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Abstract
We prove that for every class of graphs C which is nowhere dense,

as defined by Nešetřil and Ossona de Mendez [28, 29], and for every

first order formula φ(x̄ , ȳ), whenever one draws a graphG ∈ C and

a subset of its nodes A, the number of subsets of A |ȳ |
which are of

the form {v̄ ∈ A |ȳ |
: G |= φ(ū, v̄)} for some valuation ū of x̄ in G

is bounded by O(|A| |x̄ |+ε ), for every ε > 0. This provides optimal

bounds on the VC-density of first-order definable set systems in

nowhere dense graph classes. We also give two new proofs of upper

bounds on quantities in nowhere dense classes which are relevant

for their logical treatment. Firstly, we provide a new proof of the

fact that nowhere dense classes are uniformly quasi-wide, implying

explicit, polynomial upper bounds on the functions relating the

two notions. Secondly, we give a new combinatorial proof of the

result of Adler and Adler [1] stating that every nowhere dense class

of graphs is stable. In contrast to the previous proofs of the above

results, our proofs are completely finitistic and constructive, and

yield explicit and computable upper bounds on quantities related

to uniform quasi-wideness (margins) and stability (ladder indices).

Keywords Nowhere dense graphs, Stone space, first-order types,

VC-density, stability, uniform quasi-wideness

1 Introduction
Nowhere dense classes of graphs were introduced by Nešetřil and

Ossona de Mendez [28, 29] as a general and abstract model captur-

ing uniform sparseness of graphs. These classes generalize many

familiar classes of sparse graphs, such as planar graphs, graphs

of bounded treewidth, graphs of bounded degree, and, in fact, all

classes that exclude a fixed topological minor. Formally, a class C
of graphs is nowhere dense if there is a function t : N→ N such that

for every r ∈ N, no graph G in C contains the clique Kt (r ) on t(r )
vertices as depth-r minor, i.e., as a subgraph of a graph obtained

from G by contracting mutually disjoint subgraphs of radius at

most r to single vertices. We write The more restricted notion of

bounded expansion requires in addition that for every fixed r , there
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is a constant (depending on r ) upper bound on the ratio between

the number of edges and the number of vertices in depth-r minors

of graphs from C .

The concept of nowhere denseness turns out to be very robust,

as witnessed by the fact that it admits multiple different charac-

terizations, uncovering intricate connections to seemingly distant

branches ofmathematics. For instance, nowhere dense graph classes

can be characterized by upper bounds on the density of bounded-

depth (topological) minors [28, 29], by uniform quasi-wideness [29]

(a notion introduced by Dawar [10] in the context of homomor-

phism preservation properties), by low tree-depth colorings [27],

by generalized coloring numbers [41], by sparse neighborhood cov-

ers [17, 18], by a game called the splitter game [18], and by the

model-theoretic concepts of stability and independence [1]. For a

broader discussion on graph theoretic sparsity we refer to the book

of Nešetřil and Ossona de Mendez [30].

The combination of combinatorial and logical methods yields a

powerful toolbox for the study of nowhere dense graph classes. In

particular, the result of Grohe, Kreutzer and the second author [18]

exploits this combination in order to prove that a given first or-

der sentence φ can be evaluated in time f (φ) · n1+ε
on n-vertex

graphs from a fixed nowhere dense class of graphs C , for any

fixed real ε > 0 and some function f . On the other hand, pro-

vided C is closed under taking subgraphs, it is known that if C is

not nowhere dense, then there is no algorithm with running time

of the form f (φ) · nc for any constant c under plausible complexity

assumptions [12]. In the terminology of parameterized complexity,

these results show that the notion of nowhere denseness exactly

characterizes subgraph-closed classes where model-checking first

order logic is fixed-parameter tractable, and conclude a long line

of research concerning the parameterized complexity of the model

checking problem for sparse graph classes (see [16] for a survey).

Summary of contribution. In this paper, we continue the study

of the interplay of combinatorial and logical properties of nowhere

dense graph classes, and provide new upper bounds on several

quantities appearing in their logical study. Our main focus is on

the notion of VC-density for first order formulas. This concept

originates from model theory and aims to measure the complexity

of set systems definable by first order formulas, similarly to the

better-known VC-dimension. We give optimal bounds on the VC-

density in nowhere dense graph classes, and in particular we show

that these bounds are “as good as one could hope for”.

We also provide new upper bounds on quantities related to

stability and uniform quasi-wideness of nowhere dense classes. For
stability, we provide explicit and computable upper bounds on

the ladder index of any first order formula on a given nowhere

dense class. For uniform quasi-wideness, we give a new, purely

combinatorial proof of polynomial upper bounds on margins, that
is, functions governing this notion. We remark that the existence

of upper bounds as above is known [1, 22], but the proofs are

based on nonconstructive arguments, notably the compactness

theorem for first order logic. Therefore, the upper bounds are given
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purely existentially and are not effectively computable. Contrary to

these, our proofs are entirely combinatorial and effective, yielding

computable upper bounds.

We now discuss the relevant background from logic and model

theory, in order to motivate and state our results.

Model theory. Our work is inspired by ideas from model theory,

more specifically, from stability theory. The goal of stability theory

is to draw certain dividing lines specifying abstract properties of

logical structures which allow the development of a good struc-

ture theory. There are many such dividing lines, depending on the

specifics of the desired theory. One such dividing line encloses

the class of stable structures, another encloses the larger class of
dependent structures (also called NIP). A general theme is that the

existence of a manageable structure is strongly related to the non-

existence of certain forbidden patterns on one hand, and on the

other hand, to bounds on cardinalities of certain type sets. Let us
illustrate this phenomenon more concretely.

For a first order formula φ(x̄ , ȳ) with free variables split into x̄
and ȳ, a φ-ladder of length n in a logical structure A is a sequence

ū1, . . . , ūn , v̄1, . . . , v̄n of tuples of elements of A such that

A |= φ(ūi , v̄j ) ⇐⇒ i ⩽ j for all 1 ⩽ i, j ⩽ n.

The least n for which there is no φ-ladder of length n is the

ladder index of φ(x̄ , ȳ) in A (which may depend on the split of the

variables, and may be ∞ for some infinite structures A). A class

of structures C is stable if the ladder index of every first order

formula φ(x̄ , ȳ) over structures from C is bounded by a constant

depending only on φ and C . This notion can be applied to a single

infinite structure A, by considering the class consisting of A only.

Examples of stable structures include (N,=), the field of complex

numbers (C,+,×, 0, 1), as well as any vector space V over the field

of rationals, treated as a group with addition. On the other hand,

(Q, ⩽) and the field of reals (R,+,×, 0, 1) are not stable, as they

admit a linear ordering which is definable by a first order formula.

Stable structures turn out to have more graspable structure than

unstable ones, as they can be equipped with various notions useful

for their study, such as forking independence (generalizing linear

independence in vector spaces) and rank (generalizing dimension).

We refer to the textbooks [32, 39] for an introduction to stability

theory.

One of concepts studied in the early years of stability theory

is a property of infinite graphs called superflatness, introduced by

Podewski and Ziegler [33]. The definition of superflatness is the

same as of nowhere denseness, but Podewski and Ziegler, instead

of applying it to an infinite class of finite graphs, apply it to a single

infinite graph. The main result of [33] is that every superflat graph

is stable. As observed by Adler and Adler [1], this directly implies

the following:

Theorem 1.1 ([1, 33]). Every nowhere dense class of graphs is stable.
Conversely, any stable class of finite graphs which is subgraph-closed
is nowhere dense.

Thus, the notion of nowhere denseness (or superflatness) co-

incides with stability if we restrict attention to subgraph-closed

graph classes.

The proof of Adler and Adler does not yield effective or com-

putable upper bound on the ladder index of a given formula for a

given nowhere dense class of graphs, as it relies on the result of

Podewski and Ziegler, which in turn invokes compactness for first

order logic.

Cardinality bounds. One of the key insights provided by the

work of Shelah is that stable classes can be characterized by admit-

ting strong upper bounds on the cardinality of Stone spaces. For a
first order formula φ(x̄ , ȳ)with free variables partitioned into object
variables x̄ and parameter variables ȳ, a logical structure A, and a

subset of its domain B, define the set of φ-types with parameters

from B, which are realized in A, as follows1:

Sφ (A/B) =
{{
v̄ ∈ B |ȳ |

: A |= φ(ū, v̄)
}

: ū ∈ V (A) |x̄ |
}

⊆ P(B |ȳ |).
(1)

Here,V (A) denotes the domain ofA andP(X ) denotes the powerset

ofX . Putting the above definition in words, every tuple ū ∈ V (A) |x̄ |

defines the set of those tuples v̄ ∈ B |ȳ |
for which φ(ū, v̄) holds. The

set Sφ (A/B) consists of all subsets of B |ȳ |
that can be defined in

this way.

Note that in principle, Sφ (A/B) may be equal to P(B |x̄ |), and

therefore have very large cardinality compared to B, even for very

simple formulas. The following characterization due to Shelah (cf.

[38, Theorem 2.2, Chapter II]) shows that for stable classes this

does not happen. A class of structures C is stable if and only if

there is an infinite cardinal κ such that the following holds for all

structures A in the elementary closure
2
of C, and all B ⊆ V (A):

if |B | ⩽ κ, then |Sφ (A/B)| ⩽ κ. Therefore Shelah’s result provides
an upper bound on the number of types, albeit using infinite cardi-

nals, elementary limits, and infinite parameter sets. The cardinality

bound provided by the above characterization, however, does not

seem to immediately translate to a result of finitary nature. As we

describe below, this can be done using the notions of VC-dimension
and VC-density.

VC-dimension andVC-density. The notion of VC-dimensionwas

introduced by Vapnik and Chervonenkis [9] as a measure of com-

plexity of set systems, or equivalently of hypergraphs, and indepen-

dently by Shelah [36] under the name of dependence (the equiva-

lence of the two notions was observed by Laskowski [23]).

Formally, VC-dimension is defined as follows. Let X be a set

and let F ⊆ P(X ) be a family of subsets of X . A subset A ⊆ X is

shattered by F if {A∩ F : F ∈ F } = P(A); that is, every subset of A
can be obtained as the intersection of some set from F with A. The
VC-dimension of F is the maximum size of a subset A ⊆ X that is

shattered by F (or∞ if there is no bound on the size of shattered

subsets).

For a given structure A, parameter set B ⊆ V (A), and formula

φ(x̄ , ȳ), we may consider the family Sφ (A/B) of subsets of B |ȳ |

defined using equation (1). The VC-dimension of φ(x̄ , ȳ) on A is

the VC-dimension of the family Sφ (A/V (A)). In other words, the

VC-dimension of φ(x̄ , ȳ) on A is the largest cardinality of a finite

set I for which there exist families of tuples (ū J )J ⊆I and (v̄i )i ∈I of
elements of A such that

A |= φ(ū J , v̄i ) ⇐⇒ i ∈ J for all i ∈ I and J ⊆ I .

1
Here, Sφ (A/B) is the set of types which are realized in A. In model theory, one

usually works with the larger class of complete types. This distinction will not be

relevant here.

2
The elementary closure of C is the class of all structures A such that every first order

sentence φ which holds in A also holds in some B ∈ C. Equivalently, it is the class of

models of the theory of C.
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A formula φ(x̄ , ȳ) is dependent on a class of structures C if there

is a bound d ∈ N such that the VC-dimension of φ(x̄ , ȳ) on A is at

most d for all A ∈ C. It is immediate from the definitions that if a

formula φ(x̄ , ȳ) is stable over C, then it is also dependent on C (the

bound being the ladder index). A class of structures C is dependent
if every formula φ(x̄ , ȳ) is dependent over C. In particular, every

stable class is dependent, and hence, by Theorem 1.1, every nowhere

dense class of graphs is dependent. Examples of infinite dependent

structures (treated as singleton classes) include (Q, ⩽) and the field

of reals (R,×,+, 0, 1).
One of the main properties of VC-dimension is that it implies

polynomial upper bounds on the number of different “traces” that a

set system can have on a given parameter set. This is made precise

by the well-known Sauer-Shelah Lemma, stated as follows.

Theorem 1.2 (Sauer-Shelah Lemma, [9, 35, 37]). For any family F
of subsets of a set X , if the VC-dimension of F is d , then for every
finite A ⊆ X ,

| {A ∩ F : F ∈ F } | ⩽
d∑
i⩾0

(
|A|

i

)
⩽ |A|d + 1.

In particular, this implies that in a dependent class of structuresC,

for every formula φ(x̄ , ȳ) there exists some constant d ∈ N such

that

|Sφ (A/B)| ⩽ |B |d + 1, (2)

for all A ∈ C and finite B ⊆ V (A). Unlike Shelah’s characterization
theorem of stable classes, this result is of finitary nature: it provides

quantitative upper bounds on the number of different definable

subsets of a given finite parameter set. Together with Theorem 1.1,

this implies that for every nowhere dense class of graphs and every

first order formulaφ(x̄ , ȳ), there exists a constantd ∈ N such that (2)

holds.

For many structure classes C the combination of bounding VC-

dimension and applying the Sauer-Shelah Lemma yields a subopti-

mal upper bound of the form (2). This motivates the notion of VC-
density, a notion closely related to VC-dimension. The VC-density
(also called the VC-exponent) of a set system F on an infinite set X
is the infimum of all reals α > 0 such that | {A ∩ F : F ∈ F } | ∈

O(|A|α ), for all finite A ⊆ X (where the constants hidden in the O

notation may depend on α ). Similarly, the VC-density of a for-

mula φ(x̄ , ȳ) over a class of structures C is the infimum of all reals

α > 0 such that |Sφ (A/B)| ∈ O(|B |α ), for all A ∈ C and all finite

B ⊆ V (A). The Sauer-Shelah Lemma implies that the VC-density (of

a set system, or of a formula over a class of structures) is bounded

from above by the VC-dimension. Our main result, Theorem 1.3

below, provides optimal bounds on the VC-density in the setting

of nowhere dense graph classes. In particular, we show that the

VC-density of a formula φ(x̄ , ȳ) over a nowhere dense class C is

bounded by |x̄ |.

Motivation. The motivation for finding bounds on the VC-density

comes from the fact that it is this quantity, rather than VC-dimen-

sion, that is actually relevant in combinatorial and algorithmic

applications [6, 8, 9, 25, 26]. For example in the framework of prob-
ably approximately correct learning (PAC learning, introduced by

Valiant in [40]), the size of the random sample required as the

training set is determined by the VC-density of the concept class

rather than by its VC-dimension (see [6], Lemma 7). We refer to the

work of Grohe and Turán in [19] and Adler and Adler [1] for more

background on learning definable concepts. In Theorem 1.6 below

we give another example where bounds on the VC-density yield

bounds on certain combinatorial quantities. We refer to [4] for an

overview of further applications of VC-dimension and VC-density

in model theory and to the surveys [14, 25] on uses of VC-density

in combinatorics.

The main result. Our main result, Theorem 1.3 stated below, im-

proves the bound (2) for classes of sparse graphs by providing

essentially the optimum exponent.

Theorem 1.3. Let C be a nowhere dense class of graphs and let
φ(x̄ , ȳ) be a first order formula with free variables partitioned into
object variables x̄ and parameter variables ȳ. Let ℓ = |x̄ |. Then for
every ε > 0 there exists a constant c such that for every G ∈ C and
every nonempty A ⊆ V (G), we have |Sφ (G/A)| ⩽ c · |A|ℓ+ε .

In particular, Theorem 1.3 implies that the VC-density of any

fixed formula φ(x̄ , ȳ) over any nowhere dense class of graphs is |x̄ |,
the number of object variables in φ.

To see that the bounds provided by Theorem 1.3 cannot be im-

proved, consider a formula φ(x̄ ,y) (i.e. with one parameter variable)

expressing that y is equal to one of the entries of x̄ . Then for each

graph G and parameter set A, Sφ (G/A) consists of all subsets of A

of size at most |x̄ |, whose number is Θ(|A| |x̄ |). Note that this lower
bound applies to any infinite class of graphs, even edgeless ones.

We moreover show that, as long as we consider only subgraph-

closed graph classes, the result of Theorem 1.3 also cannot be im-

proved in terms of generality. The following result is an easy corol-

lary of known characterizations of obstructions to being nowhere

dense.

Theorem 1.4. Let C be a class of graphs which is closed under
taking subgraphs. If C is not nowhere dense, then there is a formula
φ(x ,y) such that for every n ∈ N there are G ∈ C and A ⊆ V (G)

with |A| = n and |Sφ (G/A)| = 2
|A | .

A similar characterization theorem can be proved for bounded

expansion classes of graphs. We show that if C has bounded ex-

pansion, then there exists a constant c such that for every G ∈ C
and every nonempty A ⊆ V (G), we have |Sφ (G/A)| ⩽ c · |A|ℓ . Con-
versely, if C has unbounded expansion, then there is a formula

φ(x ,y) such that for every c ∈ R there existG ∈ C and a nonempty

A ⊆ V (G) with |Sφ (G/A)| > c |A|.

Neighborhood complexity. To illustrate Theorem 1.3, consider

the case when G is a graph and φ(x ,y) is the formula with two

variables x and y expressing that the distance between x and y is at

most r , for some fixed integer r . In this case, Sφ (G/A) is the family

consisting of all intersectionsU ∩A, for U ranging over all balls of

radius r inG , and |Sφ (G/A)| is called the r -neighborhood complexity
of A. The concept of r -neighborhood complexity in sparse graph

classes has already been studied before. In particular, it was proved

by Reidl et al. [34] that in any graph class of bounded expansion,

the r -neighborhood complexity of any set of vertices A is O(|A|).
Recently, Eickmeyer et al. [13] generalized this result to an upper

bound of O(|A|1+ε ) in any nowhere dense class of graphs. Note

that these results are special cases of Theorem 1.3. The study of

r -neighborhood complexity on classes of bounded expansion and

nowhere dense classes was motivated by algorithmic questions

from the field of parameterized complexity. More precisely, the

usage of this notion was crucial for the development of a linear
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kernel for the r -Dominating Set problem on any class of bounded

expansion [11], and of an almost linear kernel for this problem on

any nowhere dense class [13]. We will use the results of [11, 13]

on r -neighborhood complexity in sparse graphs in our proof of

Theorem 1.3.

Uniform quasi-wideness. One of the main tools used in our proof

is the notion of uniform quasi-wideness, introduced by Dawar [10]

in the context of homomorphism preservation theorems. Formally,

a class of graphs C is uniformly quasi-wide if for each integer r ∈ N
there is a function N : N → N and a constant s ∈ N such that

for every m ∈ N, graph G ∈ C , and vertex subset A ⊆ V (G) of
size |A| ⩾ N (m), there is a set S ⊆ V (G) of size |S | ⩽ s and a set

B ⊆ A \ S of size |B | ⩾ m which is r -independent in G − S . Recall
that a set B ⊆ V (G) is r -independent in G if all distinct u,v ∈ B are

at distance larger than r in G.
Nešetřil and Ossona de Mendez proved that the notions of uni-

form quasi-wideness and nowhere denseness coincide for classes

of finite graphs [28]. The proof of Nešetřil and Ossona de Mendez

goes back to a construction of Kreidler and Seese [21] (see also

Atserias et al. [5]), and uses iterated Ramsey arguments. Hence

the original bounds on the function Nr are non-elementary. Re-

cently, Kreutzer, Rabinovich and the second author proved that

for each radius r , we may always choose the function Nr to be a

polynomial [22]. However, the exact dependence of the degree of

the polynomial on r and on the class C itself was not specified

in [22], as the existence of a polynomial bound is derived from

non-constructive arguments used by Adler and Adler in [1] when

showing that every nowhere dense class of graphs is stable. We

remark that polynomial bounds for uniform quasi-wideness are

essential for some of its applications: the fact that Nr can be chosen

to be polynomial was crucially used by Eickmeyer et al. [13] both

to establish an almost linear upper bound on the r -neighborhood
complexity in nowhere dense classes, and to develop an almost

linear kernel for the r -Dominating Set problem. We use this in

our proof of Theorem 1.3 as well.

In our quest for constructive arguments, we give a new con-

struction giving polynomial bounds for uniform quasi-wideness.

The new proof is considerably simpler than that of [22] and gives

explicit and computable bounds on the degree of the polynomial.

More precisely, we prove the following theorem; here, the notation

Or,t (·) hides computable factors depending on r and t . Below, we
write Kt ̸≼r G to denote that G does not contain Kt as a depth-r
minor, i.e., as a subgraph of a graph obtained fromG by contracting

mutually disjoint subgraphs of radius at most r to single vertices.

Theorem 1.5. For all r , t ∈ N there is a polynomial Nwith N (m) =

Or,t (m
(4t+1)2r t ), such that the following holds. LetG be a graph such

that Kt ̸≼ ⌊9r/2⌋ G, and let A ⊆ V (G) be a vertex subset of size at
least N (m), for a givenm. Then there exists a set S ⊆ V (G) of size
|S | < t and a set B ⊆ A \ S of size |B | ⩾ m which is r -independent in
G − S . Moreover, given G and A, such sets S and B can be computed
in time Or,t (|A| · |E(G)|).

We remark that even though the techniques employed to prove

Theorem 1.5 are inspired by methods from stability theory, at the

end we conduct an elementary graph theoretic reasoning. In par-

ticular, as asserted in the statement, the proof can be turned into

an efficient algorithm.

We also prove a result extending Theorem 1.5 to the case where

A ⊆ V (G)d is a set of tuples of vertices, of any fixed length d . This
result is essentially an adaptation of an analogous result due to

Podewski and Ziegler [33] in the infinite case, but appears to be

new in the context of finite structures. This more general result

turns out to be necessary in the proof of Theorem 1.3.

Local separation. A simple, albeit important notion which perme-

ates our proofs is a graph theoretic concept of local separation.
Let G be a graph, S ⊆ V (G) a set of vertices, and let r ∈ N be a

number. We say that two sets of vertices A and B are r -separated
by S (in G) if every path from a vertex in A to a vertex in B of

length at most r contains a vertex from S . Observe that taking

r = ∞ in r -separation yields the familiar notion of a separation

in graph theory. From the perspective of stability, separation (for

r = ∞) characterizes forking independence in superflat graphs [20].

Therefore, r -separation can be thought of as a local analogue of

forking independence, for nowhere dense graph classes.

A key lemma concerning r -separation (cf. Corollary 3.2) states

that if A and B are r -separated by a set S of size s in G, then for

any fixed formula φ(x̄ , ȳ) of quantifier rank O(log r ), the set {{v̄ ∈

B |ȳ |
: G |= φ(ū, v̄)} : ū ∈ A |x̄ |} has cardinality bounded by a

constant depending on s and φ only (and not on G,A, and B). This
elementary result combines Gaifman’s locality of first order logic

(cf. [15]) and a Feferman-Vaught compositionality argument. This,

in combination with the polynomial bounds for uniform quasi-

wideness (Theorem 1.5, and its extension to tuples Theorem 2.9), as

well as the previous results on neighborhood complexity [11, 13],

are the main ingredients of our main result, Theorem 1.3.

A duality theorem. As an example application of our main re-

sult, Theorem 1.3, we state the following result. Below, τ (G) de-
notes the transversality of G, i.e., the least number of elements of a

setX which intersects every set in G, and ν (G) denotes the packing
number of G, i.e., the largest number of pairwise-disjoint subsets

of G.

Theorem 1.6. Fix a nowhere dense class of graphs C and a for-
mula φ(x ,y) with two free variables x ,y. Then there is a function
f : N → N with the following property. Let G ∈ C be a graph and
let G be a family of subsets of V (G) consisting of sets of the form
{v ∈ V (G) : φ(u,v)}, where u is some vertex ofV (G). Then τ (G) ⩽
f (ν (G)).

Theorem 1.6 is an immediate consequence of the bound given

by Theorem 1.3 and a result ofMatoušek [26].We remark that a simi-

lar, but incomparable result is proved by Bousquet and Thomassé [7].

In their result, the assumption on C is weaker, since they just re-

quire that it has bounded distance VC-dimension, but the assumption

on G is stronger, as it is required to be the set of all balls of a fixed

radius.

Stability. Finally, we observe that we can apply our tools to give

a constructive proof of the result of Adler and Adler [1] that ev-

ery nowhere dense class is stable, which yields computable upper

bounds on ladder indices. More precisely, we translate the approach

of Podewski and Ziegler [33] to the finite and replace the key non-

constructive application of compactness with a combinatorial ar-

gument based on Gaifman’s locality, in the flavor served by our

observations on r -separation (Corollary 3.2). The following theorem
summarizes our result.
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Theorem 1.7. There are computable functions f : N3 → N and
д : N→ N with the following property. Suppose φ(x̄ , ȳ) is a formula
of quantifier rank at most q and with d free variables. Suppose further
thatG is a graph excluding Kt as a depth-д(q)minor. Then the ladder
index of φ(x̄ , ȳ) in G is at most f (q,d, t).

Acknowledgments. We would like to thank Patrice Ossona de

Mendez for pointing us to the question of studying VC-density of

nowhere dense graph classes.

Due to space constraints not all proofs can be presented in the

conference version of the paper, missing proofs are marked with (⋆)

The full version of the paper is available online [31].

2 Bounds for uniform quasi-wideness
In this section we prove Theorem 1.5, which strengthens the result

of Kreutzer et al. [22] by providing an explicit polynomial N and

bound s . We remark that the result of Kreutzer et al. is sufficient

to prove our main result, Theorem 1.3. Our proof follows the same

lines as the original proof of Nešetřil and Ossona de Mendez [28],

with the difference that in the key technical lemma (Lemma 3.5

of [28]) we improve the bounds significantly by replacing a Ramsey

argument with a refined combinatorial analysis (Lemma 2.1 below).

The new argument essentially originates in the concept of branching
index from stability theory. Due to space constraints we present

only the proof of the key lemma and refer to the full version for a

complete proof of the main theorem.

Lemma 2.1. Let ℓ,m, t ∈ N and assume ℓ ⩾ t8. If G is a graph and
A is a 1-independent set in G with at least (m + ℓ)2t elements, then
at least one of the following conditions hold:

• Kt ≼4 G,
• A contains a 2-independent set of sizem,
• some vertex v of G has at least ℓ1/4 neighbors in A.

Moreover, if Kt ̸≼4 G, the structures described in the other two cases
(a 2-independent set of sizem, or a vertexv as above) can be computed
in time Ot (|A| · |E(G)|).

The remainder of this section is devoted to the proof of Lemma 2.1.

We will use the following bounds on the edge density of graphs

with excluded shallow minors obtained by Alon et al. [3].

Lemma 2.2 (Theorem 2.2 in [3]). Let H be a bipartite graph with
maximum degree d on one side. Then there exists a constant cH ,
depending only on H , such that every n-vertex graphG excluding H
as a subgraph has at most cH · n2−1/d edges.

Observe that if Kt ̸≼1 G, then in particular the 1-subdivision

ofKt is excluded as a subgraph ofG (the 1-subdivision of a graphH
is obtained by replacing every edge of H by a path of length 2).

Moreover, the 1-subdivision of Kt is a bipartite graph with max-

imum degree 2 on one side. Furthermore, it is easy to check in

the proof of Theorem 2.2 in [3] that cH ⩽ |V (H )| in case d = 2.

Since the 1-subdivision of Kt has

(t+1

2

)
vertices, we can choose

cKt =
(t+1

2

)
and conclude the following.

Corollary 2.3. Let G be an n-vertex graph such that Kt ̸≼1 G for
some constant t ∈ N. Then G has at most

(t+1

2

)
· n3/2 edges.

We will use the following standard lemma saying that a shallow

minor of a shallow minor is a shallow minor, where the parameters

of shallowness are appropriately chosen.

Lemma2.4 (adaptation of Proposition 4.11 in [30]). Suppose J ,H ,G
are graphs such that H ≼a G and J ≼b H , for some a,b ∈ N. Then
J ≼c G, where c = 2ab + a + b.

We will need one more technical lemma.

Lemma 2.5. Let G be a graph such that Kt ̸≼4 G for some t ∈ N
and let A ⊆ V (G) with |A| ⩾ t8. Assume furthermore that every pair
of elements ofA has a common neighbor inV (G)\A. Then there exists
a vertex v in V (G) \A which has at least |A|1/4 neighbors in A.

Proof. Denote k = max{ |N (w) ∩A| : w ∈ V (G) −A }; our goal is

to prove that k ⩾ |A|1/4
.

Let B ⊆ V (G) −A be the set of those vertices outside of A that

have a neighbor in A. Construct a function f : B → A by a random

procedure as follows: for each vertex v ∈ B, choose f (v) uniformly

and independently at random from the set N (v) ∩A. Next, for each
u ∈ A define branch set Iu = G[{u} ∪ f −1(u)]. Observe that since,
by construction, v and f (v) are adjacent for all v ∈ B, each branch

set Iu has radius at most 1, with u being the central vertex. Also,

the branch sets {Iu }u ∈A are pairwise disjoint. Finally, construct a

graph H on vertex set A by making distinct u,v ∈ A adjacent in H
whenever there is an edge inG between Iu and Iv . Then the branch

sets {Iu }u ∈A witness that H is a 1-shallow minor of G.
For distinct u,v ∈ A, let us estimate the probability that the edge

uv appears in H . By assumption, there is a vertex w ∈ B that is

adjacent both to u and to v . Observe that if f (w) = u or f (w) = v ,
then uv for sure becomes an edge in H . Since w has at most k
neighbors in A, the probability that f (w) ∈ {u,v} is at least 2

k .

By the linearity of expectation, the expected number of edges

in H is at least

( |A |
2

)
· 2

k =
|A |( |A |−1)

k . Hence, for at least one run

of the random experiment we have that H indeed has at least this

many edges. On the other hand, observe thatKt ̸≼1 H ; indeed, since

H ≼1 G , by Lemma 2.4 we infer thatKt ≼1 H would implyKt ≼4 G ,
a contradiction with the assumptions on G. Then Corollary 2.3

implies H has at most

(t+1

2

)
· |A|3/2

edges. Observe that

(t+1

2

)
·

|A|3/2 ⩽ 3t2/4 · |A|3/2 ⩽ 3

4
|A|7/4

, where the first inequality holds

due to t ⩾ 2, while the second holds by the assumption that |A| ⩾ t8
.

By combining the above bounds, we obtain

|A|(|A| − 1)

k
⩽

3

4

|A|7/4,

which implies k ⩾ |A|1/4
due to |A| ⩾ t8 ⩾ 64. □

We proceed with the proof of Lemma 2.1. The idea is to arrange

the elements of A in a binary tree and prove that provided A is

large, this tree contains a long path. From this path, we will extract

the set B. In stability theory, similar trees are called type trees and
they are used to extract long indiscernible sequences, see e.g. [24].

We will work with a two-symbol alphabet {D, S}, for daughter
and son. We identify words in {D, S}∗ with nodes of the infinite
rooted binary tree. The depth of a node w is the length of w . For

w ∈ {D, S}∗, the nodes wD and wS are called, respectively, the

daughter and the son ofw , andw is the parent of bothwS andwD.

A nodew ′
is a descendant of a nodew ifw ′

is a prefix ofw (possibly

w ′ = w). We consider finite, labeled, rooted, binary trees, which

are called simply trees below, and are defined as follows. For a set

of labelsU , a (U -labeled) tree is a partial function τ : {D, S}∗ → U
whose domain is a finite set of nodes, called the nodes of τ , which is

closed under taking parents. If v is a node of τ , then τ (v) its label.
5
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Let G be a graph, A ⊆ V (G) be a 1-independent set in G, and ā
be any enumeration of A, that is, a sequence of length |A| in which

every element of A appears exactly once. We define a binary tree τ
which is labeled by vertices of G. The tree is defined by processing

all elements of ā sequentially.

We start with τ being the tree with empty domain, and for each

element a of the sequence ā, processed in the order given by ā,
execute the following procedure which results in adding a node

with label a to τ . When processing the vertex a, do the following.

Start withw being the empty word. Whilew is a node of τ , repeat
the following step: if the distance from a to τ (w) in the graph G is

at most 2, replacew by its son, otherwise, replacew by its daughter.

Once w is not a node of τ , extend τ by setting τ (w) = a. In this

way, we have processed the element a, and now proceed to the

next element of ā, until all elements are processed. This ends the

construction of τ . Thus, τ is a tree labeled with vertices of A, and
every vertex of A appears exactly once in τ .

Define the depth of τ as the maximal depth of a node of τ . For
a wordw , an alternation inw is any position α , 1 ⩽ α ⩽ |w |, such

thatwα , wα−1; here,wα denotes the α th symbol ofw , andw0 is

assumed to be D. The alternation rank of the tree τ is the maximum

of the number of alternations inw , over all nodesw of τ .

Lemma 2.6. Let h, t ⩾ 2. If τ has alternation rank at most 2t − 1

and depth at most h − 1, then τ has fewer than h2t nodes.

Proof. With each nodew of τ associate function fw : {1, . . . , 2t} →
{1, . . . ,h} defined as follows: fw maps each i ∈ {1, . . . , 2t} to the ith
alternation ofw , provided i is at most the number of alternations of

w , and otherwise we put fw (i) = |w |+1. It is clear that the mapping

w 7→ fw for nodesw of τ is injective and its image is contained in

monotone functions from {1, . . . , 2t} to {1, . . . ,h}, whose number

is less than h2t
. Hence, of τ has fewer than h2t

elements. □

Lemma 2.7. Suppose that Kt ̸≼2 G. Then τ has alternation rank at
most 2t − 1.

Proof. Letw be a node of τ with at least 2k alternations, for some

k ∈ N. Suppose α1, β1, . . . ,αk , βk be the first 2k alternations ofw .

By the assumption thatw0 = D we have thatw contains symbol S

at all positions αi for i = 1, . . . ,k , and symbol D at all positions βi
for i = 1, . . . ,k . For each i ∈ {1, . . . ,k}, define ai ∈ V (G) to be the

label in τ of the prefix of w of length αi − 1, and similarly define

bi ∈ V (G) to be the label in τ of the prefix ofw of length βi − 1. It

follows that for each i ∈ {1, . . . ,k}, the following assertions hold:
the nodes in τ with labels bi ,ai+1,bi+1, . . . ,ak ,bk are descendants

of the son of the node with label ai , and the nodes with labels

ai+1,bi+1, . . . ,ak ,bk are descendants of the daughter of the node

with label bi .

Claim 1. For every pair ai ,bj with 1 ⩽ i ⩽ j ⩽ k , there is a vertex
zi j < A which is a common neighbor of ai and bj , and is not a

neighbor of any bs with s , j.

Proof. Note that since i ⩽ j, the node with label bj is a descendant
of the son of the node with label ai , hence we have distG (ai ,bj ) ⩽ 2

by the construction of τ . However, we also have distG (ai ,bj ) > 1

since A is 1-independent. Therefore distG (ai ,bj ) = 2, so there is

a vertex zi j which is a common neighbor of ai and bj . Suppose
that zi j was a neighbor of bs , for some s , j. This would imply

that distG (bj ,bs ) ⩽ 2, which is impossible, because the nodes with

labelsbs andbj in τ are such that one is a descendant of the daughter
of the other, implying that distG (bs ,bj ) > 2. ⌟

Note that whenever i ⩽ j and i ′ ⩽ j ′ are such that j , j ′,
the vertices zi j and zi′j′ are different, because zi j is adjacent to bj
but not to bj′ , and the converse holds for zi′j′ . However, it may

happen that zi j = zi′j even if i , i ′. This will not affect our further
reasoning.

For each j ∈ {1, . . . ,k}, let Bj be the subgraph of G induced by

the set {aj ,bj } ∪ {zi j : 1 ⩽ i ⩽ j}. Observe that Bj is connected and
has radius at most 2, with bj being the central vertex. By Claim 1

and the discussion from the previous paragraph, the graphs Bj for
j ∈ {1, . . . ,k} are pairwise disjoint. Moreover, for all 1 ⩽ i ⩽ j ⩽ k ,
there is an edge between Bi and Bj , namely, the edge between

zi j ∈ Bj and ai ∈ Bi . Hence, the graphs Bj , for j ∈ {1, . . . ,k},
define a depth-2 minor model of Kk in G. Since Kt ̸≼2 G, this
implies that k < t , proving Lemma 2.7. □

We continue with the proof of Lemma 2.1. Fix integers ℓ ⩾ t8

and m, and define h = m + ℓ. Let A be a 1-independent set in G
of size at least h2t

. Suppose that the first case of Lemma 2.1 does

not hold. In particular Kt ̸≼2 G , so by Lemma 2.7, τ has alternation

rank at most 2t − 1. From Lemma 2.6 we conclude that τ has depth

at least h. As h =m + ℓ, it follows that either τ has a nodew which

contains at leastm letters D, or τ has a nodew which contains at

least ℓ letters S.

Consider the first case, i.e., there is a nodew of τ which contains

at leastm letters D, and letX be the set of all vertices τ (u) such that

uD is a prefix ofw . Then, by construction, X is a 2-independent set

in G of size at leastm, so the second case of the lemma holds.

Finally, consider the second case, i.e., there is a nodew in τ which
contains at least ℓ letters S. Let Y be the set of all vertices τ (u) such
that uS is a prefix of w . Then, by construction, Y ⊆ A is a set of

at least ℓ vertices which are mutually at distance exactly 2 in G.
Since Kt ̸≼4 G and ℓ ⩾ t8

, by Lemma 2.5 we infer that there is a

vertex v ∈ G with at least ℓ1/4
neighbors in Y . This finishes the

proof of the existential part of Lemma 2.1. We defer the proof of

the algorithmic statement of the lemma to the full version.

2.1 Uniform quasi-widness for tuples
We now formulate and prove an extension of Theorem 1.5 which

applies to sets of tuples of vertices, rather than sets of vertices.

This more general result will be used later on in the paper. The

result and its proof are essentially adaptations to the finite of their

infinite analogues introduced by Podewski and Ziegler (cf. [33],

Corollary 3), modulo the numerical bounds.

Fix a graph G and a number r ∈ N, and let S ⊆ V (G) be a subset
of vertices of G. We say that vertices u and v are r -separated by S
inG if every path of length at most r connectingu andv inG passes

through a vertex of S . We extend this notion to tuples: two tuples

ū, v̄ of vertices of G are r -separated by S every vertex appearing

in ū is r -separated by S from every vertex appearing in v̄ . Finally,

if A ⊆ V (G)d is a set of d-tuples of vertices, for some d ∈ N, then
we say that A is mutually r -separated by S in G if any two distinct

ū, v̄ ∈ A are r -separated by S in G.
With these definitions set, we may introduce the notion of uni-

form quasi-wideness for tuples.
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Definition 2.8. Fix a class C and numbers r ,d ∈ N. For a function
N : N → N and number s ∈ N, we say that C satisfies property

UQW
d
r (N , s) if the following condition holds:

for every m ∈ N and every subset A ⊆ V (G)d with
|A| ⩾ N (m), there is a set S ⊆ V (G) with |S | ⩽ s
and a subset B ⊆ A with |B | ⩾ m which is mutually
r -separated by S in G.

We say that C satisfies property UQW
d
r if C satisfies property

UQW
d
r (N , s) for some N : N→ N and s ∈ N. If moreover one can

take N to be a polynomial, then we say that C satisfies property

PUQW
d
r .

The following result provides a generalization of Theorem 1.5

to higher dimensions.

Theorem 2.9. If C is a nowhere dense class of graphs, then for all
r ,d ∈ N, the class C satisfies PUQW

d
r . More precisely, for any class

of graphs C and numbers r , t ∈ N, if Kt ̸≼18r G for all G ∈ C, then
for all d ∈ N the class C satisfies UQW

d
r (N

d
r , s

d
r , ) for some number

sdr ∈ N and polynomial Nd
r : N→ N that can be computed given r , t ,

and d .

Theorem 2.9 is an immediate consequence of Theorem 1.5 and

of the following result.

Lemma 2.10. For all r ,d ∈ N, if C satisfies UQW
2r (N2r , s2r ) for

some s2r ∈ N and N2r : N→ N, then C satisfies UQW
d
r (N

d
r , s

d
r )

for sdr = d · s2r and function Nd
r : N → N defined as Nd

r (m) =

f d ((d2 + 1) ·m), where f (m′) = m′ · N2r (m
′) and f d is the d-fold

composition of f with itself.

The rest of Section 2.1 is devoted to the proof of Lemma 2.10.

Fix a class C such that UQW
2r (N2r , s2r ) holds for some number

s2r ∈ N and function N2r : N → N. We also fix the function f
defined in the statement of Lemma 2.10.

Let us fix dimension d ∈ N, radius r ∈ N, and graph G ∈ C. For

a coordinate i ∈ {1, . . . ,d}, by πi : V (G)d → V (G) we denote the

projection onto the ith coordinate; that is, for x̄ ∈ V (G)d by πi (x̄)
we denote the ith coordinate of x̄ .

Our first goal is to find a large subset of tuples that are mutually

2r -separated by some small S on each coordinate separately. Note

that in the following statement we ask for 2r -separation, instead of

r -separation.

Lemma 2.11. For all r ,m ∈ N and A ⊆ V (G)d with |A| ⩾ f d (m),
there is a set B ⊆ Awith |B | ⩾ m and a set S ⊆ V (G)with |S | ⩽ d ·s2r
such that for each coordinate i ∈ {1, . . . ,d} and all distinct x̄ , ȳ ∈ B,
the vertices πi (x̄) and πi (ȳ) are 2r -separated by S .

Proof. We will iteratively apply the following claim.

Claim 2. Fix a coordinate i ∈ {1, . . . ,d}, an integerm′ ∈ N, and

a set A′ ⊆ V (G)d with |A′ | ⩾ f (m′). Then there is a set B′ ⊆ A′

with |B′ | ⩾ m′
and a set S ′ ⊆ V (G) with |S ′ | ⩽ s2r , such that for all

distinct x̄ , ȳ ∈ B, the vertices πi (x̄) and πi (ȳ) are 2r -separated by S .

Proof. We consider two cases, depending on whether |πi (A
′)| ⩾

N2r (m
′). Suppose first that πi (A

′) contains at least N2r (m
′) distinct

vertices. Then we may apply the property UQW
2r to πi (A

′), yield-

ing sets S ′ ⊆ V (G) and X ⊆ πi (A
′) such that |X | ⩾ m′

, |S ′ | ⩽ s2r ,

and X is mutually 2r -separated by S ′ in G. Let B′ ⊆ A′
be a subset

of tuples constructed as follows: for each u ∈ X , include in B′
one

arbitrarily chosen tuple x̄ ∈ A′
such that the ith coordinate of x̄

is u. Clearly |B′ | = |X | ⩾ m′
and for all distinct x̄ , ȳ ∈ B′

, we have

that πi (x̄) and πi (ȳ) are different and 2r -separated by S ′ in G; this
is because X is mutually 2r -separated by S ′ in G. Hence B′

and S ′

satisfy all the required properties.

Suppose now that |πi (A
′)| < N2r (m

′). Then choose a vertex a ∈

πi (A
′) for which the pre-image π−1

i (a) has the largest cardinality.
Since |A′ | ⩾ f (m′) =m′ · N2r (m

′), we have that

|π−1

i (a)| ⩾
|A′ |

|πi (A′)|
⩾

m′ · N2r (m
′)

N2r (m′)
=m′.

Hence, provided we set S ′ = {a} and B′ = π−1

i (a), we have that B′

is mutually 2r -separated by S ′, |B′ | ⩾ m, and |S ′ | = 1.

We proceed with the proof of Theorem 2.11. Let A ⊆ V (G)d be

such that |A| ⩾ f d (m). We inductively define subsets B0 ⊇ B1 ⊇

. . . ⊇ Bd of A and sets S1, . . . , Sd ⊆ V (G) as follows. First put
B0 = A. Then, for each i = 1, . . . ,d , let Bi and Si be the B

′
and S ′

obtained fromClaim 2 applied to the set of tuples Bi−1 ⊆ V (G)d , the

coordinate i , andm′ = f d−i (m). It is straightforward to see that the

following invariant holds for each i ∈ {1, . . . ,d}: |Bi | ⩾ f d−i (m)

and for all j ⩽ i and distinct x̄ , ȳ ∈ Bi , the vertices πj (x̄) and πj (ȳ)
are 2r -separated by S1∪ . . .∪Si inG . In particular, by taking B = Bd
and S = S1 ∪ . . . ∪ Sd , we obtain that |B | ⩾ m, |S | ⩽ d · s2r , and B
and S satisfy the condition requested in the lemma statement. □

The next lemma will be used to turn mutual 2r -separation on

each coordinate to mutual r -separation of the whole tuple set.

Lemma 2.12. Let B ⊆ V (G)d and S ⊆ V (G) be such that for each
i ∈ {1, . . . ,d} and all distinct x̄ , ȳ ∈ B, the vertices πi (x̄) and πi (ȳ)
are 2r -separated by S in G. Then there is a set C with C ⊆ B and
|C | ⩾ |B |

d2+1
such that C is mutually r -separated by S in G.

Proof. Let C be a maximal subset of B that is mutually r -separated
by S in G. By the maximality of C , with each tuple ā ∈ B −C we

may associate a tuple
¯b ∈ C and a pair of indices (i, j) ∈ {1, . . . ,d}2

that witness that a cannot be added to C , namely πi (ā) and πj (¯b)
are not r -separated by S in G. Observe that two different tuples

ā, ā′ ∈ B − C cannot be associated with exactly the same
¯b ∈ C

and same pair of indices (i, j). Indeed, then both πi (ā) and πi (ā
′)

would not be r -separated from πj (¯b) by S in G , which would imply

that πi (ā) and πi (ā
′) would not be 2r -separated from each other

by S , a contradiction with the assumption on B. Hence, |B − C |
is upper bounded by the number of tuples of the form (¯b, i, j) ∈

C × {1, . . . ,d}2
, which is d2 |C |. We conclude that |B −C | ⩽ d2 |C |,

which implies |C | ⩾ |B |

d2+1
. □

To finish the proof of Lemma 2.10, given a set A ⊆ V (G)d and

integer m ∈ N, first apply Theorem 2.11 with m′ = m · (d2 + 1).

Assuming that |A| ⩾ f d (m′), we obtain a set B ⊆ A with |B | ⩾
m · (d2 + 1) and a set S ⊆ V (G) with |S | ⩽ d · s2r , such that for each

i ∈ {1, . . . ,d} and all distinct x̄ , ȳ ∈ B, the vertices πi (x̄) and πi (ȳ)
are 2r -separated by S in G. Then, apply Theorem 2.12 to B and S ,
yielding a set C ⊆ B which is mutually r -separated by S and has

size at leastm. This concludes the proof of Lemma 2.10.

3 Bounds on the number of types
In this section we prove Theorem 1.3. We start with formulating a

standard Gaifman-type result.

7
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3.1 Locality
We will use the following intuitive notion of functional determina-

tion. SupposeX ,A,B are sets and we have two functions: f : X → A
and д : X → B. We say that f (x) determines д(x) for x ∈ X if for

every pair of elements x ,x ′ ∈ X the following implication holds:

f (x) = f (x ′) implies д(x) = д(x ′). Equivalently, there is a function
h : A → B such that д = h ◦ f .

Recall that if A,B, S are subsets of vertices of a graph G and

r ∈ N, then A and B are r -separated by S in G if every path from A
to B of length at most r contains a vertex from S .

The following lemma is a consequence of Gaifman locality and

a Feferman-Vaught lemma. If q ∈ N is a number and ū ∈ V d
is a

tuple of some length d , then by tp
q
G (ū/A) we denote the set of all

formulas φ(x̄ , v̄) of quantifier rank at most q, with parameters v̄
from A, and with |x̄ | = d , such that G, ū |= φ(ȳ, v̄).

Lemma 3.1 (⋆). For any given numbers q and d one can compute
numbers p and r with the following properties. Let G = (V ,E) be a
fixed graph and let A,B, S ⊆ V be fixed subsets of its vertices such
that A and B are r -separated by S in G. Then, for tuples ū ∈ Ad , the
type tp

q (ū/B) is determined by the type tp
p (ū/S).

We will use the following consequence of the above lemma.

Corollary 3.2 (⋆). For every formula φ(x̄ , ȳ) and number s ∈ N
there exist numbers T , r ∈ N, where r is computable from φ and T
is computable from φ and s , such that the following holds. For every
graph G and vertex subsets A,B, S ⊆ V (G) where S has at most s
vertices and r -separates A from B, we have |Sφ (A/B)| ⩽ T .

3.2 Bounds on the number of types
We now come to the proof of Theorem 1.3. In the proof, we will will

first enlarge the set A to a set B, called an r -closure of A (where r
is chosen depending on φ), such that the connections of elements

from V (G) − B toward B are well controlled. This approach was

first used in Drange et al. [11] in the context of classes of bounded

expansion, and then for nowhere dense classes in Eickmeyer et

al. [13]. We start by recalling these notions.

Let G be a graph and let B ⊆ V (G) be a subset of vertices. For
vertices v ∈ B and u ∈ V (G), a path P leading from u to v is called

B-avoiding if all its vertices apart from v do not belong to B. Note
that if u ∈ B, then there is only one B-avoiding path leading from u,
namely the one-vertex path where u = v . For a positive integer r
and u ∈ V (G), the r -projection of u on B, denotedMG

r (u,B), is the
set of all vertices v ∈ B such that there is a B-avoiding path of

length at most r leading from u to v . Note that for u ∈ B, we have
MG
r (u,B) = {b}. Equivalently, MG

r (u,B) is the unique inclusion-

minimal subset of B which r -separates u from B. We will use the

following result from [13].

Lemma 3.3 ([13]). Let C be a nowhere dense class. Then for every
r ∈ N and δ > 0 there is a constant c ∈ N such that for every G ∈ C
and A ⊆ V (G) there exists a set B, called an r -closure of A, with the
following properties:

1. A ⊆ B ⊆ V (G);
2. |B | ⩽ c · |A|1+δ ; and
3. |MG

r (u,B)| ⩽ c · |A|δ for each u ∈ V (G).
Moreover, for every set X ⊆ V (G), it holds that

4. |
{
MG
r (u,X ) : u ∈ V (G)

}
| ⩽ c · |X |1+δ .

We note that in [11, 13] projections on B are defined only for

vertices outside of B. However, adding singleton projections for

vertices of B to the definition only adds |B | possible projections
of size 1 each, so this does not influence the validity of the above

results.

We proceed with the proof of Theorem 1.3. Let us fix: a nowhere

dense class of graphs C , a graph G ∈ C , a vertex set A ⊆ V (G),
a real ε > 0, and a first order formula φ(x̄ , ȳ), where x̄ is the dis-

tinguished ℓ-tuple of object variables. Our goal is to show that

|Sφ (G/A)| = O(|A|ℓ+ε ).
In the sequel, d denotes a positive integer depending on C, ℓ,φ

only (and not on G,A and ε), and will be specified later. We may

choose positive reals δ , ε1 such that (ℓ + ε1)(1+ δ ) ⩽ ℓ + ε and ε1 >

δ (d + ℓ) > δℓ, for instance as follows: ε1 = ε/2 and δ = ε
4d+4ℓ

. The

constants hidden in the O(·) notation below depend on ε,δ , ε1,C, ℓ

and φ, but not onG and A. By tuples below mean tuples of length ℓ.

Let q be the quantifier rank of φ and let p, r be the numbers

obtained by applying Lemma 3.1 to q and ℓ. Let B be an r -closure
of A, given by Lemma 3.3. By Lemma 3.3, the total number of

distinct r -projections onto B is at most O(|B |1+δ ), and each of these

projections has size O(|B |δ ). Figure 1 serves as an illustration to

the steps of the proof in the case ℓ = 1.

The first step is to reduce the statement to the following claim.

Claim 1. If X is a set of tuples with pairwise different φ-types

over B, then |X | = O(|B |ℓ+ε1 ).

Claim 1 implies that |Sφ (G/B)| = O(|B |ℓ+ε1 ), which is bounded

by O(|A|(ℓ+ε1)(1+δ )) since |B | = O(|A|1+δ ).

As (ℓ+ε1)(1+δ ) ⩽ ℓ+ε , this shows that |S
φ (G/B)| = O(|A|ℓ+ε ).

Since A ⊆ B, we have |Sφ (G/A)| ⩽ |Sφ (G/B)| so |Sφ (G/A)| =
O(|A|ℓ+ε ), and we are done. Therefore, it remains to prove Claim 1.

For a tuple w̄ = w1 . . .wℓ ∈ V (G)ℓ , define its projection to be

the set C1 ∪ . . . ∪Cℓ ⊆ B where Ci = MG
r (wi ,B). Note that there

are at most O(|B |ℓ(1+δ )) different projections of tuples in total, and

each projection has size O(|B |δ ). To prove Claim 1, we consider

the special case when all the tuples have the same projection, say

C ⊆ B, and obtain a stronger conclusion, for ε2 B ε1 − δℓ > 0.

Claim 2. IfY is a set of tuples with pairwise differentφ-types over B,
and each u ∈ Y has the same projectionC ⊆ B, then |Y | = O(|B |ε2 ).

Since there are at most O(|B |ℓ(1+δ )) different projections in total

and ℓ(1 + δ ) + ε2 = ℓ + ε1, Claim 1 can be proved by summing

the bound given by Claim 2 through all different projections C . It
therefore remains to prove Claim 2.

We apply Theorem 2.9 to the set of ℓ-tuples Y , form being the

largest integer such that |Y | ⩾ N ℓ
2r (m). As a conclusion, we obtain

a set Z ⊆ Y ofm tuples that is mutually 2r -separated by S inG , for

some set of vertices S ⊆ V (G) of size s B sℓ
2r . Let d be the degree

of the polynomial N ℓ
2r (·) obtained from Theorem 2.9. Note that

s = O(1) and |Y | = O(md ).

Claim 3. It holds that |Z | = O(|C |).

We first show how Claim 3 implies Claim 2. Sincem = |Z | =

O(|C |), and |C | = O(|B |δ ), it follows that |Y | = O(md ) = O(|B |dδ ).
As δ (d + ℓ) > ε1, this implies that dδ < ε2, yielding Claim 2. We

now prove Claim 3.
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zoom in
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Figure 1. The proof of Theorem 1.3 in case ℓ = 1. The logical implications flow from right to left, but our description below proceeds in the

other direction.

Let Z0 ⊆ Z be the set of those tuples in Z which are r -separated
by S from B in G, and let Z1 = Z − Z0 be the remaining tuples.

Since tuples from Z0 have pairwise different φ-types over B, and
each of them is r -separated by S from B in G, by Corollary 3.2 we

infer that |Z0 | = O(1). On the other hand, by the definition of Z1,

with each tuple ū ∈ Z1 we may associate a vertex b(ū) ∈ C which

is not r -separated from ū by S in G. Since the set Z is mutually

2r -separated by S in G, it follows that for any two different tuples

ū, v̄ ∈ Z1 we have b(ū) , b(v̄). Hence b(·) is an injection from Z1

to C , which proves that |Z1 | ⩽ |C |. To conclude, we have |Z | =
|Z0 | + |Z1 | = O(1) + O(|C |) = O(|C |). This finishes the proof of
Claim 3 and ends the proof of Theorem 1.3.

4 Packing and traversal numbers for nowhere
dense graphs

In this section, we give an application ofTheorem 1.3, Theorem 1.6,

for nowhere dense graph classes.

A set system is a family F of subsets of a set X . Its packing is

a subfamily of F of pairwise disjoint subsets, and its traversal (or
hitting set) is a subset of X which intersects every member of F .

The packing number of F , denoted ν (F ), is the largest cardinality

of a packing in F , and the transversality of F , denoted τ (F ), is the

smallest cardinality of a traversal of F . Note that if G is a finite

set system, then ν (G) ⩽ τ (G). The set system F has the Erdős-Pósa
property if there is a function f : N → N such that every finite

subfamily G of F satisfies τ (G) ⩽ f (ν (G)).

We will apply the following result of Matoušek [26], which relies

on the proof of Alon and Kleitman [2] of the conjecture of Hard-

wiger and Debrunner. In the result of Matoušek, the set system F

is infinite. Form ∈ N, by π∗
F
(m) we denote the dual shatter function

of F , which is defined as the maximal number of occupied cells in

the Venn diagram ofm sets in F .

Theorem 4.1 (Matoušek, [26]). Let F be a set system with π∗
F
(m) =

o(mk ), for some integer k , and let p ⩾ k . Then there is a constant T
such that the following holds for every finite family G ⊆ F : if G has
the (p,k)-property, meaning that among every p sets in G some k
have a non-empty intersection, then τ (G) ⩽ T .

Proof of Theorem 1.6. For a graph G, define the set system FG on

the ground set V (G) as

FG = {{v ∈ V (G) : φ(u,v)} : u ∈ V (G)} .

Let then F be the disjoint union of set systems FG forG ∈ C . That

is, the ground set of F is the disjoint union of the vertex sets V (G)
for G ∈ C , and for each G ∈ C we add to F a copy of FG over the

copy of relevant V (G). Then the following claim follows directly

from Theorem 1.3.

Claim 4. The dual shatter function of F satisfies π∗
F
(m) = O(m1+ε ),

for every fixed ε > 0. In particular, π∗
F
(m) = o(m2).

Consider the function f : N → N defined so that f (ν ) is the
valueT obtained fromTheorem 4.1 applied to F ,k = 2, andp = ν+1.

Suppose now that G ∈ C is a graph and G ⊆ FG is a family of

subsets of V (G) consisting of sets of the form {v ∈ V (G) : φ(u,v)},
where u is some vertex of G. We identify G with a subfamily of F

in the natural way, following the embedding of FG into F used in

the construction of the latter. Let ν be the packing number of G. In

particular, for every ν + 1 subsets of G there is a vertex v ∈ V (G)

9
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which is contained in two elements of G. Hence, G is a (p, 2)-family

for p = ν + 1. By Theorem 4.1, τ (G) ⩽ T = f (ν ) = f (ν (G)), as
required. □

5 Bounds for stability
Adler and Adler [1], proved that every nowhere dense class of

graphs is stable. We now prove its effective variant, Theorem 1.7.

Proof of Theorem 1.7. Fix a formula φ(x̄ , ȳ) of quantifier rank q and

a partitioning of its free variables into x̄ and ȳ. Let d = |x̄ | + |ȳ | be
the total number of free variables of φ. Let r ∈ N be the number

given by Corollary 3.2, which depends on φ only. Let C be the class

of all graphs such thatKt ̸≼18r G . Then, by Theorem 2.9, C satisfies

UQW
d
r (N

d
r , s

d
r ), for some polynomial Nd

r : N → N and number

s = sdr ∈ N computable from d, t , r . Let T be the number given by

Corollary 3.2 for φ and s . Finally, let ℓ = Nd
r (2T + 1). We show that

every φ-ladder in a graph G ∈ C has length smaller than ℓ.

For the sake of contradiction, assume that there is a graphG ∈ C

and tuples ū1, . . . , ūℓ ∈ V (G) |x̄ | and v̄1, . . . , v̄ℓ ∈ V (G) |ȳ | which
form a φ-ladder in G, i.e., φ(ūi , v̄j ) holds in G if and only if i ⩽ j.

Let A = {ūiv̄i : i = 1, . . . , ℓ} ⊆ V (G)d . Note that |A| = ℓ ⩾
Nd
r (2T + 1), since tuples ūi have to be pairwise different.

Applying property UQW
d
r (N

d
r , s

d
r ) to the set A, radius r , and

target sizem = 2T + 1 yields a set S ⊆ V (G) with |S | ⩽ s and a set

B ⊆ A with |B | ⩾ 2T + 1 of tuples which are mutually r -separated
by S in G. Let J ⊆ {1, . . . , ℓ} be the set of indices corresponding

to B, i.e., J = {j : ūjv̄j ∈ B}.
Since |J | = 2T + 1, we may partition J into J1 ⊎ J2 with |J1 | =

T + 1 so that the following condition holds: for each i,k ∈ J1
satisfying i < k , there exists j ∈ J2 with i < j < k . Indeed, it
suffices to order the indices of J and put every second index to J1,
and every other to J2. Let X be the set of vertices appearing in the

tuples ūi with i ∈ J1, and let Y be the set of vertices appearing

in the tuples v̄j with j ∈ J2. Since the tuples of B are mutually

r -separated by S in G, it follows that X and Y are r -separated by S .
As |J1 | = T + 1, by Corollary 3.2 we infer that there are distinct

indices i,k ∈ J1, say i < k , such that tp
φ (ūi/Y ) = tp

φ (ūk/Y ). This
implies that for each j ∈ J2, we have G, ūi , v̄j |= φ(x̄ , ȳ) if and only

if G, ūk , v̄j |= φ(x̄ , ȳ). However, there is an index j ∈ J2 such that

i < j < k , and for this index we should haveG, ūi , v̄j |= φ(x̄ , ȳ) and
G, ūk , v̄j ̸ |= φ(x̄ , ȳ) by the definition of a ladder. This contradiction

concludes the proof. □
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