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Abstract
We prove the completeness of an axiomatization for differential
equation invariants. First, we show that the differential equation
axioms in differential dynamic logic are complete for all algebraic
invariants. Our proof exploits differential ghosts, which introduce
additional variables that can be chosen to evolve freely along new
differential equations. Cleverly chosen differential ghosts are the
proof-theoretical counterpart of dark matter. They create new hy-
pothetical state, whose relationship to the original state variables
satisfies invariants that did not exist before. The reflection of these
new invariants in the original system then enables its analysis.

We then show that extending the axiomatization with existence
and uniqueness axiomsmakes it complete for all local progress prop-
erties, and further extension with a real induction axiom makes it
complete for all real arithmetic invariants. This yields a parsimo-
nious axiomatization, which serves as the logical foundation for
reasoning about invariants of differential equations. Moreover, our
results are purely axiomatic, and so the axiomatization is suitable
for sound implementation in foundational theorem provers.

CCS Concepts •Mathematics of computing→Ordinary dif-
ferential equations; • Theory of computation → Proof the-
ory;Modal and temporal logics; Program reasoning;

Keywords differential equation axiomatization, differential dy-
namic logic, differential ghosts
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1 Introduction
Classically, differential equations are studied by analyzing their
solutions. This is at odds with the fact that solutions are often much
more complicated than the differential equations themselves. The
stark difference between the simple local description as differential
equations and the complex global behavior exhibited by solutions
is fundamental to the descriptive power of differential equations!

Poincaré’s qualitative study of differential equations crucially
exploits this difference by deducing properties of solutions directly
from the differential equations. This paper completes an important

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5583-4/18/07.
https://doi.org/10.1145/3209108.3209147

step in this enterprise by identifying the logical foundations for
proving invariance properties of polynomial differential equations.

We exploit the differential equation axioms of differential dy-
namic logic (dL) [12, 14]. dL is a logic for deductive verification of
hybrid systems that are modeled by hybrid programs combining
discrete computation (e.g., assignments, tests and loops), and con-
tinuous dynamics specified using systems of ordinary differential
equations (ODEs). By the continuous relative completeness theo-
rem for dL [12, Theorem 1], verification of hybrid systems reduces
completely to the study of differential equations. Thus, the hybrid
systems axioms of dL provide a way of lifting our findings about
differential equations to hybrid systems. The remaining practical
challenge is to find succinct real arithmetic system invariants; any
such invariant, once found, can be proved within our calculus.

To understand the difficulty in verifying properties of ODEs, it
is useful to draw an analogy between ODEs and discrete program
loops.1 Loops also exhibit the dichotomy between global behavior
and local description. Although the body of a loop may be simple, it
is impractical for most loops to reason about their global behavior
by unfolding all possible iterations. Instead, the premier reasoning
technique for loops is to study their loop invariants, i.e., properties
that are preserved across each execution of the loop body.

Similarly, invariants of ODEs are real arithmetic formulas that
describe subsets of the state space from which we cannot escape by
following the ODEs. The three basic dL axioms for reasoning about
such invariants are: (1) differential invariants, which prove simple
invariants by locally analyzing their Lie derivatives, (2) differential
cuts, which refine the state space with additional provable invari-
ants, and (3) differential ghosts, which add differential equations for
new ghost variables to the existing system of differential equations.

We may relate these reasoning principles to their discrete loop
counterparts: (1) corresponds to loop induction by analyzing the
loop body, (2) corresponds to progressive refinement of the loop
guards, and (3) corresponds to adding discrete ghost variables to
remember intermediate program states. At first glance, differential
ghosts seem counter-intuitive: they increase the dimension of the
system, and should be adverse to analyzing it! However, just as dis-
crete ghosts [11] allow the expression of new relationships between
variables along execution of a program, differential ghosts that suit-
ably co-evolve with the ODEs crucially allow the expression of new
relationships along solutions to the differential equations. Unlike
the case for discrete loops, differential cuts strictly increase the
deductive power of differential invariants for proving invariants of
ODEs; differential ghosts further increase this deductive power [13].

This paper has the following contributions:

1In fact, this analogy can be made precise: dL also has a converse relative completeness
theorem [12, Theorem 2] that reduces ODEs to discrete Euler approximation loops.
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1. We show that all algebraic invariants, i.e., where the invari-
ant set is described by a formula formed from finite conjunc-
tions and disjunctions of polynomial equations, are provable
using only the three ODE axioms outlined above.

2. We introduce axioms internalizing the existence and unique-
ness theorems for solutions of differential equations. We
show that they suffice for reasoning about all local progress
properties of ODEs for all real arithmetic formulas.

3. We introduce a real induction axiom that allows us to reduce
invariance to local progress. The resulting dL calculus decides
all real arithmetic invariants of differential equations.

4. Our completeness results are axiomatic, enabling disproofs.
Just as discrete ghosts can make a program logic relatively com-

plete [11], our first completeness result shows that differential
ghosts achieve completeness for algebraic invariants in dL. We ex-
tend the result to larger classes of hybrid programs, including, e.g.,
loops that switch between multiple different ODEs.

We note that there already exist prior, complete procedures for
checking algebraic, and real arithmetic invariants of differential
equations [6, 9]. Our result identifies a list of axioms that serve as a
logical foundation fromwhich these procedures can be implemented
as derived rules. This logical approach allows us to precisely identify
the underlying aspects of differential equations that are needed
for sound invariance reasoning. Our axiomatization is not limited
to proving invariance properties, but also completely axiomatizes
disproofs and other qualitative properties such as local progress.

The parsimony of our axiomatizationmakes it amenable to sound
implementation and verification in foundational theorem provers [2,
5] using dL’s uniform substitution calculus [14], and is in stark
contrast to previous highly schematic procedures [6, 9].

All proofs are in a companion report [15].

2 Background: Differential Dynamic Logic
This section briefly reviews the relevant continuous fragment of dL,
and establishes the notational conventions used in this paper. The
reader is referred to the literature [12, 14] and [15] for a complete
exposition of dL, including its discrete fragment.

2.1 Syntax
Terms in dL are generated by the following grammar, where x is a
variable, and c is a rational constant:

e ::= x | c | e1 + e2 | e1 · e2

These terms correspond to polynomials over the variables under
consideration. For the purposes of this paper, we write x to refer to
a vector of variables x1, . . . ,xn , and we use p(x),q(x) to stand for
polynomial terms over these variables. When the variable context
is clear, we write p,q without arguments instead. Vectors of polyno-
mials are written in bold p, q, with pi , qi for their i-th components.

The formulas of dL are given by the following grammar, where
∼ is a comparison operator =, ≥, >, and α is a hybrid program:

ϕ ::= e1 ∼ e2 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀x ϕ | ∃x ϕ | [α]ϕ | ⟨α⟩ϕ
Formulas can be normalized such that e1 ∼ e2 has 0 on the right-
hand side. We write p ≽ 0 if there is a free choice between ≥ or
>. Further, p ≼ 0 is −p ≽ 0, where ≼ stands for ≤ or <, and ≽ is
correspondingly chosen. Other logical connectives, e.g.,→,↔ are
definable. For the formula p = q where both p, q have dimension n,
equality is understood component-wise as

∧n
i=1 pi = qi and p , q
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Figure 1. The red dashed circle u2 + v2 = 1 is approached by
solutions of αe from all points except the origin, e.g., the blue
trajectory from ( 18 ,

1
8 ) spirals towards the circle. The circle, green

region u2 ≤ v2 + 9
2 , and the origin are invariants of the system.

as ¬(p = q). We write P(x),Q(x) for first-order formulas of real
arithmetic, i.e., formulas not containing the modal connectives. We
drop the dependency on x when the variable context is clear. The
modal formula [α]ϕ is true iff ϕ is true after all transitions of α , and
its dual ⟨α⟩ϕ is true iff ϕ is true after some transition of α .

Hybrid programs α allow us to express both discrete and contin-
uous dynamics. This paper focuses on the continuous fragment2:

α ::= · · · | x ′ = f (x)&Q

We write x ′ = f (x)&Q for an autonomous vectorial differential
equation system in variables x1, . . . ,xn where the RHS of the sys-
tem for each x ′i is a polynomial term fi (x). The evolution domain
constraint Q is a formula of real arithmetic, which restricts the set
of states in which we are allowed to continuously evolve. We write
x ′ = f (x) for x ′ = f (x)& true. We use a running example (Fig. 1):

αe
def
≡ u ′ = −v +

u

4
(1 − u2 −v2),v ′ = u +

v

4
(1 − u2 −v2)

Following our analogy in Section 1, solutions of x ′ = f (x) must
continuously (locally) follow its RHS, f (x). Figure 1 visualizes this
with directional arrows corresponding to the RHS of αe evaluated
at points on the plane. Even though the RHS of αe are polynomials,
its solutions, which must locally follow the arrows, already exhibit
complex global behavior. Figure 1 suggests, e.g., that all points
(except the origin) globally evolve towards the unit circle.

2.2 Semantics
A state ω : V → R assigns a real value to each variable in V.
We may let V = {x1, . . . ,xn } since we only need to consider the
variables that occur3. Hence, we shall also write states as n-tuples
ω : Rn where the i-th component is the value of xi in that state.

The value of term e in state ω is written ω[[e]] and defined as
usual. The semantics of comparison operations and logical connec-
tives are also defined in the standard way. We write [[ϕ]] for the
set of states in which ϕ is true. For example, ω ∈ [[e1 ≤ e2]] iff
ω[[e1]] ≤ ω[[e2]], and ω ∈ [[ϕ1 ∧ ϕ2]] iff ω ∈ [[ϕ1]] and ω ∈ [[ϕ2]].

Hybrid programs are interpreted as transition relations, [[α]] ⊆
Rn × Rn , between states. The semantics of an ODE is the set of all
pairs of states that can be connected by a solution of the ODE:

(ω,ν ) ∈ [[x ′ = f (x)&Q]] iff there is a real T ≥ 0 and a function
φ : [0,T ] → Rn with φ(0) = ω,φ(T ) = ν ,φ |= x ′ = f (x)&Q

2We only consider weak-test dL, where Q is a first-order formula of real arithmetic.
3Variablesv that do not have an ODEv ′ = . . . also do not change (similar tov ′ = 0).
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The φ |= x ′ = f (x)&Q condition checks that φ is a solution of
x ′ = f (x), and that φ(ζ ) ∈ [[Q]] for all ζ ∈ [0,T ]. For any solution
φ, the truncation φ |ζ : [0, ζ ] → Rn defined as φ |ζ (τ ) = φ(τ ) is also
a solution. Thus, (ω,φ(ζ )) ∈ [[x ′ = f (x)&Q]] for all ζ ∈ [0,T ].

Finally, ω ∈ [[[α]ϕ]] iff ν ∈ [[ϕ]] for all ν such that (ω,ν ) ∈ [[α]].
Also,ω ∈ [[⟨α⟩ϕ]] iff there is a ν such that (ω,ν ) ∈ [[α]] and ν ∈ [[ϕ]].
A formula ϕ is valid iff it is true in all states, i.e., ω ∈ [[ϕ]] for all ω.

If formula P → [x ′ = f (x)&Q]P is valid, then P is called an
invariant of x ′ = f (x)&Q . By the semantics, that is, from any
initial state ω ∈ [[P]], any solution φ starting in ω, which does not
leave the evolution domain [[Q]], stays in [[P]] for its entire duration.

Figure 1 suggests several invariants. The unit circle, u2 +v2 = 1,
is an equational invariant because the direction of flow on the circle
is always tangential to the circle. The open unit disk u2 +v2 < 1 is
also invariant, because trajectories within the disk spiral towards
the circle but never reach it. The region described by u2 ≤ v2 + 9

2
is invariant but needs a careful proof.

2.3 Differentials and Lie Derivatives
The study of invariants relates to the study of time derivatives of the
quantities that the invariants involve. Directly using time deriva-
tives leads to numerous subtle sources of unsoundness, because
they are not well-defined in arbitrary contexts (e.g., in isolated
states). dL, instead, provides differential terms (e)′ that have a lo-
cal semantics in every state, can be used in any context, and can
soundly be used for arbitrary logical manipulations [14]. Along
an ODE x ′ = f (x), the value of the differential term (e)′ coincides
with the time derivative d

dt of the value of e [14, Lem. 35].
The Lie derivative of polynomial p along ODE x ′ = f (x) is:

Lf (x )(p)
def
=

∑
xi ∈V

∂p

∂xi
fi (x) = ∇p · f (x)

Unlike time derivatives, Lie derivatives can be written down syntac-
tically. Unlike differentials, they still depend on the ODE context in
which they are used. Along an ODE x ′ = f (x), however, the value
of Lie derivativeLf (x )(p) coincides with that of the differential (p)

′,
and dL allows transformation between the two by proof. For this
paper, we shall therefore directly use Lie derivatives, relying under
the hood on dL’s axiomatic proof transformation from differentials
[14]. The operator Lf (x )(·) inherits the familiar sum and product
rules of differentiation from corresponding axioms of differentials.

We reserve the notation Lf (x )(·) when used as an operator and

simply write
.
p for Lf (x )(p), because x

′ = f (x) will be clear from

the context. We write
.
p
(i) for the i-th Lie derivative of p along

x ′ = f (x), where higher Lie derivatives are defined by iterating
the Lie derivation operator. Since polynomials are closed under Lie
derivation w.r.t. polynomial ODEs, all higher Lie derivatives of p
exist, and are also polynomials in the indeterminates x .

.
p
(0) def
= p,

.
p
(i+1) def

= Lf (x )(
.
p
(i)
),

.
p

def
=

.
p
(1)

2.4 Axiomatization
The reasoning principles for differential equations in dL are stated
as axioms in its uniform substitution calculus [14, Figure 3]. For
ease of presentation in this paper, we shall work with a sequent
calculus presentation with derived rule versions of these principles.
The derivation of these rules from the axioms is shown in [15].

We assume a standard classical sequent calculus with all the
usual rules for manipulating logical connectives and sequents, e.g.,
∨L,∧R, and cut. The semantics of sequent Γ ⊢ ϕ is equivalent to
(
∧
A∈Γ A) → ϕ. When we use an implicational or equivalence ax-

iom, we omit the usual sequent manipulation steps and instead
directly label the proof step with the axiom, giving the resulting
premises accordingly [14]. Because first-order real arithmetic is
decidable [1], we assume access to such a decision procedure, and
label steps with R whenever they follow as a consequence of first-
order real arithmetic. We use the ∃R rule over the reals, which
allows us to supply a real-valued witness to an existentially quanti-
fied succedent. We mark with ∗ the completed branches of sequent
proofs. A proof rule is sound iff the validity of all its premises (above
the rule bar) imply the validity of its conclusion (below rule bar).

Theorem 2.1 (Differential equation axiomatization [14]). The fol-
lowing sound proof rules derive from the axioms of dL:

dI=
Γ,Q ⊢ p = 0 Q ⊢

.
p = 0

Γ ⊢ [x ′ = f (x)&Q]p = 0

dI≽
Γ,Q ⊢ p ≽ 0 Q ⊢

.
p ≥ 0

Γ ⊢ [x ′ = f (x)&Q]p ≽ 0
(where ≽ is either ≥ or >)

dC
Γ ⊢ [x ′ = f (x)&Q]C Γ ⊢ [x ′ = f (x)&Q ∧C]P

Γ ⊢ [x ′ = f (x)&Q]P

dW
Q ⊢ P

Γ ⊢ [x ′ = f (x)&Q]P

dG
Γ ⊢ ∃y [x ′ = f (x),y′ = a(x) · y + b(x)&Q]P

Γ ⊢ [x ′ = f (x)&Q]P

Differential invariants (dI) reduce questions about invariance of
p = 0,p ≽ 0 (globally along solutions of the ODE) to local ques-
tions about their respective Lie derivatives. We only show the two
instances (dI=,dI≽) of the more general dI rule [14] that will be used
here. They internalize the mean value theorem4 [15]. These derived
rules are schematic because

.
p in their premises are dependent on

the ODEs x ′ = f (x). This exemplifies our point in Section 2.3: dif-
ferentials allow the principles underlying dI=,dI≽ to be stated as
axioms [14] rather than complex, schematic proof rules.

Differential cut (dC) expresses that if we can separately prove
that the system never leavesC while staying inQ (the left premise),
then we may additionally assume C when proving the postcondi-
tion P (the right premise). Once we have sufficiently enriched the
evolution domain using dI,dC, differential weakening (dW) allows
us to drop the ODEs, and prove the postcondition P directly from
the evolution domain constraintQ . Similarly, the following derived
rule and axiom from dLwill be useful to manipulate postconditions:

M[·]
ϕ2 ⊢ ϕ1 Γ ⊢ [α]ϕ2

Γ ⊢ [α]ϕ1
[·]∧ [α](ϕ1 ∧ϕ2) ↔ [α]ϕ1 ∧ [α]ϕ2

The M[·] monotonicity rule allows us to strengthen the postcon-
dition to ϕ2 if it implies ϕ1. The derived axiom [·]∧ allows us to
prove conjunctive postconditions separately, e.g., dI= derives from
dI≽ using [·]∧ with the equivalence p = 0↔ p ≥ 0 ∧ −p ≥ 0.

Even if dC increases the deductive power over dI, the deductive
power increases even further [13] with the differential ghosts rule
(dG). It allows us to add a fresh variabley to the system of equations.
The main soundness restriction of dG is that the new ODE must be
4Note that for rule dI≽ , we only require

.
p ≥ 0 even for the p > 0 case.
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linear5 in y. This restriction is enforced by ensuring that a(x),b(x)
do not mention y. For our purposes, we will allow y to be vectorial,
i.e., we allow the existing differential equations to be extended by a
system that is linear in the new vector of variables y. In this setting,
a(x) (resp. b(x)) is a matrix (resp. vector) of polynomials in x .

Adding differential ghost variables by dG for the sake of the
proof crucially allows us to express new relationships between
variables along the differential equations. The next section shows
how dG can be used along with the rest of the dL rules to prove a
class of invariants satisfying Darboux-type properties. We exploit
this increased deductive power in full in later sections.

3 Darboux Polynomials
This section illustrates the use of dG in proving invariance prop-
erties involving Darboux polynomials [4]. A polynomial p is a
Darboux polynomial for the system x ′ = f (x) iff it satisfies the
polynomial identity

.
p = дp for some polynomial cofactor д.

3.1 Darboux Equalities
As in algebra, R[x] is the ring of polynomials in indeterminates x .

Definition 3.1 (Ideal [1]). The ideal generated by the polynomials
p1, . . . ,ps ∈ R[x] is defined as the set of polynomials:

(p1, . . . ,ps )
def
= {Σsi=1дipi : дi ∈ R[x]}

Let us assume that p satisfies the Darboux polynomial identity
.
p = дp. Taking Lie derivatives on both sides, we get:

.
p
(2)
= Lf (x )(

.
p) = Lf (x )(дp) =

.
дp + д

.
p = (

.
д + д2)p ∈ (p)

By repeatedly taking Lie derivatives, it is easy to see that all higher
Lie derivatives of p are contained in the ideal (p). Now, consider an
initial state ω where p evaluates to ω[[p]] = 0, then:

ω[[
.
p]] = ω[[дp]] = ω[[д]] · ω[[p]] = 0

Similarly, because every higher Lie derivative of a Darboux poly-
nomial is contained in the ideal generated by p, all of them are
simultaneously 0 in state ω. Thus, it should be the case6 that p = 0
stays invariant along solutions to the ODE starting at ω. The above
intuition motivates the following proof rule for invariance of p = 0:

dbx
Q ⊢

.
p = дp

p = 0 ⊢ [x ′ = f (x)&Q]p = 0
Although we can derive dbx directly, we opt for a detour through

a proof rule for Darboux inequalities instead. The resulting proof
rule for invariant inequalities is crucially used in later sections.

3.2 Darboux Inequalities

Assume that p satisfies a Darboux inequality
.
p ≥ дp for some

cofactor polynomial д. Semantically, in an initial state ω where
ω[[p]] ≥ 0, an application of Grönwall’s lemma [8, 19, §29.VI] allows
us to conclude that p ≥ 0 stays invariant along solutions starting
at ω. Indeed, if p is a Darboux polynomial with cofactor д, then
it satisfies both Darboux inequalities

.
p ≥ дp and

.
p ≤ дp, which

yields an alternative semantic argument for the invariance of p = 0.
In our derivations below, we show that these Darboux invariance
properties can be proved purely syntactically using dG.
5Linearity prevents the newly added equation from unsoundly restricting the duration
of existence for solutions to the differential equations.
6This requires the solution to be an analytic function of time, which is the case here.

Lemma 3.2 (Darboux (in)equalities are differential ghosts). The
proof rules for Darboux equalities (dbx) and inequalities (dbx≽) derive
from dG (and dI,dC):

dbx≽
Q ⊢

.
p ≥ дp

p ≽ 0 ⊢ [x ′ = f (x)&Q]p ≽ 0
(where ≽ is either ≥ or >)

Proof. We first derive dbx≽, let 1○ denote the use of its premise,
and 2○ abbreviate the right premise in the following derivation.

p≽0, y>0 ⊢ [x ′ = f (x ), y′ = −дy &Q ∧ y > 0]py ≽ 0 2○
dC p ≽ 0, y > 0 ⊢ [x ′ = f (x ), y′ = −дy &Q ](y > 0 ∧ py ≽ 0)

M[·],∃R p ≽ 0 ⊢ ∃y [x ′ = f (x ), y′ = −дy &Q ]p ≽ 0
dG p ≽ 0 ⊢ [x ′ = f (x )&Q ]p ≽ 0

In the first dG step, we introduce a new ghost variabley satisfying a
carefully chosen differential equation y′ = −дy as a counterweight.
Next, ∃R allows us to pick an initial value for y. We simply pick
any y > 0. We then observe that in order to prove p ≽ 0, it suffices
to prove the stronger invariant y > 0 ∧ py ≽ 0, so we use the
monotonicity rule M[·] to strengthen the postcondition. Next, we
use dC to first prove y > 0 in 2○, and assume it in the evolution
domain constraint in the left premise. This sign condition on y is
crucially used when we apply 1○ in the proof for the left premise:

∗

Rp≽0, y>0 ⊢ py ≽ 0
1○

∗

R .
p ≥ дp, y > 0 ⊢

.
py − дyp ≥ 0

cutQ ∧ y > 0 ⊢
.
py − дyp ≥ 0

dI p≽0, y>0 ⊢ [x ′ = f (x ), y′ = −дy &Q ∧ y > 0]py ≽ 0

Weuse dI to prove the inequational invariantpy ≽ 0; its left premise
is a consequence of real arithmetic. On the right premise, we com-
pute the Lie derivative of py using the usual product rule as follows:

Lf (x ),−дy (py) = Lf (x ),−дy (p)y + pLf (x ),−дy (y) =
.
py − дyp

We complete the derivation by cutting in the premise of dbx≽ ( 1○).
Note that the differential ghost y′ = −дy was precisely chosen so
that the final arithmetic step closes trivially.

We continue on premise 2○ with a second ghost z′ = д
2 z:

∗

R Q ⊢ (−дy)z2 + y(2z( д2 z)) = 0
dI yz2 = 1 ⊢ [x ′ = f (x ), y′ = −дy, z′ = д

2 z &Q ]yz2 = 1
M[·],∃R y > 0 ⊢ ∃z [x ′ = f (x ), y′ = −дy, z′ = д

2 z &Q ]y > 0
dG y > 0 ⊢ [x ′ = f (x ), y′ = −дy &Q ]y > 0

This derivation is analogous to the one for the previous premise. In
the M[·],∃R step, we observe that if y > 0 initially, then there exists
z such thatyz2 = 1. Moreover,yz2 = 1 is sufficient to implyy > 0 in
the postcondition. The differential ghost z′ = д

2 z is constructed so
that yz2 = 1 can be proved invariant along the differential equation.

The dbx proof rule derives from rule dbx≽ using the equivalence
p = 0↔ p ≥ 0 ∧ −p ≥ 0 and derived axiom [·]∧:

M[·],R

[·]∧,∧R

dbx≽

R
Q ⊢

.
p = дp

Q ⊢
.
p ≥ дp

p ≥ 0 ⊢ [x ′ = f (x )&Q ]p ≥ 0
dbx≽

R
Q ⊢

.
p = дp

Q ⊢
.
(−p) ≥ −дp

−p ≥ 0 ⊢ [x ′ = f (x )&Q ]−p ≥ 0
p ≥ 0 ∧ −p ≥ 0 ⊢ [x ′ = f (x )&Q ](p ≥ 0 ∧ −p ≥ 0)

p = 0 ⊢ [x ′ = f (x )&Q ]p = 0
□

Example 3.3 (Proving continuous properties in dL). In the running
example, dbx≽ directly proves that the open disk 1 − u2 −v2 > 0
is an invariant for αe using cofactor д = − 1

2 (u
2 +v2):

dbx≽

R
∗

⊢ Lαe (1 − u2 − v2) ≥ − 1
2 (u

2 + v2)(1 − u2 − v2)

1 − u2 − v2 > 0 ⊢ [αe ]1 − u2 − v2 > 0
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p'=gp

yp=1

y'=-gy

t
0

1

Figure 2. The differential ghost y′ = −дy (in green) balances out
p′ = дp (in blue) so that the value ofyp (the red dashed line) remains
constant at 1. The horizontal axis tracks the evolution of time t .

Figure 1 indicated that trajectories in the open disk spiral towards
1−u2−v2 = 0, i.e., they evolve towards leaving the invariant region.
Intuitively, this makes a direct proof of invariance difficult. The
proof of dbx≽ instead introduces the differential ghost y′ = −дy.
Its effect for our example is illustrated in Fig. 2, which plots the
value of p = 1 − u2 − v2 and ghost y along the solution starting
from the point ( 18 ,

1
8 ). Although p decays towards 0, the ghost y

balances this by growing away from 0 so that yp remains constant
at its initial value 1, which implies that p never reaches 0.

These derivations demonstrate the clever use of differential
ghosts. In fact, we have already exceeded the deductive power
of dI,dC because the formula y > 0→ [y′ = −y]y > 0 is valid but
not provable with dI,dC alone but needs a dG [13]. It is a simple
consequence of dbx≽, since the polynomial y satisfies the Darboux
equality .

y = −y with cofactor −1. For brevity, we showed the same
derivation for both ≥ and > cases of dbx≽ even though the latter
case only needs one ghost. Similarly, dbx derives directly using two
ghosts rather than the four ghosts incurred using [·]∧. All of these
cases, however, only introduce one differential ghost at a time. In
the next section, we exploit the full power of vectorial dG.

4 Algebraic Invariants
We now consider polynomials that are not Darboux for the given
differential equations, but instead satisfy a differential radical prop-
erty [6] with respect to its higher Lie derivatives. Let дi be cofactor
polynomials, N ≥ 1, assume that p satisfies the polynomial identity:

.
p
(N )
=

N−1∑
i=0

дi
.
p
(i) (1)

With the same intuition, again take Lie derivatives on both sides:

.
p
(N+1)

=Lf (x )(
.
p
(N )
) = Lf (x )(

N−1∑
i=0

дi
.
p
(i)
) =

N−1∑
i=0
Lf (x )(дi

.
p
(i)
)

=

N−1∑
i=0

(
.
дi

.
p
(i)
+ дi

.
p
(i+1))

∈ (p,
.
p, . . . ,

.
p
(N−1)

)

In the last step, ideal membership follows by observing that, by (1),
.
p
(N ) is contained in the ideal generated by the lower Lie derivatives.
By repeatedly taking Lie derivatives on both sides, we again see
that

.
p
(N )
,
.
p
(N+1)

, . . . are all contained in the ideal (p,
.
p, . . . ,

.
p
(N−1)

).
Thus, if we start in state ω where ω[[p]],ω[[

.
p]], . . . ,ω[[

.
p
(N−1)

]] all
simultaneously evaluate to 0, then p = 0 (and all higher Lie deriva-
tives) must stay invariant along (analytic) solutions to the ODE.

This section shows how to axiomatically prove this invariance
property using (vectorial) dG. We shall see at the end of the section
that this allows us to prove all true algebraic invariants.

4.1 Vectorial Darboux Equalities
We first derive a vectorial generalization of the Darboux rule dbx,
which will allow us to derive the rule for algebraic invariants as a
special case by exploiting a vectorial version of (1). Let us assume
that the n-dimensional vector of polynomials p satisfies the vec-
torial polynomial identity .

p = Gp, where G is an n × n matrix of
polynomials, and .

p denotes component-wise Lie derivation of p. If
all components of p start at 0, then they stay 0 along x ′ = f (x).

Lemma 4.1 (Vectorial Darboux equalities are vectorial ghosts).
The vectorial Darboux proof rule derives from vectorial dG (and dI,dC).

vdbx
Q ⊢

.
p = Gp

p = 0 ⊢ [x ′ = f (x)&Q]p = 0

Proof. Let G be an n × n matrix of polynomials, and p be an n-
dimensional vector of polynomials satisfying the premise of vdbx.

First, we develop a proof that we will have occasion to use repeat-
edly. This proof adds an n-dimensional vectorial ghost y′ = −GT y
such that the vanishing of the scalar product, i.e., p · y = 0, is in-
variant. In the derivation below, we suppress the initial choice of
values for y till later. 1○ denotes the use of the premise of vdbx. In
the dC step, we mark the remaining open premise with 2○.

2○

1○

∗

RQ ⊢ Gp · y −Gp · y = 0
RQ ⊢ Gp · y − p ·GT y = 0

cut Q ⊢
.
p · y − p ·GT y = 0

dI p · y = 0 ⊢ [x ′ = f (x ), y′ = −GT y&Q ]p · y = 0
dCp = 0 ⊢ ∃y [x ′ = f (x ), y′ = −GT y&Q ]p = 0
dGp = 0 ⊢ [x ′ = f (x )&Q ]p = 0

The open premise 2○ now includes p ·y = 0 in the evolution domain:

2○ p = 0 ⊢ [x ′ = f (x), y′ = −GT y&Q ∧ p · y = 0]p = 0

So far, the proof is similar to the first ghost step for dbx≽. Unfor-
tunately, for n > 1, the postcondition p = 0 does not follow from
the evolution domain constraint p ·y = 0 even when y , 0, because
p · y = 0 merely implies that p and y are orthogonal, not that p is 0.

The idea is to repeat the above proof sufficiently often to obtain
an entire matrix Y of independent differential ghost variables such
that both Yp = 0 and det(Y ) , 0 can be proved invariant.7 The
latter implies that Y is invertible, so that Yp = 0 implies p = 0. The
matrix Y is obtained by repeating the derivation above on premise
2○, using dG to add n copies of the ghost vectors, y1, . . . , yn , each
satisfying the ODE system y′i = −G

T yi . By the derivation above,
each yi satisfies the provable invariant yi ·p = 0, or more concisely:

Y︷                                    ︸︸                                    ︷
©«

y11 y12 . . . y1n
y21 y22 . . . y2n
.
.
.

.

.

.
. . .

.

.

.
yn1 yn2 . . . ynn

ª®®®®¬

p︷   ︸︸   ︷
©«

p1
p2
.
.
.
pn

ª®®®®¬
= 0

Streamlining the proof, we first perform the dG steps that add
the n ghost vectors yi , before combining [·]∧,dI to prove:

p=0 ⊢ [x ′ = f (x), y′1 = −G
T y1, . . . , y′n = −G

T yn &Q]
n∧
i=1

yi · p=0

7For a square matrix of polynomials Y , det(Y ) is its determinant, tr(Y ) its trace, and,
of course, YT is its transpose.
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which we summarize using the above matrix notation as:

3○ p = 0 ⊢ [x ′ = f (x),Y ′ = −YG &Q]Yp = 0

because when Y ′ is the component-wise derivative of Y , all the
differential ghost equations are summarized as Y ′ = −YG.8 Now
that we have the invariant Yp = 0 from 3○, it remains to prove the
invariance of det(Y ) > 0 to complete the proof.

Since Y only contains yi j variables, det(Y ) is a polynomial term
in the variables yi j . These yi j are ghost variables that we have
introduced by dG, and so we are free to pick their initial values.
For convenience, we shall pick initial values forming the identity
matrix Y = I, so that det(Y ) = det(I) = 1 > 0 is true initially.

In order to show that det(Y ) > 0 is an invariant, we use rule
dbx≽ with the critical polynomial identity

.
det(Y ) = − tr (G) det(Y )

that follows from Liouville’s formula [19, §15.III], where the Lie
derivatives are taken with respect to the extended system of equa-
tions x ′ = f (x),Y ′ = −YG . For completeness, we give an arithmetic
proof of Liouville’s formula in [15]. Thus, det(Y ) is a Darboux poly-
nomial over the variables yi j , with polynomial cofactor − tr(G):

4○ dbx≽
Q ⊢

.
det(Y ) = − tr(G) det(Y )

det(Y )>0 ⊢ [x ′ = f (x),Y ′ = −YG &Q] det(Y )>0
Combining 3○ and 4○ completes the derivation for the invariance

of p = 0. We start with the dG step and abbreviate the ghost matrix.
p = 0 ⊢ ∃Y [x ′ = f (x ), Y ′ = −YG &Q ]p = 0
p = 0 ⊢ ∃y1, . . . , yn [x ′ = f (x ), y′1 = −GT y1, . . . , y′n = −GT yn &Q ]p = 0

dGp = 0 ⊢ [x ′ = f (x )&Q ]p = 0

Now, we carry out the rest of the proof as outlined earlier.
∗

RQ ∧ Yp=0 ∧ det(Y )>0 ⊢ p=0
dW 4○ p=0 ⊢ [x ′ = f (x ), Y ′ = −YG &Q ∧ Yp=0 ∧ det(Y )>0]p=0
dC 3○ p=0, det(Y )>0 ⊢ [x ′ = f (x ), Y ′ = −YG &Q ∧ Yp = 0]p=0
dC p=0, det(Y )>0 ⊢ [x ′ = f (x ), Y ′ = −YG &Q ]p=0
cut p=0, Y = I ⊢ [x ′ = f (x ), Y ′ = −YG &Q ]p=0
∃R p=0 ⊢ ∃Y [x ′ = f (x ), Y ′ = −YG &Q ]p=0

The order of the differential cuts 3○ and 4○ is irrelevant. □

Since det (Y ) , 0 is invariant, the n × n ghost matrix Y in this
proof corresponds to a basis for Rn that continuously evolves along
the differential equations. To see what Y does geometrically, let p0
be the initial values of p, and Y = I initially. With our choice of Y ,
a variation of step 3○ in the proof shows that Yp=p0 is invariant.
Thus, the evolution of Y balances out the evolution of p, so that p
remains constant with respect to the continuously evolving change
of basis Y−1. This generalizes the intuition illustrated in Fig. 2 to
the n-dimensional case. Crucially, differential ghosts let us soundly
express this time-varying change of basis purely axiomatically.

4.2 Differential Radical Invariants
We now return to polynomials p satisfying property (1), and show
how to prove p = 0 invariant using an instance of vdbx.

Theorem4.2 (Differential radical invariants are vectorial Darboux).
The differential radical invariant proof rule derives from vdbx (which
in turn derives from vectorial dG).

dRI
Γ,Q ⊢

∧N−1
i=0

.
p
(i)
= 0 Q ⊢

.
p
(N )
=
∑N−1
i=0 дi

.
p
(i)

Γ ⊢ [x ′ = f (x)&Q]p = 0
8The entries on both sides of the differential equations satisfy Y ′i j = (yi j )

′ =

−(GT yi )j = −
∑n
k=1G

T
jkyik = −

∑n
k=1Gk jyik = −

∑n
k=1 yikGk j = −(YG)i j .

Proof Summary [15]. Rule dRI derives from rule vdbx with:

G =

©«

0 1 0 . . . 0

0 0
. . .

. . .
.
.
.

.

.

.
.
.
.

. . .
. . . 0

0 0 . . . 0 1
д0 д1 . . . дN−2 дN−1

ª®®®®®®®®¬
, p =

©«

p
.
p
(1)

.

.

.
.
p
(N−2)

.
p
(N−1)

ª®®®®®®®®¬
The matrix G has 1 on its superdiagonal, and the дi cofactors in
the last row. The left premise of dRI is used to show p = 0 initially,
while the right premise is used to show the premise of vdbx. □

4.3 Completeness for Algebraic Invariants
Algebraic formulas are formed from finite conjunctions and dis-
junctions of polynomial equations, but, over R, can be normalized
to a single equation p = 0 using the real arithmetic equivalences:

p = 0 ∧ q = 0↔ p2 + q2 = 0, p = 0 ∨ q = 0↔ pq = 0

The key insight behind completeness of dRI is that higher Lie
derivatives stabilize. Since the polynomials R[x] form a Noetherian
ring, for every polynomial p and polynomial ODE x ′ = f (x), there
is a smallest natural number9 N≥1 called rank [6, 10] such that p
satisfies the polynomial identity (1) for some cofactors дi . This N
is computable by successive ideal membership checks [6].

Thus, some suitable rank at which the right premise of dRI proves
exists for any polynomial p.10 The succedent in the remaining left
premise of dRI entails that all Lie derivatives evaluate to zero.

Definition 4.3 (Differential radical formula). The differential radi-
cal formula

.
p
(∗)
= 0 of a polynomial p with rank N≥1 from (1) and

Lie derivatives with respect to x ′ = f (x) is defined to be:

.
p
(∗)
= 0

def
≡

N−1∧
i=0

.
p
(i)
= 0

The completeness of dRI can be proved semantically [6]. How-
ever, using the extensions developed in Section 5, we derive the
following characterization for algebraic invariants axiomatically.

Theorem 4.4 (Algebraic invariant completeness). The following is
a derived axiom in dL when Q characterizes an open set:

DRI [x ′ = f (x)&Q]p = 0↔
(
Q →

.
p
(∗)
= 0

)
Proof Summary [15]. The “←" direction follows by an application
of dRI (whose right premise closes by (1) for anyQ). The “→" direc-
tion relies on existence and uniqueness of solutions to differential
equations, which are internalized as axioms in Section 5. □

For the proof of Theorem 4.4, we emphasize that additional ax-
ioms are only required for syntactically deriving the “→" direction
(completeness) of DRI. Hence, the base dL axiomatization with
differential ghosts is complete for proving properties of the form
[x ′ = f (x)&Q]p = 0 because dRI reduces all such questions to
Q →

.
p
(∗)
= 0, which is a formula of real arithmetic, and hence,

decidable. The same applies for our next result, which is a corollary
of Theorem 4.4, but applies beyond the continuous fragment of dL.

9The only polynomial satisfying (1) for N = 0 is the 0 polynomial, which gives correct
but trivial invariants 0 = 0 for any system (and 0 can be considered to be of rank 1).
10Theorem 4.2 shows Q can be assumed when proving ideal membership of

.
p
(N )

. A
finite rank exists either way, but assuming Q may reduce the number of higher Lie
derivatives of p that need to be considered.



Differential Equation Axiomatization LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Corollary 4.5 (Decidability). For algebraic formulas P and hybrid
programs α whose tests and domain constraints are negations of
algebraic formulas [15], it is possible to compute a polynomial q such
that the equivalence [α]P ↔ q = 0 is derivable in dL.

Proof Summary [15]. By structural induction on α analogous to [12,
Thm. 1], using Theorem 4.4 for the differential equations case. □

5 Extended Axiomatization
In this section, we present the axiomatic extension that is used
for the rest of this paper. The extension requires that the system
x ′ = f (x) locally evolves x , i.e., it has no fixpoint at which f (x) is
the 0 vector. This can be ensured syntactically, e.g., by requiring that
the system contains a clock variable x ′1 = 1 that tracks the passage
of time, which can always first be added using dG if necessary.

5.1 Existence, Uniqueness, and Continuity
The differential equations considered in this paper have polynomial
right-hand sides. Hence, the Picard-Lindelöf theorem [19, §10.VI]
guarantees that for any initial state ω ∈ Rn , a unique solution of
the system x ′ = f (x), i.e., φ : [0,T ] → Rn with φ(0) = ω, exists for
some duration T > 0. The solution φ can be extended (uniquely)
to its maximal open interval of existence [19, §10.IX] and φ(ζ ) is
differentiable, and hence continuous with respect to ζ .

Lemma 5.1 (Continuous existence, uniqueness, and differential
adjoints). The following axioms are sound. In Cont and Dadj, y are
fresh variables (not in x ′ = f (x)&Q(x) or p).

Uniq
(
⟨x ′ = f (x)&Q1⟩P1

)
∧
(
⟨x ′ = f (x)&Q2⟩P2

)
→ ⟨x ′ = f (x)&Q1 ∧Q2⟩(P1 ∨ P2)

Cont x = y →
(
p > 0→ ⟨x ′ = f (x)&p > 0⟩x , y

)
Dadj ⟨x ′ = f (x)&Q(x)⟩ x = y ↔ ⟨y′ = −f (y)&Q(y)⟩y = x

Proof Summary [15]. Uniq internalizes uniqueness, Cont internal-
izes continuity of the values of p and existence of solutions, and
Dadj internalizes the group action of time on ODE solutions, which
is another consequence of existence and uniqueness. □

The uniqueness axiom Uniq can be intuitively read as follows.
If we have two solutions φ1,φ2 respectively staying in evolution
domains Q1,Q2 and whose endpoints satisfy P1, P2, then one of φ1
or φ2 is a prefix of the other, and therefore, the prefix stays in both
evolution domains so Q1 ∧Q2 and satisfies P1 ∨ P2 at its endpoint.

Continuity axiom Cont expresses a notion of local progress for
differential equations. It says that from an initial state satisfying
x = y, the system can locally evolve to another state satisfying
x , y while staying in the open set of states characterized by p > 0.
This uses the assumption that the system locally evolves x at all.

The differential adjoints axiom Dadj expresses that x can flow
forward to y iff y can flow backward to x along an ODE. It is at
the heart of the “there and back again" axiom that equivalently
expresses properties of differential equations with evolution do-
main constraints in terms of properties of forwards and backwards
differential equations without evolution domain constraints [12].

To make use of these axioms, it will be useful to derive rules
and axioms that allow us to work directly in the diamond modality,
rather than the box modality.

Figure 3. The half-open disku2+v2 < 1
4∨u

2+v2 = 1
4∧u ≥ 0 is not

invariant for αe because the red and blue trajectories spiral out of it
towards the unit circle at a closed or open boundary, respectively.

Corollary 5.2 (Derived diamond modality rules and axioms). The
following derived axiom and derived rule are provable in dL:

DR⟨·⟩
[x ′ = f (x)&R]Q

→
(
⟨x ′ = f (x)&R⟩P → ⟨x ′ = f (x)&Q⟩P

)
dRW⟨·⟩

R ⊢ Q Γ ⊢ ⟨x ′ = f (x)&R⟩P

Γ ⊢ ⟨x ′ = f (x)&Q⟩P

5.2 Real Induction
Our final axiom is based on the real induction principle [3]. It inter-
nalizes the topological properties of solutions. For space reasons,
we only present the axiom for systems without evolution domain
constraints, leaving the general version to the report [15].

Lemma 5.3 (Real induction). The real induction axiom is sound,
where y is fresh in [x ′ = f (x)]P .

RI
[x ′ = f (x)]P ↔

∀y [x ′ = f (x)& P ∨ x = y]
(
x = y → P ∧ ⟨x ′ = f (x)& P⟩x , y

)
Proof Summary [15]. The RI axiom follows from the real induction
principle [3] and the Picard-Lindelöf theorem [19, §10.VI]. □

To see the topological significance of RI, recall the running ex-
ample and consider a set of points that is not invariant. Figure 3
illustrates two trajectories that leave the candidate invariant disk
S . These trajectories must stay in S before leaving it through its
boundary, and only in one of two ways: either at a point which is
also in S (red trajectory exiting right) or is not (the blue trajectory).

Real induction axiom RI can be understood as ∀y [. . .](x = y →
. . .

)
quantifying over all final states (x = y) reachable by trajecto-

ries still within P except possibly at the endpoint x = y. The left
conjunct under the modality expresses that P is still true at such
an endpoint, while the right conjunct expresses that the ODE still
remains in P locally. The left conjunct rules out trajectories like
the blue one exiting left in Fig. 3, while the right conjunct rules out
trajectories like the red trajectory exiting right.

The right conjunct suggests a way to use RI: it reduces invariants
to local progress properties under the box modality. This motivates
the following syntactic modality abbreviations for progress within
a domain Q (with the initial point) or progress into Q (without):

⟨x ′ = f (x)&Q⟩◦
def
≡ ⟨x ′ = f (x)&Q⟩ x , y

⟨x ′ = f (x)&Q⟩⃝
def
≡ ⟨x ′ = f (x)&Q ∨ x = y⟩ x , y

All remaining proofs in this paper only use these two modalities
with an initial assumption x = y. In this case, where ω[[x]] = ω[[y]],
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the ⃝ modality has the following semantics:

ω ∈ [[⟨x ′ = f (x)&Q⟩⃝]] iff there is a function φ : [0,T ] → Rn

with T > 0,φ(0) = ω,φ is a solution of the system x ′ = f (x), and
φ(ζ ) ∈ [[Q]] for all ζ in the half-open interval (0,T ]

For ⟨x ′ = f (x)&Q⟩◦ it is the closed interval [0,T ] instead of (0,T ].
Both⃝ and ◦ resemble continuous-time versions of the next modal-
ity of temporal logic with the only difference being whether the
initial state already needs to start in Q . Both coincide if ω ∈ [[Q]].

The motivation for separating these modalities is topological:
⟨x ′ = f (x)&Q⟩◦ is uninformative (trivially true) if the initial state
ω ∈ [[Q]] and Q describes an open set, because existence and con-
tinuity already imply local progress. Excluding the initial state as
in ⟨x ′ = f (x)&Q⟩⃝ makes this an insightful question, because it
allows the possibility of starting on the topological boundary before
entering the open set.

For brevity, we leave the x = y assumption in the antecedents
and axioms implicit in all subsequent derivations. For example, we
shall elide the implicit x = y assumption and write axiom Cont as:

Cont p > 0→ ⟨x ′ = f (x)&p > 0⟩◦

Corollary 5.4 (Real induction rule). This rule derives from RI,Dadj.

rI
P ⊢ ⟨x ′ = f (x)& P⟩⃝ ¬P ⊢ ⟨x ′ = −f (x)&¬P⟩⃝

P ⊢ [x ′ = f (x)]P

Proof Summary [15]. The rule derives from RI, where we have used
Dadj to axiomatically flip the signs of its second premise. □

Rule rI shows what our added axioms buys us: RI reduces global
invariance properties of ODEs to local progress properties. These
properties will be provable with Cont,Uniq and existing dL axioms.
Both premises of rI allow us to assume that the formula we want
to prove local progress for is true initially. Thus, we could have
equivalently stated the succedent with ◦ modalities instead of ⃝ in
both premises. The choice of ⃝ will be better for strict inequalities.

6 Semialgebraic Invariants
From now on, we simply assume domain constraint Q ≡ true since
Q is not fundamental [12] and not central to our discussion.11 Any
first-order formula of real arithmetic, P , characterizes a semial-
gebraic set, and by quantifier elimination [1] may equivalently be
written as a finite, quantifier-free formula with polynomials pi j ,qi j :

P ≡
M∨
i=0

(m(i)∧
j=0

pi j ≥ 0 ∧
n(i)∧
j=0

qi j > 0
)

(2)

P is also called a semialgebraic formula, and the first step in our in-
variance proofs for semialgebraic P will be to apply rule rI, yielding
premises of the form P ⊢ ⟨x ′ = f (x)& P⟩⃝ (modulo sign changes
and negation). The key insight then is that local progress can be
completely characterized by a finite formula of real arithmetic.

6.1 Local Progress
Local progress was implicitly used previously for semialgebraic
invariants [7, 9]. Here, we show how to derive the characterization
syntactically in the dL calculus, starting from atomic inequalities.
We observe interesting properties, e.g., self-duality, along the way.

11We provide the case of arbitrary semialgebraic evolution domain Q in [15].

6.1.1 Atomic Non-strict Inequalities
Let P bep ≥ 0. Intuitively, since we only want to show local progress,
it is sufficient to locally consider the first (significant) Lie derivative
of p. This is made precise with the following key lemma.

Lemma 6.1 (Local progress step). The following axiom derives from
Cont in dL.

LPi≥
p ≥ 0 ∧

(
p = 0→ ⟨x ′ = f (x)&

.
p ≥ 0⟩◦

)
→ ⟨x ′ = f (x)&p ≥ 0⟩◦

Proof. The proof starts with a case split since p ≥ 0 is equivalent
to p > 0 ∨ p = 0. In the p > 0 case, Cont and dRW⟨·⟩ close the
premise. The premise from the p = 0 case is abbreviated with 1○.

∗
Cont p > 0 ⊢ ⟨x ′ = f (x )&p > 0⟩◦

dRW⟨·⟩p > 0 ⊢ ⟨x ′ = f (x )&p ≥ 0⟩◦ 1○
R,∨Lp ≥ 0, p = 0→ ⟨x ′ = f (x )&

.
p ≥ 0⟩◦ ⊢ ⟨x ′ = f (x )&p ≥ 0⟩◦

We continue on 1○ with DR⟨·⟩ and finish the proof using dI:
∗

dI p = 0 ⊢ [x ′ = f (x )&
.
p ≥ 0]p ≥ 0

DR⟨·⟩ p = 0, ⟨x ′ = f (x )&
.
p ≥ 0⟩◦ ⊢ ⟨x ′ = f (x )&p ≥ 0⟩◦

→L p = 0, p = 0→ ⟨x ′ = f (x )&
.
p ≥ 0⟩◦ ⊢ ⟨x ′ = f (x )&p ≥ 0⟩◦

□

Observe that LPi≥ allows us to pass from reasoning about local
progress for p ≥ 0 to local progress for its Lie derivative

.
p ≥ 0

whilst accumulating p = 0 in the antecedent. Furthermore, this can
be iterated for higher Lie derivatives, as in the following derivation:

Γ ⊢ p ≥ 0
Γ, p = 0 ⊢

.
p ≥ 0

Γ, p = 0, . . . ⊢ ⟨x ′ = f (x )&
.
p
(k )
≥ 0⟩◦

LPi≥ . . .
LPi≥ Γ, p = 0 ⊢ ⟨x ′ = f (x )&

.
p ≥ 0⟩◦

LPi≥ Γ ⊢ ⟨x ′ = f (x )&p ≥ 0⟩◦

Indeed, if we could prove
.
p
(k )
> 0 from the antecedent, Cont,dRW⟨·⟩

finish the proof, because we must then locally enter
.
p
(k )
> 0:

Γ, p = 0, . . . ,
.
p
(k−1)

= 0 ⊢
.
p
(k )

> 0

∗

Cont .
p
(k )

> 0 ⊢ ⟨x ′ = f (x )&
.
p
(k )

> 0⟩◦
dRW⟨·⟩ .p

(k )
> 0 ⊢ ⟨x ′ = f (x )&

.
p
(k )
≥ 0⟩◦

cut Γ, p = 0, . . . ,
.
p
(k−1)

= 0 ⊢ ⟨x ′ = f (x )&
.
p
(k )
≥ 0⟩◦

This derivation repeatedly examines higher Lie derivatives when
lower ones are indeterminate (p = 0, . . . ,

.
p
(k−1)

= 0), until we
find the first significant derivative with a definite sign (

.
p
(k)
> 0).

Fortunately, we already know that this terminates: when N is the
rank ofp, then once we gatheredp = 0, . . . ,

.
p
(N−1)

= 0, i.e.,
.
p
(∗)
= 0

in the antecedents, dRI proves the invariantp = 0, and ODEs always
locally progress in invariants. The following definition gathers the
open premises above to obtain the first significant Lie derivative.

Definition 6.2 (Progress formula). The progress formula
.
p
(∗)
> 0

for a polynomial p with rank N≥1 is defined as the following for-
mula, where Lie derivatives are with respect to x ′ = f (x):
.
p
(∗)
> 0

def
≡p ≥ 0 ∧

(
p = 0→

.
p ≥ 0

)
∧
(
p = 0 ∧

.
p = 0→

.
p
(2)
≥ 0

)
∧ . . .

∧
(
p = 0 ∧

.
p = 0 ∧ · · · ∧

.
p
(N−2)

= 0→
.
p
(N−1)

> 0
)

We define
.
p
(∗)
≥ 0 as

.
p
(∗)
> 0 ∨

.
p
(∗)
= 0. We write

.
p
−(∗)
> 0 (or

.
p
−(∗)
≥ 0) when taking Lie derivatives w.r.t. x ′ = −f (x).
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Lemma 6.3 (Local progress ≥). This axiom derives from LPi≥ :

LP≥∗
.
p
(∗)
≥ 0→ ⟨x ′ = f (x)&p ≥ 0⟩◦

Proof Summary [15]. This follows by the preceding discussion with
iterated use of derived axioms LPi≥ and dRI. □

In order to prove ⟨x ′ = f (x)&p ≥ 0⟩◦, it is not always necessary
to consider the entire progress formula forp. The iterated derivation
shows that once the antecedent (Γ,p = 0, . . . ,

.
p
(k−1)

= 0) implies
that the next Lie derivative is significant (

.
p
(k )
> 0), the proof can

stop early without considering the remaining higher Lie derivatives.

6.1.2 Atomic Strict Inequalities
Let P be p > 0. Unlike the above non-strict cases, where ⃝ and ◦
were equivalent, we now exploit the⃝modality. The reason for this
difference is that the set of states satisfying p > 0 is topologically
open and, as mentioned earlier, it is possible to locally enter the
set from an initial point on its boundary. This becomes important
when we generalize to the case of semialgebraic P in normal form
(2) because it allows us to move between its outer disjunctions.

Lemma 6.4 (Local progress >). This axiom derives from LPi≥ :

LP>∗
.
p
(∗)
> 0→ ⟨x ′ = f (x)&p > 0⟩⃝

Proof Summary [15]. We start by unfolding the syntactic abbrevi-
ation of the ⃝ modality, and observing that we can reduce to
the non-strict case with dRW⟨·⟩ and the real arithmetic fact12
p ≥ |x − y |2N → p > 0 ∨ x = y, where N≥1 is the rank of p.
The appearance of N in this latter step corresponds to the fact that
we only need to inspect the first N − 1 Lie derivatives of p with
.
p
(∗)
> 0. We further motivate this choice in the full proof [15].

∗
Rp ≥ |x − y |2N ⊢ p > 0 ∨ x = y Γ ⊢ ⟨x ′ = f (x )&p ≥ |x − y |2N ⟩◦

dRW⟨·⟩ Γ ⊢ ⟨x ′ = f (x )&p > 0 ∨ x = y ⟩◦
Γ ⊢ ⟨x ′ = f (x )&p > 0⟩⃝

We continue on the remaining open premise with iterated use of
LPi≥ , similar to the derivation for Lemma 6.3. □

6.1.3 Semialgebraic Case
We finally lift the progress formulas for atomic inequalities to the
general case of an arbitrary semialgebraic formula in normal form.

Definition 6.5 (Semialgebraic progress formula). The semialge-

braic progress formula
.
P
(∗)

for a semialgebraic formula P written in
normal form (2) is defined as follows:

.
P
(∗) def
≡

M∨
i=0

(m(i)∧
j=0

.
pi j
(∗)
≥ 0 ∧

n(i)∧
j=0

.
qi j
(∗)
> 0

)
We write

.
P
−(∗)

when taking Lie derivatives w.r.t. x ′ = −f (x).

Lemma 6.6 (Semialgebraic local progress). Let P be a semialgebraic
formula in normal form (2). The following axiom derives from dL
extended with Cont,Uniq.

LPR
.
P
(∗)
→ ⟨x ′ = f (x)& P⟩⃝

12Here, |x − y |2 is the squared Euclidean norm (x1 − y1)2 + · · · + (xn − yn )2

Proof Summary [15]. Wedecompose
.
P
(∗)

according to its outermost
disjunction, and accordingly decompose P in the local progress
succedent with dRW⟨·⟩. We then use Uniq,[·]∧ to split the conjunc-
tive local progress condition in the resulting succedents of open
premises, before finally utilizing LP≥∗ or LP>∗ , respectively. □

Lemma 6.6 implies that the implication in LPR can be strength-
ened to an equivalence. It also justifies our syntactic abbreviation
⃝, recalling that the ⃝ modality of temporal logic is self-dual.

Corollary 6.7 (Local progress completeness). Let P be a semialge-
braic formula in normal form (2). The following axioms derive from
dL extended with Cont,Uniq.

LP ⟨x ′ = f (x)& P⟩⃝ ↔
.
P
(∗)

¬⃝ ⟨x ′ = f (x)& P⟩⃝ ↔ ¬⟨x ′ = f (x)&¬P⟩⃝

Proof Summary [15]. Both follow because any P in normal form (2)
has a corresponding normal form for ¬P such that the equivalence

¬(
.
P
(∗)
) ↔

.
(¬P)

(∗)
is provable. Then apply Uniq,LPR. □

In continuous time, there is no discrete next state, so unlike the
⃝ modality of discrete temporal logic, local progress is idempotent.

6.2 Completeness for Semialgebraic Invariants
We summarize our results with the following derived rule.

Theorem 6.8 (Semialgebraic invariants). For semialgebraic P with

progress formulas
.
P
(∗)
,

.
(¬P)

−(∗)
w.r.t. their respective normal forms

(2), this rule derives from the dL calculus with RI,Dadj,Cont,Uniq.

sAI
P ⊢

.
P
(∗)
¬P ⊢

.
(¬P)

−(∗)

P ⊢ [x ′ = f (x)]P

Proof. Straightforward application of rI,LP. □

Completeness of sAI was proved semantically in [9] making cru-
cial use of semialgebraic sets and analytic solutions to polynomial
ODE systems. We showed that the sAI proof rule can be derived
syntactically in the dL calculus and derive its completeness, too:

Theorem 6.9 (Semialgebraic invariant completeness). For semial-

gebraic P with progress formulas
.
P
(∗)
,

.
(¬P)

−(∗)
w.r.t. their respective

normal forms (2), this axiom derives from dL with RI,Dadj,Cont,Uniq.

SAI∀x (P → [x ′ = f (x)]P) ↔ ∀x (
P →

.
P
(∗))
∧∀x (

¬P →
.
(¬P)

−(∗))
In [15], we prove a generalization of Theorem 6.9 that handles

semialgebraic evolution domains Q using LP and a corresponding
generalization of axiom RI. Thus, dL decides invariance properties
for all first-order real arithmetic formulas P , because quantifier
elimination [1] can equivalently rewrite P to normal form (2) first.
Unlike for Theorem 4.4, which can decide algebraic postconditions
from any semialgebraic precondition, Theorem 6.9 (and its general-
ized version) are still limited to proving invariants, the search of
which is the only remaining challenge.

Of course, sAI can be used to prove all the invariants considered
in our running example. However, we had a significantly simpler
proof for the invariance of 1 − u2 − v2 > 0 with dbx≽. This has
implications for implementations of sAI: simpler proofs help mini-
mize dependence on real arithmetic decision procedures. Similarly,
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we note that if P is either topologically open (resp. closed), then
the left (resp. right) premise of sAI closes trivially. Logically, this
follows by the finiteness theorem [1, Theorem 2.7.2], which implies

that formula P →
.
P
(∗)

is provable in real arithmetic for open semi-
algebraic P . Topologically, this corresponds to the fact that only
one of the two exit trajectory cases in Section 5.2 can occur.

7 Related Work
We focus our discussion on work related to deductive verification of
hybrid systems. Readers interested in ODEs [19], real analysis [3],
and real algebraic geometry [1] are referred to the respective cited
texts. Orthogonal to our work is the question of how invariants
can be efficiently generated, e.g. [6, 9, 17].

Proof Rules for Invariants. There are numerous useful but in-
complete proof rules for ODE invariants [16–18]. An overview can
be found in [7]. The soundness and completeness theorems for
dRI,sAI were first shown in [6] and [9] respectively.

In their original presentation, dRI and sAI, are algorithmic proce-
dures for checking invariance, requiring e.g., checking ideal mem-
bership for all polynomials in the semialgebraic decomposition.
This makes them very difficult to implement soundly as part of a
small, trusted axiomatic core, such as the implementation of dL in
KeYmaera X [5]. We instead show that these rules can be derived
from a small set of axiomatic principles. Although we also leverage
ideal computations, they are only used in derived rules. With the aid
of a theorem prover, derived rules can be implemented as tactics
that crucially remain outside the soundness-critical axiomatic core.
Our completeness results are axiomatic, so complete for disproofs.

Deductive Power and Proof Theory. The derivations shown in
this paper are fully general, which is necessary for completeness of
the resulting derived rules. The number of conjuncts in the progress
and differential radical formulas, for example, are equal to the rank
ofp. Known upper bounds for the rank ofp inn variables are doubly
exponential in n2 lnn [10]. Fortunately, many simpler classes of
invariants can be proved using simpler derivations. This is where
a study of the deductive power of various sound, but incomplete,
proof rules [7] comes into play. If we know that an invariant of
interest is of a simpler class, then we could simply use the proof
rule that is complete for that class. This intuition is echoed in [13],
which studies the relative deductive power of differential invariants
(dI) and differential cuts (dC). Our first result shows, in fact, that dL
with dG is already complete for algebraic invariants. Other proof-
theoretical studies of dL [12] reveal surprising correspondences
between its hybrid, continuous and discrete aspects in the sense
that each aspect can be axiomatized completely relative to any
other aspect. Our Corollary 4.5 is a step in this direction.

8 Conclusion and Future Work
The first part of this paper demonstrates the impressive deductive
power of differential ghosts: they prove all algebraic invariants
and Darboux inequalities. We leave open the question of whether
their deductive power extends to larger classes of invariants. The
second part of this paper introduces extensions to the base dL
axiomatization, and shows how they can be used together with the
existing axioms to decide real arithmetic invariants syntactically.

It is instructive to examine the mathematical properties of solu-
tions and terms that underlie our axiomatization. In summary:

Axiom Property
dI Mean value theorem
dC Prefix-closure of solutions
dG Picard-Lindelöf
Cont Existence of solutions
Uniq Uniqueness of solutions
Dadj Group action on solutions
RI Completeness of R

The soundness of our axiomatization, therefore, easily extends to
term languages beyond polynomials, e.g., continuously differen-
tiable terms satisfy the above properties. We may, of course, lose
completeness and decidable arithmetic in the extended language,
but we leave further exploration of these issues to future work.
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