serve as our
input theory, the standard theory E-HAω of Heyting arithmetic in
all finite types which allows us to express basic extracted programs,
and finally an extension E-HAωS of this theory with a state type,
which will allow us to write state-sensitive programs. It is the case
that HA+ ⊂ E-HAω ⊂ E-HAωS i.e. each theory can be embedded, in
an obvious way, in the next.

2.1 Heyting arithmetic with predicate parameters (HA+)
Our input theory HA+ (resp. PA+) will be the standard theory of
Heyting (resp. Peano) arithmetic, extended with a countable collec-
tion of predicate parameters P ,Q , . . . where each of these has some
fixed arity. The purpose of these parameters will be to represent our
‘mathematical environment’. This can be chosen according to the
context, and the parameters will represent distinguished formulas,
information about which will be stored in the state. We can freely
add to HA+ universal axioms which characterise these predicates,
since the functional interpretation is insensitive to these.

Note that for each predicate P (of arity rP , say) we associate a
characteristic function χP : 0rP → 0 which satisfies

∀x1, . . . ,xr (χP (x1, . . . ,xr) ≤ 1).

In fact, since we are working in arithmetic it is simpler to take the
characteristic function as the primitive notion and define

P (x1, . . . ,xr) :≡ χP (x1, . . . ,xr) = 0.

However, it will still be useful to make the distinction between
P and χP , as the former typically plays a role in a proof, and the
latter in the resulting program. Note that while we officially treat
the χP as being genuine parameters (i.e. function symbols) whose
interpretation will depend on the model, for certain applications
these will be nothing more than labels for closed primitive recursive
functions, in which case HA+ will be just a definitional extension
of HA with new symbols denoting relevant primitive recursive
predicates.

We could alternatively just consider the weakly extensional vari-
ant WE-HAω of E-HAω as being our input theory, as this has a
functional interpretation in E-HAω and comes already equipped
with function symbols which can act as our parameters, although
strictly speaking these would have to be distinguished from or-
dinary function variables, as they should not be quantified over.
Moreover, there are a few additional details at higher type that we
prefer to avoid for now, which is why we simply work in HA+.

2.2 Heyting arithmetic in all finite types (E-HAω)
By E-HAω we denote the standard extension of Heyting arithmetic
in all finite types, as outlined in e.g. [9]. The only difference here
is that we choose a variant with product types, and among our
function symbols of type level 1 we isolate a countable collection
χP , χQ , . . . which correspond to the parameters of HA+, and are
assumed not to be quantified over. Formally, the types of E-HAω
are generated by the following grammar:

ρ,τ ::= 0 | ρ × τ | ρ → τ

Wewrite either x : ρ or xρ to denote that x is of type ρ. Occasionally
we abbreviate ρ → τ as τ ρ. Terms of E-HAω are constructed as

2

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

usual, and include as constants the zero, successor, projection and
pairing, and recursor. For each term t it will be helpful to assign a
formal typing Γ ⊢ t , which we outline in Figure 1, where Γ is some
context i.e. a list of distinct free variables. For each typed term Γ ⊢ t ,
the free variables of t are contained in Γ. Note that because the χP
are treated as parameters, we do not include them as variables in
our typing: This will also play a role when we set up our monadic
translation on terms of E-HAω , in which the χP will be interpreted
by some fixed term.

The language of E-HAω includes quantifiers for all types, to-
gether with an equality symbol =0 at base type (equality =ρ for
arbitrary types is defined inductively in terms of =0). The axioms
and rules of E-HAω include those of intuitionistic logic in all fi-
nite types, axioms which govern the terms, along with induction,
equality and extensionality axioms. Note that because E-HAω is an
equational theory, axioms for the constants are equations rather
than rewrite rules.

Γ ∪ {x : ρ} ⊢ x : ρ Γ ⊢ 0 : 0 Γ ⊢ sc : 0→ 0
Γ ⊢ pi : ρi (ρ0 × ρ1) for i = 0,1 Γ ⊢ ⟨ , ⟩ : (ρ0 × ρ1)ρ1ρ0

Γ ∪ {x : ρ} ⊢ t : τ
Γ ⊢ λx .t : ρ → τ

Γ ⊢ s : ρ ∆ ⊢ t : ρ → τ

Γ ∪ ∆ ⊢ ts : τ
Γ ⊢ Rρ : ρ → (0→ ρ → ρ) → 0→ ρ

Γ ⊢ χP : 0rP → 0

Figure 1. Terms of E-HAω

2.3 Heyting arithmetic with state (E-HAω
S)

Our extension E-HAωS of E-HAω with a state type S is not something
that we will specify entirely, as we want to work in the most general
framework possible. Rather, we provide a series of conditions that it
must satisfy in order for what follows to make sense. Note that all of
our examples in Section 6 can be properly formalised if we consider
E-HAωS to be the definitional extension E-HAω∗ of E-HAω which
includes finite sequence types ρ∗. Then states will be encodable
as objects of type 0∗. Therefore if the reader prefers, they can just
take E-HAωS to be E-HAω∗ , although in principle Section 4-5 apply
in more general setting.

The types of E-HAωS consist of the base type 0 and must allow
the construction of product and function types. In addition, they
include a special type S of states, which could be either a basic
type or defined in terms of the others (as S := 0∗, for example).
The terms of E-HAωS include at the very least those built from the
constants and rules given in Figure 1. Note that we now include
variables of state type, which we typically denote πS ,σS , . . ., and so
in particular allow lambda-abstraction, primitive recursion etc. over
state types. Similarly, the language of E-HAωS includes in addition
quantifiers for types built from the state, together with an equality
symbol=S between states, and the usual axioms and rules of E-HAω
extended to encompass the state type.

In addition, we make use of two new predicates which act on
states: A unary ‘truth’ predicateT together with a binary ‘extension’
predicate ⊑. These are required to satisfy the following conditions:

(A) ⊑ is reflexive and transitive;
(B) ∀π ,σ (π ⊑ σ ∧T (σ) → T (π)).

Officially, these will be parameters of our interpretation, but in
practice theywill be instantiated by something concrete (see Section
6). For now, the reader should have in mind the following informal
interpretations:
• States π are some abstract data structures which encode
information or assumptions about our parameters P ;
• T (π) is a predicate which denotes the conjunction of all
assumptions encoded by our state;
• π ⊑ σ indicates that σ contains more information than π .

The condition (B) simply says that if all assumptions encoded
by σ are true, and σ contains more information than π , then all
assumptions encoded by π must be true.We remark that E-HAω can
always be embedded in E-HAωS , and we refer to (the embedding of)
types and terms of E-HAω as ‘pure’ types and terms respectively.

3 Gödel’s functional interpretation
We now outline the functional interpretation. This section is es-
sentially standard material, and a full exposition can be found in
e.g. [9]. However, for our purposes, we will need a slightly more
explicit presentation, in which interpreted formulas are given as
substitution instances of some quantifier-free skeleton. A similar
decomposition is used in [6].

The functional interpretation maps each formula A in HA+ to
a quantifier-free formula |A|x⃗y⃗ in E-HAω (where x⃗ ,y⃗ are possibly
empty tuples of variables), inductively over the structure of A as
given in Figure 2, where P ∨i Q denotes (i = 0→ P) ∧ (i , 0→ Q).

|A| :≡ A for A atomic |A ∧ B |x⃗,u⃗
y⃗,v⃗

:≡ |A|x⃗y⃗ ∧ |B |
u⃗
v⃗

|A ∨ B |i,x⃗,u⃗
y⃗,v⃗

:≡ |A|x⃗y⃗ ∨i |B |
u⃗
v⃗

|A→ B |U⃗ ,Y⃗
x⃗,v⃗

:≡ |A|x⃗
Y⃗ x⃗v⃗
→ |B |U⃗ x⃗

v⃗

|∃zA(z) |x,u⃗
v⃗

:≡ |A(x) |u⃗v⃗ |∀zA(z) |U⃗x,v⃗ :≡ |A(x) |U⃗ x
v⃗

Figure 2. The functional interpretation

We break down the functional interpretation into a substitution
and a skeleton component. This decomposition will play a role in
Section 5. To each formula A of HA+ we assign a skeleton formula
As (a⃗; b⃗) which is also a formula of HA+ (strictly speaking its em-
bedding in E-HAω). The variables b⃗ represent the free variables of
the original formulaA, while a⃗ are those which arise through the in-
terpretation. Associated with As is a closed term rA : ρ⃗ → τ⃗ → 0n
(where ρ⃗ → 0 is shorthand for ρ1 → . . . → ρk → 0), where ρ⃗, τ⃗
are the types of x⃗ ,y⃗ in |A|x⃗y⃗ and n is the length of a⃗ (in the case
n = 0 we leave rA undefined). The full definition is given in Figure
31. Here b⃗ ∪ d⃗ denotes the union of both sequences of variables (so
identical variables are only counted once).

A simple induction over the structure of A(b⃗) proves that
���A(b⃗)

���
x⃗
y⃗
≡ As (rAx⃗y⃗/a⃗; b⃗),

where ⟨t1, . . . ,tn⟩/a⃗ denotes the substitution t1/a1, . . . ,tn/an .
1Note that in the definition of rA , the induction doesn’t begin with the atomic formulas,
but rather the quantifiers or disjunction. In cases where rA is undefined because e.g.
A is atomic, rA∧B and so on are defined in the obvious way.

3

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Thomas Powell

As (; b⃗) :≡ A for A atomic, where b⃗ = FV (A)

(A ∧ B)s (a⃗, c⃗; b⃗ ∪ d⃗) :≡ As (a⃗; b⃗) ∧As (c⃗; d⃗)

(A ∨ B)s (e, a⃗, c⃗; b⃗ ∪ d⃗) :≡ As (a⃗; b⃗) ∨e Bs (c⃗; d⃗)

(A→ B)s (a⃗, c⃗; b⃗ ∪ d⃗) :≡ As (a⃗; b⃗) → Bs (c⃗; d⃗)

(∃zA(z))s (e, a⃗; b⃗) ≡ (∀zA(z))s (e, a⃗; b⃗) :≡ A(e)s (a⃗; b⃗ ∪ e)

rA∧B x⃗u⃗y⃗v⃗ := ⟨rAx⃗y⃗,rBu⃗v⃗⟩ rA∨Bix⃗u⃗y⃗v⃗ := ⟨i,rAx⃗y⃗,rBu⃗v⃗⟩

rA→BU⃗ Y⃗ x⃗v⃗ := ⟨rAx⃗ (Y⃗ x⃗v⃗),rB (U⃗ x⃗)v⃗⟩

r∃zA(z)xu⃗v⃗ := ⟨x ,rA(x)u⃗v⃗⟩ r∀zA(z)U⃗ xv⃗ := ⟨x ,rA(x) (U⃗ x)v⃗⟩

Figure 3. As and rA

Theorem 3.1. Suppose that A(b⃗) is a formula of HA+ with only b⃗
free, and that HA+ ⊢ A(b⃗). Then

E-HAω ⊢ ∀y⃗ ���A(b⃗)
���
s⃗b⃗
y⃗

where s⃗ is a sequence of closed terms of E-HAω (which could never-
theless contain function parameters χP), which can be extracted from
the proof of A(b⃗). By precomposing with the negative translation, an
analogous result holds for PA+.

Proof. This is standard, and follows from the usual soundness proofs
found in e.g. [9]. To be absolutely formal regarding our parame-
ters χP , we can regard a proof of the formula A(b⃗) as a proof of
the formula A(χ⃗ ,b⃗) in the weakly extensional variant WE-HAω of
Heyting arithmetic in finite types, where χ⃗ is a sequence of param-
eters used in the proof, which are now treated as function symbols
in WE-HAω . By the usual functional interpretation of WE-HAω

we can extract a sequence of genuinely closed terms s⃗ such that

E-HAω ⊢ ∀y⃗ ���A(χ⃗ ,b⃗)
���
s⃗ χ⃗ b⃗
y⃗

. Then the sequence s⃗ χ⃗ , which is closed in
our sense, does the job. □

4 A monadic translation from E-HAω to E-HAω
S

We now outline the first key steps in constructing our functional
interpretation with state: A translation from pure terms of E-HAω
to state sensitive terms of E-HAωS . To do this we will make use of
the state monad: a mappingM on types defined by

Mρ := S → ρ × S .

Monads are a well known technique for modelling imperative
structures within a pure functional calculus [12]. A key aspect
of our translation will be to replace the characteristic functions
χP : 0rP → 0 for each predicate parameter by some new functions
φP : 0rP → S → 0 × S which are monotone, in the sense that

∀x ,π (π ⊑ φPxπ1),

and which satisfy the following relation:

χP ≈ φP :≡ ∀x ,π (T (φPxπ1) → χPx = φPxπ0)

where φPxπi for i = 0,1 is short for pi (φPxπ). The φP act as
‘approximate’ characteristic functions for the parameters P , in that
they are only required to be accurate relative to whatever is in the
current state. This allows us to e.g. assume the truth of P (x) by
simply adding it to our state. Themonotonicity condition intuitively

means that the φP can only add information to the state, and cannot
erase existing information. The reader may prefer to take a quick
look ahead at Section 6 to get an idea of what this all means in a
concrete setting.

4.1 The translation t 7→ [t]
To each type ρ in E-HAω (which corresponds also to a pure type in
E-HAωS) we assign a type [ρ] of E-HAωS inductively as

[0] := 0 [ρ × τ] := [ρ] × [τ] [ρ → τ] := [ρ]→ M[τ].

In defining the translation on terms we will make use of the usual
unit and bind operations for this monad. More specifically, we
define η : ρ → Mρ by

ηx := λπ .⟨x ,π ⟩.

and ◦ : (ρ → Mτ) → Mρ → Mτ by

f ◦ x := λπ . f (xπ0) (xπ1).

We will primarily use the bind operation in the form of the associ-
ated operation ∗ : M (ρ → Mτ) → Mρ → Mτ given by

д ∗ x := λπ .(дπ0 ◦ x) (дπ1).

Finally, if x : [ρ] and t : M[τ] we define ‘neutral’ lambda abstraction
λ∗x .t : M[ρ → τ] as

λ∗x .t := λπ .⟨λx .t ,π ⟩.

Entirely analogously, for x1 : [ρ1], . . . ,xn : [ρn] and t : M[τ] we
define λ∗x1, . . . ,xn .t : M[ρ⃗ → τ] as shorthand for repeated neutral
abstraction i.e.

λ∗x1, . . . ,xn .t := λπ .⟨λx1λ
∗x2, . . . ,xn .t ,π ⟩.

Now, formally our translation will take some typed term Γ ⊢ t : ρ
of E-HAω , and will translate it to some typed term [Γ ⊢ t : ρ] :=
[Γ] ⊢ [t] : M[ρ] of E-HAωS , where if Γ := x1 : ρ1, . . . ,xn : ρn then
[Γ] := y1 : [ρ1], . . . ,yn : [ρn] is a new context, which assigns to
each xi : ρi a fresh variable yi : [ρi]. Officially, the translation
is parametrised by some φP : 0rP → M0 and should be written
as [t]φP , although in practice it can be safely omitted from the
notation. The full translation is given below:
• [Γ ∪ {x : ρ} ⊢ x : ρ] := [Γ] ∪ {y : [ρ]} ⊢ ηy : M[ρ];
• [Γ ⊢ 0 : 0] := [Γ] ⊢ η0 : M[0] and [Γ ⊢ sc : 00] := [Γ] ⊢
λ∗x .η(sc(x)) : M[00];
• [Γ ⊢ pi : ρi (ρ0 × ρ1)] := [Γ] ⊢ λ∗x .η(pix) : M[ρi (ρ0 × ρ1)]
for i = 0,1 (where on the r.h.s. pi denotes the projection of
type [ρi]([ρ0] × [ρ1]));
• [Γ ⊢ ⟨ , ⟩ : (ρ × τ)τ ρ] := [Γ] ⊢ λ∗x ,y.η⟨x ,y⟩ : M[(ρ × τ)τ ρ]
• If [Γ ∪ {x : ρ} ⊢ t : τ] = [Γ] ∪ {y : [ρ]} ⊢ [t] : M[τ] then

[Γ ⊢ λx .t : ρ → τ] := [Γ] ⊢ λ∗y.[t] : M[ρ → τ]

• If [Γ ⊢ s : ρ] = [Γ] ⊢ [s] : M[ρ] and [∆ ⊢ t : ρ → τ] = [∆] ⊢
[t] : M[ρ → τ] then

[Γ ∪ ∆ ⊢ ts : τ] := [Γ] ∪ [∆] ⊢ [t] ∗ [s] : M[τ]

• [Γ ⊢ Rρ : ρ0(ρρ0)ρ] := [Γ] ⊢ λ∗b,д,x .R∗ρbдx : M[ρ0(ρρ0)ρ]
where R∗ρ : [ρ] → [ρρ0] → 0 → M[ρ] is defined using
RM[ρ] as

R∗ρbд0 = ηb
R∗ρbд(sc(x)) = дx ∗ R∗ρbдx

• [Γ ⊢ χP : 0rP → 0] := [Γ] ⊢ η(φP) : M[0rP → 0].
4

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

This is a fairly straightforward call-by-value monadic translation
in all finite types which simply replaces the characteristic functions
χP with some new φP . For example, for the interpretation of func-
tion application, we take as our input state π and apply it first to
[t], so that [t]π = ⟨u,π ′⟩ for some u : [ρ → τ] and intermediate
state π ′. We then apply π ′ to [s], so that [s]π ′ = ⟨v,π ′′⟩ for some
v : [ρ]. Finally, we provide u with v and the current state π ′′ as
arguments, so thatuvπ ′′ = ⟨w ,π ′′′⟩ for somew : [τ] and final state
π ′′′. Unwinding the definition of [ts] yields [ts]π = ⟨w ,π ′′′⟩.

Having established our monadification of terms of E-HAω , we
need to characterise how they are related to the original pure terms.

4.2 The relation t ∼Mρ [t]
The function φP has two crucial properties: that it is monotone,
and that it is an approximation of χP . We will generalise both of
these properties so that they apply to arbitrary terms, starting with
monotonicity.

For each pure type ρ (i.e. of E-HAω), we define two predicates
monρ and monMρ on objects of type [ρ] andM[ρ] respectively, by
induction as follows (recall that zπi = pi (zπ)):

mon0 (y) :≡ 0 =0 0
monρ×τ (y) :≡ monρ (p0y) ∧monτ (p1y)

monρ→τ (д) :≡ ∀y[ρ] (monρ (y) → monMτ (дy))

monMρ (z) :≡ ∀π (π ⊑ zπ1 ∧monρ (zπ0)).

We now generalise the approximation condition by defining, for
each pure type ρ, a pair of relations xρ ≈ρ y[ρ] and xρ ≈Mρ zM[ρ]

by induction as follows:

x0 ≈0 y
0 :≡ (x =0 y)

xρ×τ ≈ρ×τ y[ρ]×[τ] :≡ p0x ≈ρ p0y ∧ p1x ≈τ p1y

f ρ→τ ≈ρ→τ д[ρ→τ] :≡ ∀xρ ,y[ρ] (x ≈ρ y ∧monρ (y) → f x ≈Mτ дy)

xρ ≈Mρ zM[ρ] :≡ ∀πS (T (zπ1) → x ≈ρ zπ0).

Finally, we define the relations xρ ∼ρ y[ρ] and xρ ∼Mρ zM[ρ] by

x ∼ρ y :≡ x ≈ρ y∧monρ (y) and x ∼Mρ z :≡ x ≈Mρ z∧monMρ (z).

Lemma 4.1. The relations monρ ,monMρ ,≈ρ ,≈Mρ ,∼ρ and ∼Mρ are
compatible with equality (i.e. extensional), provably in E-HAωS .

Proof. A simple induction on the types. □

Lemma 4.2. E-HAωS proves that for any ρ, τ :

monMρ (z) ∧monMρ→τ (h) → monMτ (h ∗ z).

Proof. We first show that

monMρ (z) ∧monρ→τ (д) → monMτ (д ◦ z). (4)

For some initial state π , from monMρ (z) we have π ⊑ zπ1 and
monρ (zπ0), and hence from monρ→τ (д) we obtain monMτ (д(zπ0))
which in turn implies zπ1 ⊑ д(zπ0) (zπ1)1 and monτ (д(zπ0) (zπ1)0).
But since by transitivity of ⊑ we have π ⊑ д(zπ0) (zπ1)1 it follows
that monMτ (д ◦ z).

Now, suppose that monMρ→τ (h). Then for arbitrary π we have
π ⊑ hπ1 and monρ→τ (hπ0), and so setting д := hπ0 in (4) we
obtain monMτ (hπ0 ◦ z), from which monMτ (h ∗ z) follows, again
using transitivity of ⊑. □

Lemma 4.2 confirms that the monotonicity predicates are well
behaved with respect to substitution, which allows us to establish
monotonicity of complex terms by induction over the term structure.
This is the next result:

Lemma 4.3. For any term Γ ⊢ t : ρ of E-HAω (viewed as a term of
E-HAωS), E-HA

ω
S proves that

mon([Γ]) → monMρ ([t])

where mon(y1 : [ρ1], . . . ,yn : [ρn]) denotes monρ1 (y1) ∧ . . . ∧
monρn (yn).

Proof. A routine induction on the structure of t , using Lemmas 4.1
and 4.2. □

Having dealt with monotonicity, we now prove a corresponding
substitution lemma for ∼Mρ .

Lemma 4.4. E-HAωS proves that for any ρ, τ :

x ∼Mρ z ∧ f ∼Mρ→τ h → f x ∼Mτ h ∗ z.

Proof. Analogously to the proof of Lemma 4.2, we first claim that

x ∼Mρ z ∧ f ∼ρ→τ д → f x ∼Mτ д ◦ z.

Note that monMτ (д ◦ z) follows as in Lemma 4.2, so it remains to
prove f x ≈Mτ д ◦ z. Now, from x ≈Mρ z we obtain

T (zπ1) → x ≈ρ zπ0

and from f ≈ρ→τ д we obtain (using also monρ (zπ0))

T (zπ1) → f x ≈Mτ д(zπ0).

and substituting in the state zπ1 yields

T (zπ1) → (T (д(zπ0) (zπ1)1) → f x ≈τ д(zπ0) (zπ1)0).

Now using the fact that zπ1 ⊑ д(zπ0) (zπ1)1 (by monotonicity of
д(zπ0)) we have, using the state axiom,

T (д(zπ0) (zπ1)1) → T (zπ1)

and therefore putting the last two equations together we end up
with

T (д(zπ0) (zπ1)1) → f x ≈τ д(zπ0) (zπ1)0,

which, noting that д(zπ0) (zπ1) = (д ◦ z)π , is just f x ≈Mτ д ◦ z,
which proves our claim.

For the main result, we know that monMτ (h ∗ z) must hold by
Lemma 4.2, so it remains to show f x ≈Mτ h ∗ z. Using f ∼Mρ→τ h
we have

T (hπ1) → f ∼ρ→τ hπ0

and using the claim we end up with

T (hπ1) → f x ∼Mτ hπ0 ◦ z.

Substituting in the current state hπ1 yields

T (hπ1) → (T ((hπ0 ◦ z) (hπ1)1) → f x ≈τ (hπ0 ◦ z) (hπ1)0)

and by using hπ1 ⊑ (hπ0 ◦ z) (hπ1)1 (by monotonicity of (hπ0 ◦ z))
and noting that (hπ0 ◦ z) (hπ1) = (h ∗ z)π we obtain

T ((h ∗ z)π1) → f x ≈τ (h ∗ z)π0,

which is just f x ≈Mτ h ∗ z, and so we’re done. □

We now use this substitution Lemma to establish the main result
of the section:

5

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Thomas Powell

Theorem 4.5. For any term Γ ⊢ t : ρ of E-HAω (viewed as a term
of E-HAωS), E-HA

ω
S proves that

Γ ∼ [Γ]→ t ∼Mρ [t]

where x1 : ρ1, . . . ,xn : ρn ∼ y1 : [ρ1], . . . ,yn : [ρn] is shorthand for
x1 ∼ρ1 y1 ∧ . . . ∧ xn ∼ρn yn .

Proof. Induction using Lemmas 4.1, 4.2 and 4.4. □

5 The functional interpretation with state
We now come to the main result of the paper. In the previous
section we defined a translation which takes pure terms t : ρ and
transforms them to state-sensitive terms [t] : M[ρ]. The purpose of
this section is to reformulate the functional interpretation so that
formulas A of HA+ are, instead of being mapped to a formula |A|x⃗y⃗
of E-HAω for x⃗ : ρ⃗ and y⃗ : τ⃗ , mapped to a formula {A}u⃗v⃗ of E-HAωS ,
where now u⃗ : M[ρ⃗] and v⃗ : [⃗τ] (here M[ρ1, . . . ,ρn] is shorthand
forM[ρ1], . . . ,M[ρn]). Note that v⃗ is a tuple of free input variables,
which is why they have type [⃗τ] instead ofM [⃗τ], in line with our
monadic translation.

In addition to this, our functional interpretation with state will
include an explicit state component ∥A∥u⃗v⃗ , which takes as an ar-
gument an input state π and returns the truth value of an output
state π ′, which in turn is the result of each of the realizing terms
evaluating from the initial state π .

We now make all of this precise. Suppose that rA is as in Section
3: Note that rA is not defined for all formulas A, only for those
whose functional interpretation does not consist of tuples of empty
variables. For such formulas, suppose that rA : ρ⃗ → τ⃗ → 0n (where
n > 0). Then we define rMA : M[ρ⃗]→ M [⃗τ]→ M0n by

rMA u⃗v⃗ :=M0n [rA] ∗ u1 ∗ . . . ∗ ui ∗v1 ∗ . . . ∗vj

where д ∗ u ∗ v denotes (д ∗ u) ∗ v . Note that because rA does
not contain any predicate parameters χP , its interpretation [rA] is
independent of the parameter φ.

Lemma 5.1. Suppose that t⃗ : ρ⃗ and s⃗ : τ⃗ are terms of E-HAω . Then
we have (provably in E-HAωS)

rMA [⃗t][⃗s] =M0n [rAt⃗ s⃗]

where [t1, . . . ,ti] denotes [t1], . . . ,[ti].

Proof. Direct from unwinding the definition of [rAt⃗ s⃗]. □

We are now ready to define our new functional interpretation.
To each formulaA ofHA+ and we assign a pair of formulas ∥A∥u⃗v⃗ π ,
{A}u⃗v⃗ π (which now contain the input state π as an additional free
variable) as follows:

∥A∥u⃗v⃗ π :≡ T (rMA u⃗η(v⃗)π1) or just T (π) if rA is not defined

{A}u⃗v⃗ π :≡ As (r
M
A u⃗η(v⃗)π0/a⃗; b⃗),

where η(v1, . . . ,vi) := ηv1, . . . ,ηvi . Note that these are well typed:
In the case that a⃗ has length n > 0 we have rMA u⃗η(v⃗)π : 0n × S ,
and otherwise we simply have ∥A∥ π ≡ T (π) and {A} π ≡ As (; b⃗).
Finally, for each pure type ρ we define, in E-HAωS , a class of func-
tionals ∆ρ of type [ρ] by

∆ρ (z
[ρ]) := ∃yρ (y ∼ρ z)

andwrite z ∈ ∆ρ as shorthand for∆ρ (z). The class∆Mρ of functional
of typeM[ρ] is defined analogously with ∼Mρ .

Theorem 5.2. Suppose that A(b⃗) is a formula of HA+ with only
b⃗ free, and that s⃗ : 0⃗ → ρ⃗ is a sequence of closed terms of E-HAω

satisfying

E-HAω ⊢ ∀y⃗τ⃗ ���A(b⃗)
���
s⃗b⃗
y⃗

Define t⃗ : 0⃗→ M[ρ⃗] by2 λb⃗ .[⃗s] ∗ η(b⃗). Then t⃗b⃗ ∈ ∆M
ρ⃗

and

E-HAωS ⊢ ∀v⃗ ∈ ∆τ⃗ ,π
(

A(b⃗)

t⃗ b⃗
v⃗

π →
{
A(b⃗)

}t⃗ b⃗
v⃗

π

)
.

Theorem 5.3 (Main soundness theorem). Suppose that HA+ ⊢
A(b⃗). Then for any collection of approximationsφP satisfying χP ≈0→0
φP , there is a corresponding sequence of state-sensitive terms t⃗ satis-
fying

E-HAωS ⊢ ∀v⃗ ∈ ∆τ⃗ ,π
(

A(b⃗)

t⃗ b⃗
v⃗

π →
{
A(b⃗)

}t⃗ b⃗
v⃗

π

)
which can be formally extracted from the proof of A(b⃗).

Proof. By the usual soundness theorem 3.1 we can extract some

s⃗ satisfying E-HAω ⊢ ∀y⃗ ���A(b⃗)
���
s⃗b⃗
y⃗
. The approximations φP then

induce a corresponding monadic interpretation [·]φ , and the result
follow from Theorem 5.2. □

Proof of Theorem 5.2. First, for the case thatA is non-computational
i.e. is mapped to some As (; b⃗) ≡ A, then the result trivially follows
fromT (π) → A, so we assume thatA is computational and therefore
rA is properly defined.

Take some arbitrary v⃗ ∈ ∆τ⃗ and let y⃗ : τ⃗ be such that y⃗ ∼τ⃗ v⃗ . By
our assumption we have

E-HAω ⊢ As (rA (⃗sb⃗)y⃗/a⃗; b⃗). (5)

Define the context Γ := b⃗ : 0⃗,y⃗ : τ⃗ . Then Γ ⊢ rA (⃗sb⃗)y⃗. Setting
[Γ] := b⃗ : 0⃗,v⃗ : [⃗τ] then by assumption we have Γ ∼ [Γ], and so by
Theorem 4.5 it follows that

E-HAωS ⊢ rA (⃗sb⃗)y⃗ ∼
M
0n [rA (⃗sb⃗)y⃗]. (6)

Here of course, [rA (⃗sb⃗)y⃗] is defined relative to [Γ], and in particular,
by Lemma 5.1, we have

[rA (⃗sb⃗)y⃗] = rMA [⃗sb⃗][y⃗] = rMA (⃗tb⃗)η(v⃗) (7)

where for the second equality we have [⃗sb⃗] = [⃗s] ∗ η(b⃗) = tb⃗. Also
note that, again by Theorem 4.5, we have s⃗b⃗ ∼M

ρ⃗
[⃗sb⃗] = t⃗b⃗ and

therefore t⃗b⃗ ∈ ∆M
ρ⃗
.

Now, substituting (7) into (6) and expanding the definition of
∼M0n we have

E-HAωS ⊢ T (r
M
A (⃗tb⃗)η(v⃗)π1) → rA (⃗sb⃗)y⃗ =0n rMA (⃗tb⃗)η(v⃗)π0 (8)

But by extensionality we have

E-HAωS ⊢rA (⃗sb⃗)y⃗ =0n rMA (⃗tb⃗)η(v⃗)π0

→ (As (rA (⃗sb⃗)y⃗/a⃗; b⃗) → As (r
M
A (⃗tb⃗)η(v⃗)π0/a⃗; b⃗))

2where [⃗s] ∗η (b⃗) is shorthand for [s1] ∗ηb1 ∗ . . . ∗ηbi , . . . , [sn] ∗ηb1 ∗ . . . ∗ηbi

6

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

and combining this with (5) yields

E-HAωS ⊢ rA (⃗sb⃗)y⃗ =0n rMA (⃗tb⃗)η(v⃗)π0 → As (r
M
A (⃗tb⃗)η(v⃗)π0/a⃗; b⃗).

But putting this together with (8) we obtain

E-HAωS ⊢ T (r
M
A (⃗tb⃗)η(v⃗)π1)︸ ︷︷ ︸
∥A∥ t⃗ b⃗v⃗ π

→ As (r
M
A (⃗tb⃗)η(v⃗)π0/a⃗; b⃗)︸ ︷︷ ︸
{A}t⃗ b⃗v⃗ π

Quantifying over π and v⃗ yields the result. □

The fact that we restrict our variables v⃗ : [ρ⃗] to inhabiting the
class ∆τ⃗ is an essential part of result. Technically speaking, it allows
us to take a detour through the usual functional interpretation by
viewing v⃗ as the monotone approximation of some normal variables
y⃗ : ρ⃗. However, while this condition may seem artificial at first
glance, in reality it forms a natural and reasonable restriction. If we
have v ∈ ∆ρ , it tells us two key things: Firstly that v is monotone,
and so according to our intuitive reading does not destroy anything
in the state. The second, that it satisfies y ≈ρ v , is more subtle, but
essentially characterizes v as being ‘consistent’ with respect to the
state. We will see a concrete example of the role both conditions
play in Example 6.2.

We now give, as special cases, the (classical) functional interpre-
tation for Π0

2 and Σ0
2 formulas.

Example 5.4. Suppose that PA+ ⊢ ∀x∃yQ (x ,y) where Q (x ,y) is
quantifier-free and contains only x ,y as free variables. By the sound-
ness of the negative translation, we haveHA+ ⊢ A :≡ ∀x¬¬∃yQ (x ,y).
But the functional interpretation |A|fx is equivalent to Q (x , f x)
which can be decomposed as As (a1,a2;) ↔ Q (a1,a2) and rA =
λf 0→0,x .⟨x , f x⟩. It is not too difficult to show that

[rA] := λ∗д[0→0],x0λπ .⟨x ,дxπ0,дxπ1⟩

and in particular for u : M[0→ 0] we have

rMA u (ηx)π = ⟨x , (u ∗ (ηx))π0, (u ∗ (ηx))π1⟩.

Therefore in this case, the term t : M[0→ 0] of Theorem 5.2 would
satisfy

∀x ,π (T ((t ∗ (ηx))π1) → Q (x , (t ∗ (ηx))π0))

or simply setting t ′x := (t ∗ (ηx)) we would have

∀x ,π
(
T (t ′xπ1) → Q (x ,t ′xπ0)

)
.

The intuition here is quite straightforward: The monadic interpre-
tation realizes ∀x∃yQ (x ,y) via some program t ′ : 0→ S → 0 × S
which takes as input some argument x and initial state π and re-
turns some output y := t ′xπ0 together with an end state σ := t ′xπ1
such that Q (x ,y) holds relative to the validity of the state σ .

Example 5.5. Suppose thatPA+ ⊢ ∃x∀yQ (x ,y) forQ (x ,y) quantifier-
free and containing only x ,y as free variables. By the negative trans-
lation HA+ ⊢ B :≡ ¬¬∃x∀yQ (x ,y), and the functional interpreta-
tion |B |Ff is equivalent to Q (F f , f (F f)) which can be decomposed

asBs (a1,a2;) ↔ Q (a1,a2) and rB = λF (0→0)→0, f 0→0.⟨F f , f (F f)⟩.
We can show that [rB] is given by

λ∗G[(0→0)→0],д[0→0],π .⟨Gдπ0, (д ◦Gд)π0, (д ◦Gд)π1⟩

and a further calculation yields

rMB ΦM[(0→0)→0] (ηд)π =

⟨(Φ ∗ (ηд))π0, (д ◦ (Φ ∗ (ηд)))π0, (д ◦ (Φ ∗ (ηд)))π1⟩.

In this case, the term t : M[(0 → 0) → 0] of Theorem 5.2 would
satisfy

∀д ∈ ∆0→0,π
(
T ((д ◦ t ′д)π1) → Q (t ′дπ0, (д ◦ t

′д)π0)
)

using the abbreviation t ′д := t ∗ (ηд).

In this case, the pure functional interpretation would interpret
∃x∀yQ (x ,y) with some program s : (0 → 0) → 0, which takes
as input some state insensitive counter function f : 0 → 0 and
returns some output x := s f such that Q (x ,y) holds for y := f x .
The monadic interpretation instead builds a program t ′ : (0→ S →
0×S) → S → 0×S which takes as input some state sensitive counter
function д and some initial state π , and returns some output x :=
t ′дπ0 together with an intermediate state π ′ := t ′дπ1. We now feed
x and π ′ into д to return some counterexample y := дxπ ′0 together
with an end state σ := дxπ ′1 such that Q (x ,y) holds relative to σ .
This is where the restriction д ∈ ∆0→0 plays a role: In particular, it
must not delete any conditions imposed by the realizer t ′.

6 Examples and applications
In this section we give some insight into how the state can be used,
and outline a number of open problems. What follows should be
seen as a series of small illustrative examples, together with broad
sketches of applications which should be properly developed in
future work - in each case there are many details and subtleties
that are not fully treated here.

First of all, it is important to stress that our monadic translation
is only sensitive to the special state-predicates encoded via our the
function parameters χP , χQ , Therefore it is natural to ask how
these should be chosen and used in a formal program extraction.
This is something we have left deliberately open, since it will de-
pend very much on the application in question. At one extreme,
we could assign a state predicate as a label for each primitive re-
cursive predicate, and use the state to record, for example, every
case distinction which arises from an instance of contraction in the
formal proof (provided the proof is formalised using these labels).

On the other hand, we may be interested in extracting a term
from a specific mathematical theorem which quantifies over some
concrete objects, such as a colouring of the natural numbers or
a well quasi-ordering. In this case, we could introduce a small
number of state-relevant function parameters in our formalisation
which represent these objects, thereby narrowing our attention
to interactions with the ‘relevant’ mathematical environment and
ignoring other bureaucratic case distinctions made by the program.
Of course, in this situation we would require the user to make a
choice as to which predicates are relevant and to formalise the
proof using these predicates in an appropriate way.

6.1 The state as a list of conditions
For our first example, suppose that we have a countable collec-
tion of predicate parameters, together with a bijective encoding
P ↔ iP between these parameters and objects of type 0. We de-
fine E-HAωS as E-HAω∗ , that is the usual E-HAω but now with finite
sequence types ρ∗ and a type ι of booleans, and consider S to con-
sist of finite sequences of tuples of the form ⟨iP , x⃗rP ,bι ⟩. The idea
is that ⟨iP , x⃗ ,0⟩ encodes the atomic formula P (x⃗), while ⟨iP , x⃗ ,1⟩
encodes ¬P (x⃗), and from now on we express elements π as se-
quences

[
Q1 (x⃗1),Q2 (x⃗2), . . . ,Qk (x⃗k)

]
where Qi (x⃗i) is a condition

7

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Thomas Powell

of the form P (x⃗i) or ¬P (x⃗i) for some parameter P . We then define

T
([
Q1 (x⃗1), . . . ,Qk (x⃗k)

])
= Q1 (x⃗1) ∧ . . . ∧Qk (x⃗k).

Note that we make this formal by settingT (π) :≡ χ∗ (π) = 0, where
χ∗ is given in terms of the characteristic functions χP as

χ∗ ([]) = 0 χ∗ (π :: ⟨iP , x⃗ ,0⟩) = χ∗ (π) + χP (x⃗)

χ∗ (π :: ⟨iP , x⃗ ,1⟩) = χ∗ (π) + χ̄P (x⃗)

We say that π ⊑ σ if π is a prefix of σ : this relation is clearly
reflexive and transitive, and satisfies the condition (B).

Let us now define a family of approximations to our characteristic
functions χP , which induces a monadic functional interpretation.
Suppose that we have, for each P , some arbitrary decision function
drP : 0rP → S → {0,1}. We define φP : 0rP → S → 0 × S by

φP x⃗π :=




⟨0,π ⟩ if ⟨iP , x⃗ ,0⟩ ∈ π
⟨1,π ⟩ if ⟨iP , x⃗ ,1⟩ ∈ π
⟨dP x⃗π ,π :: ⟨iP , x⃗ ,dP x⃗π ⟩⟩ otherwise.

The idea behind φP x⃗π is as follows: First of all, we check whether
or not one of P (x⃗) or ¬P (x⃗) are already included in our state. If so,
then we return the corresponding truth value and leave our output
state unchanged. Otherwise, we make an assumption about P (x⃗)
via the function dP , and add a record of this assumption to the state.

Lemma 6.1. For any term dP : 0rP → S → {0,1} of E-HAωS , we
have χP ≈0rP→0 φP , and hence any choice of the dP s for each P
induces a monadic translation [·].

Proof. Straightforward. □

Example 6.2 (Drinker’s paradox). Let’s now revisit our initial
example from Section 1.1 in a more formal setting. We know that
PA+ ⊢ ∃x∀y (P (y) → P (x)), and therefore following Example 5.5
we obtain a term t : [0→ 0]→ S → 0 × S such that

T ((д ◦ tд)π1) → (P ((д ◦ tд)π0) → P (tдπ0)) .

Under the above translation, the state sensitive program corre-
sponding to (3) would be

tдπ :=




⟨x ,π ′⟩ if P (x) ∈ π ′

⟨0,π ′⟩ if ¬P (x) ∈ π ′

⟨x ,π ′ :: P (x)⟩ if dPxπ ′ = 0
⟨0,π ′ :: ¬P (x)⟩ if dPxπ ′ = 1

where ⟨x ,π ′⟩ := д0π . A direct verification of this realizer (the
validity of which is anyway guaranteed by the soundness theorem)
is nevertheless illuminating as it reveals the role that the condition
д ∈ ∆0→0 plays. Let us consider the most complex case where tдπ =
⟨0,π ′ :: ¬P (x)⟩. We now evaluate д0π ′′ where π ′′ = π ′ :: ¬P (x),
so let’s write ⟨y,σ ⟩ := д0π ′′. We need to verify that

T (σ) → (P (y) → P (0)). (9)

By monotonicity of д we have that π ′′ ⊑ σ and so T (σ) → ¬P (x).
Now, we know that there is some f 0→0 such that f ≈0→0 д, and
so in particular we have

T (π ′) → x = f 0 and T (σ) → y = f 0.

Using monotonicity again we getT (σ) → x = y, and hence putting
these together T (σ) → ¬P (y). But then (9) holds. It is instructive
to observe that even for such a simple example as the Drinker’s
paradox, matters regarding state are by no means trivial.

6.2 The relationship to Herbrand’s theorem
With our state defined as in Section 6.1, realizers t : S → 0 × S of
simple existential statements ∃xA(x) become terms which take as
input a sequence π of conditions which are forced. Furthermore,
the terms are able to circumvent querying the truth of subsequent
atomic predicates by simply adding them as to the state as additional
conditions. We illustrate this in the table below.

Interpretation Realizer of ∃xA(x) Decidability?
Gödel’s variant A(t) yes
Herbrand variant ∃x ∈ {t1, . . . ,tn }A(x) no
State variant Q1 ∧ . . . ∧Qn︸ ︷︷ ︸

:=tπ1

→ A(tπ0) no

In this way, we can replace the characteristic function χP by
some arbitrary term dP , which rather than finding an exact witness,
chooses (1) a branch in a Herbrand tree, as represented by end state
tπ1, and (2) and a witness which corresponds to this branch, as
represented by tπ0.

Intuitively speaking, this would also give us a way of computing
a full Herbrand disjunction. Running our program on an initial
empty state would take us along a default branch in the Herbrand
tree given by the dP s, and would return as the output state the
finite set of assumptions made during the evaluation. We could
then systematically alter these assumptions, either by changing
the input state or the approximations dP , repeatedly rerunning the
program in order to traverse the whole Herbrand tree. This process
would be analogous to Lemma 10 of [6], although here we would
not analyse terms in normal form, since this is dealt with implicitly
by the monad.

We also conjecture that in the context of Herbrand’s theorem,
there is a connection between the monotonicity properly of our
state and the cumulative herbrandized functional interpretation
of [5], and it would be interesting to carry out some further case
studies to understand this connection more clearly.

However, everything mentioned above needs to be made precise:

Problem 1. Adapt the functional interpretation with state to pure
predicate logic, clarify its relationship with [5, 6], and give a new
proof of Herbrand’s theorem.

6.3 Learning semantics and the functional interpretation
A great deal of work has been done on giving a computational
semantics to classical reasoning based on the idea of learning. This
includes the game semantics of Coquand [4], the limit computable
mathematics of Hayashi [7], and the Interactive Realizability of
Aschieri and Berardi (e.g [2]). We conjecture that our functional
interpretation, with a suitable instantiation of state, constitutes a
computational interpretation of a similar kind.

In the learning realizability of [2] one considers proofs which
involve the law of excluded middle for Σ0

1-formulas i.e. instances
of the following axiom

∀n (∀y¬P (n,y) ∨ ∃xP (n,x)) (10)

where the P is some primitive recursive predicate. Associated to
this axiom are a pair of noncomputable choice functionalsW and
Φ which satisfy

Φn,Wn =



⟨0,x⟩ for some x such that P (n,x) holds
⟨1,0⟩ if no such x exists.

8

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

The idea behind learning realizability is that whenever (10) is used
as a lemma in the proof of some existential statement, only a fi-
nite approximation to the non-computable functionalsW and Φ is
necessary to compute a witness to this statement.

This motivates their form of realizability: To replace these func-
tional by approximationsw[π] and ϕ[π] which are based on some
finite amount of knowledge about the P (n,x) encoded in some state
π . Either these approximations are sufficiently good to yield a valid
witness to the existential statement, or they fail, in which case we
learn some piece of constructive information from their failure,
and update the state π to a new one π ′ which represents a better
approximation. This process iterates until a realizer has been found.

By making explicit the way in which the functional interpreta-
tion interacts with the mathematical environment via characteristic
functions χP , our state allows us to give the functional interpreta-
tion a similarly elegant semantic reading in terms of learning.

To see this, let us define a monotone variant of the state from
Section 6.1 as follows: Elements of S will consist of finite partial
functions π of the form π (n) = ⟨b,x⟩ or π (n) undefined (these can
be encoded in E-HAω∗ as finite sequences). This time, we define
T (∅) as being valid (where ∅ is the empty partial function) and

T ([n1 7→ ⟨b1,x1⟩, . . . ,nk 7→ ⟨bk ,xk ⟩]) :≡
∧

i=1, ...,k
θ (ni ,bi ,xi)

where

θ (n,0,x) :≡ Pn (x) ∧ ∀y < x¬Pn (y) θ (n,1,x) :≡ ∀y < x¬Pn (y).

We then define π ⊑ σ to hold when σ has at least as much infor-
mation as π i.e. if π (n) = ⟨1,x⟩ then σ (n) = ⟨b,x ′⟩ with x ≤ x ′, or
if π (n) = ⟨0,x⟩ then σ (n) = ⟨0,x⟩. It is not difficult to see that the
condition (B) is satisfied in this case.

To each state, we can associate an approximation to the func-
tionalsW and Φ as follows:

w[π],ϕ[π] :=



⟨0,x⟩ if π (n) = ⟨0,x⟩
⟨1,0⟩ otherwise.

Note that out states π contain not only potential evidence about the
validity of ∃xP (n,x), but even information about P (n,y) in cases
where we have not found a realizer: Namely that ¬P (n,y) holds for
all y up to a certain point.

In order to determine our monadic translation, we need to ex-
plain how we interpret the characteristic functions χP . In contrast
to Section 6.1, we continue to use the characteristic function to
interact with our environment (rather than replacing it with some
arbitrary function dP), but now we add what it learns to the state.

We make a slight modification and assume that the predicate
parameters of HA+ are monotone - more precisely are defined to
consist solely of the primitive recursive predicate P ′(n,x) :≡ ∃y <
xP (n,y), whose associated characteristic function is denoted χ ′P .
This restriction is essential given how we have defined states, since
these only include information about the least witness when it
exists.3 We now define φP : 02 → S → 0 × S by

φP (n,x)π :=




⟨0,π ⟩ if π (n) = ⟨0,x ′⟩ ∧ x > x ′

⟨1,π ⟩ if π (n) = ⟨b,x ′⟩ ∧ x ≤ x ′

⟨0,π [n 7→ ⟨0,y⟩]⟩ for least y < x with P (n,y)

⟨1,π [n 7→ ⟨1,x⟩]⟩ if ∀y < x¬P (n,y)

3A similar restriction is present in learning realizability, where states can only update
in a consistent way and include a single witness for ∃xP (n, x).

It can be shown, by checking all cases, that φP (n,x)π1 ⊒ π , and
moreover that if T (π) holds then φP (n,x)π0 = χ ′P (n,x). Moreover,
in contrast to the previous sections we only update the state with
information which is valid, so if we start with the empty state ∅
our end state will always satisfy T (π).

Now, suppose that we have a proof of ∀x∃yQ (x ,y) which in-
volves the law of excluded middle for the formulas ∃xP ′(n,x) (i.e.
is formalized using the characteristic functions χ ′P). The usual ex-
tracted program t : 0→ 0 would simply return a witness tx for ∃y.
In contrast, our extracted program with state t : 0 → S → 0 × S
gives us insight into how the characteristic function χP ′ is used to
test hypothesis about the mathematical environment, and moreover
ensures that these tests are carried out by interacting with a global
state which encodes our current knowledge. As a result, realizers
have the following informal interpretation:

• t takes an argument x and a state π representing an approx-
imation toW , Φ;
• t returns a realizer y together with a final state σ ⊒ π rep-
resenting a better approximation toW , Φ, containing what
txπ has learned as it evaluates.

This gives us a characterisation of how realizers for Π0
2 statements

extracted by the functional interpretation carry out ‘learning’. In
our setting the learning is carried out internally as the program
evaluates, whereas in [2], the realizer is evaluated relative to a fixed
state, and only afterwards is this updated. We stress that we have
not given a precise connection between the functional interpreta-
tion and learning realizability - and in fact to do so would involve
extending our interpretation so that it can deal with comprehension
functions - but our extension of the functional interpretation with
a state is a first step in this direction.

Problem 2: Establish more clearly the relationship between exist-
ing variants of realizability based on learning on the one hand, and
the functional interpretation on the other.

Another direction for future work would be to carry out some
concrete case studies in mathematics, an area in which the func-
tional interpretation excels. It would be particularly interesting
to extend our monadic translation to encompass variants of bar
recursion, which would allow us to give a learning-based com-
putational interpretation Ramsey’s theorem or Higman’s lemma
[10, 13]. In the former case, our state would interact with some
colouring c : N(2) → {0,1}, learning finite pieces of information
about it and terminating once it has found an approximation to an
infinite monochromatic subset X ⊆ N, while in the latter it would
interact with some infinite sequence of wordsw1,w2, . . . in some
well quasi-order, until it finds a pair of indices i < j such thatwi is
embedded in w j . In both cases, understanding how our program
interacts with the environment via the state would give a much
deeper insight into the computational meaning of these theorems.

Problem 3: Extend our interpretation to full mathematical anal-
ysis, and carry out concrete case studies to better understand the
computational role of non-constructive methods such as choice.

6.4 Using the state to improve program efficiency
So far we have focused on applications which are oriented towards
foundational or semantic issues. However, the final application

9

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Thomas Powell

we propose has a practical emphasis, namely to use the state to
improve the behaviour of extracted programs.

In both of the previous sections, our state-sensitive realizer first
checks whether or not we can already infer the truth or falsity of
our formula in question by looking at the state, and only in the
latter case does it update the state with new information. Therefore
at the most basic level our state sensitive realizers can be seen as
improvements of the original terms, in the sense that they do not
need to repeatedly evaluate P (n,x) when it has already been added
to the state. However, we can also interact with our state in a more
intelligent way, as the following simple example illustrates:

Example 6.3. Suppose that f : 0→ 0 represents some primitive
recursive function. Then PA ⊢ ∃x∀y (f (x) ≤ f (y)). To interpret
this, the functional interpretation demands that for any д : 0→ 0
we produce some x satisfying f (x) ≤ f (д(x)). Usually this would
be computed by setting tд := sд0 where:

sдx :=



x if f (x) ≤ f (д(x))

sд(д(x)) otherwise.
(11)

Now, suppose that we introduce a state sensitive label P (x ,y) :≡
f (x) ≤ f (y), and define our mathematical environment to consist
simply of P . Similarly to Section 6.1 we define elements of S to
consist of finite sequences of the form π := [⟨x1,y1⟩, . . . ,⟨xk ,yk ⟩]
and then

T ([⟨x1,y1⟩, . . . ,⟨xk ,yk ⟩]) ↔
∧

(f (xi) ≤ f (yi)).

If at any point during our computation we want to check f (x) ≤
f (y) relative to our current state π , even if ⟨x ,y⟩ < π we could still
infer it if ⟨x ,z⟩,⟨z,y⟩ ∈ π for some z. Therefore let’s set e.g.

π ▷ ⟨x ,y⟩ :≡ (x = y ∨ ⟨x ,y⟩ ∈ π ∨ ∃z (⟨x ,z⟩,⟨z,y⟩ ∈ π))

and define φP (x ,y)π by

φP (x ,y)π :=




⟨0,π ⟩ if π ▷ ⟨x ,y⟩
⟨1,π ⟩ if π ▷ ⟨y,x⟩
⟨0,π :: ⟨x ,y⟩⟩ if f (x) ≤ f (y)

⟨1,π :: ⟨y,x⟩⟩ if f (y) < f (x)

Then it is easy to show that φP ≈02→0 χP , but in cases where
evaluating f is particularly costly, we improve our efficiency by
checking whether or not we can deduce f (x) ≤ f (y) without
evaluating f (x), f (y) again. In particular, a state sensitive variant
of the program (11) is given by

sдxπ :=




⟨x ,π ⟩ if π ▷ ⟨x ,дx⟩
sд(дx)π if π ▷ ⟨дx ,x⟩
⟨x ,π :: ⟨x ,дx⟩⟩ if f (x) ≤ f (дx)

sд(дx) (π :: ⟨дx ,x⟩) if f (дx) < f (x)

(12)

and it would not be difficult to come up with concrete examples
where (an implementation of) the program (12) carries out strictly
fewer comparisons than (11). However, it is not the program itself
that is interesting, rather that such a program could be extracted
automatically via our monadic translation - assuming of course
that the underlying proof is formalised using P in the correct way.

A number of refinements of the functional interpretation have
been developed (e.g. [8, 14]), most of which deal in one way or
another with the ‘contraction problem’, namely that crudely ex-
tracted programs can be hugely inefficient with respect to how

many unnecessary case distinctions they make. Our interpretation
achieves a similar goal. However, we don’t see it as competing with
the aforementioned works, but as something complementary which
could be combined with these ideas and in particular formalised.

Problem 4. Implement our functional interpretation in a proof
assistant and use it as a tool for synthesising efficient programs
from proofs.

Finally, we propose that our interpretation could also be used
to understand how extracted programs behave imperatively, and
to characterise the algorithm they implement, along the lines of
[3]. There, a version of the well-know quicksort algorithm is for-
mally extracted from a proof into a functional language, and is then
transformed using the state monad to a imperative version which
can be seen as the ‘real’ quicksort. It would be interesting to see
whether we can automatically extract any well-known algorithms,
by implementing our state in a certain way. A more ambitious goal
would be to extend HA+ with some axioms which reason directly
about the state, which allow us to extract finely tuned imperative
programs via the functional interpretation.

Problem 5. Extend our functional interpretation to a fully fledged
imperative interpretation, specifically designed for extracting state
sensitive programs from proofs.

Acknowledgements. I am grateful to the anonymous referees for
their detailed reviews, which led to a much improved version of
the paper.

References
[1] http://www.mathematik.uni-muenchen.de/∼logik/minlog/. Official homepage of

Minlog, as of January 2018.
[2] F. Aschieri and S. Berardi. Interactive learning-based realizability for Heyting

arithmetic with EM1. Logical Methods in Computer Science, 6(3), 2010.
[3] U. Berger, M. Seisenberger, and G. Woods. Extracting imperative programs from

proofs: In-place quicksort. In Proceedings of TYPES 2013, volume 26 of LIPIcs,
pages 84–106, 2014.

[4] T. Coquand. A semantics of evidence for classical arithmetic. Journal of Symbolic
Logic, 60:325–337, 1995.

[5] F. Ferreira and G. Ferreira. A hebrandized functional intepretation of classical
first-order logic. Archive for Mathematical Logic, 56(5–6):523–539, 2017.

[6] P. Gerhardy and U. Kohlenbach. Extracting Herbrand disjunctions by functional
interpretation. Archive for Mathematical Logic, 44:633–644, 2005.

[7] S. Hayashi. Mathematics based on incremental learning - excluded middle and
inductive inference. Theoretical Computer Science, 350:125–139, 2006.

[8] M.-D. Hernest. Light functional interpretation. An optimization of Gödel’s
technique towards the extraction of (more) efficient programs from (classical)
proofs. In Computer Science Logic (CSL’05), volume 3634 of LNCS, pages 477–492,
2005.

[9] U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Math-
ematics. Monographs in Mathematics. Springer, 2008.

[10] A. Kreuzer. Proof mining and Combinatorics : Program Extraction for Ramsey’s
Theorem for Pairs. PhD thesis, TU Darmstadt, 2012.

[11] J.-L. Krivine. Realizability in classical logic. In Interactive Models of Computation
and Program Behaviour, volume 27 of Panoramas et Synthèses, pages 197–229.
Société Mathématique de France, 2009.

[12] E. Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991.

[13] T. Powell. Well quasi-orders and the functional interpretation. To appear in:
Schuster, P., Seisenberger, M. and Weiermann, A. editors,Well Quasi-Orders in
Computation, Logic, Language and Reasoning, Trends in Logic, Springer.

[14] T. Trifonov. Analysis of Methods for Extraction of Programs from Non-Constructive
Proofs. PhD thesis, Ludwig-Maximilians-Universität Munich, 2011.

[15] B. van den Berg, B. Briseid, and P. Safarik. A functional interpretation for
nonstandard arithmetic. Annals of Pure and Applied Logic, 163(12):1962–1994,
2012.

10

	Abstract
	1 Introduction
	1.1 A preliminary example

	2 Formal systems
	2.1 Heyting arithmetic with predicate parameters (HA+)
	2.2 Heyting arithmetic in all finite types (E-HA)
	2.3 Heyting arithmetic with state (E-HAS)

	3 Gödel's functional interpretation
	4 A monadic translation from E-HA to E-HAS
	4.1 The translation t[t]
	4.2 The relation tM[t]

	5 The functional interpretation with state
	6 Examples and applications
	6.1 The state as a list of conditions
	6.2 The relationship to Herbrand's theorem
	6.3 Learning semantics and the functional interpretation
	6.4 Using the state to improve program efficiency

	References

