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In 1991 Lovász et al. [8] defined a search problem Searchφ associated with
an unsatisfiable CNF φ: given a substitution to all the variables of φ, find a
falsified clause of φ. In the paper, they also mentioned an unpublished result of
Chvátal and Szemerédi that says that the minimal size of a read-once branching
program for Searchφ is equal to the minimal size of a regular resolution proof
of φ. It is easy to see that the same equivalence holds for decision trees and
tree-like resolution proofs and for ordered binary decision diagrams and ordered
resolution proofs. The proof of this statement is made of two parts: “diagram to
proof transformation” and “proof to diagram transformation”.
The diagram to proof transformation: Chvátal and Szemerédi showed that
it is possible to transform any read-once branching program for Searchφ (φ is
an unsatisfiable CNF) into a regular resolution proof of φ. Moreover, if the di-
agram is a decision tree, then the resulting proof is a tree-like proof and if the
diagram is ordered, then the resulting proof is also ordered. It is possible to note
that any resolution proof of φ can be transformed into a branching program of
the same size for Searchφ. Kraj́ıček [7] generalized this approach and showed
that a big class of proof systems (this class includes CP∗) allows transformation
to PLS games and, using the lower bound proven by Razborov [9], he proved
lower bounds for these proof systems. Finally, recently Hrubesh, Pudlak, and
Sokolov [5, 10] noticed that the same transformation can be done for CP and
real communication games (generalization of PLS games to real communication).
The proof to diagram transformation: They also proved that any regular
resolution proof can be transformed into a read-once branching program. Fur-
thermore, if the proof is tree-like, the diagram is a decision tree and if the proof
is ordered, then the diagram is also ordered. To construct this transformation
Chvátal and Szemerédi showed that it is possible to annotate every node of a
read-once branching program D for Searchφ with a clause, so that
– the source of the diagram is annotated by a constant false clause,
– every sink of the diagram is annotated by a clause of φ, and
– if some node u has children v and w, then clauses annotating u and w

semantically imply the clause annotating v.
Note that these annotations form a semantic resolution proof. However, this
construction does not work if the diagram is not read-once. Indeed, it is easy to
see that for every unsatisfiable formula φ in CNF there is a branching program
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of polynomial size for Searchφ. In 1997 Kraj́ıček [7] noticed that if instead of
annotating the diagram we consider an already annotated diagram it is possible
to drop the “read-once” constraint and prove lower bounds on size of such dia-
grams (using so-called “interpolation technique”), even if instead of clauses we
consider functions of small communication complexity and instead of splitting
by variables we allow to split by values of functions of small communication
complexity.

However, the study of a relationship between the proof complexity of formulas
and the complexity of not annotated and not read-once branching programs for
corresponding search problems was stuck. Nothing was known for bigger classes
of diagrams. I this research we revitalize the study of this problem in the light of
IPS-like proof systems [2,4]. A C-PSa (C is a class of branching programs) proof

of an unsatisfiable formula φ(x1, . . . , xn) =
m∧
i=1

Ci(x̄) is a C branching program

D on the variables x1, . . . , xn, y1, . . . , ym, such that
– D(x1, . . . , xn, 1, . . . , 1) = 1,
– D(x1, . . . , xn, C1(x1, . . . , xn), . . . , Cm(x1, . . . , xn)) = 0, and
– on any path in D, there are at most a nodes which query a variable from
y1, . . . , ym.

In the following we consider four types of branching programs: ⊕-OBDDs
(branching programs with parity gates that read all the variables in some or-
der), (1,+b)-BPs (in these branching programs there is no path which queries
more than b variables more than once), ⊕-(1,+b)-BPs (the same as the previous
one but with parity gates), and b-OBDDs (branching programs that read all the
variables in some order b times).

In this work we show that for the proof systems based on (1,+b)-BPs and
b-OBDDs the size of the smallest proof of a formula φ is equal to the smallest size
of a (1,+b)-BP diagrma and a b-OBDD diagram for Searchφ, respectively. As a
corollary, using the result of Chvátal and Szemerédi [8] it is possible to show that
OBDD-PS1 and 1-BP-PS1 are equivalent to ordered resolution and regular res-
olution, respectively. Additionally, in this project we prove that ⊕-OBDD-PS1

p-simulates b-OBDD-PS1 for any constant b > 0. We show that every b-round
protocol for the search problem corresponding to some Tseitin formula has cost
at least n1/2b. Since lower bounds on b-round communication complexity imply

lower bounds on OBDD complexity, we prove a 2Ω(n1/2b) lower bound for size of
b-OBDD-PS1 proofs of Tseitin formulas. We also show that this lower bound for
OBDD complexity is almost tight and as a result, we show that resolution (Res)
does not p-simulate b-OBDD-PS1 for b ≥ 2. Additionally, we prove a polynomial
upper bound for the size of ⊕-OBDD-PS1 proofs of Tseitin formulas and prove
that b-OBDD-PS1 does not p-simulate ⊕-OBDD-PS1. Besides, we notice that
for b-OBDD-PS1 and (1,+b)-BP-PS1 proof systems, composition of a simple
formula with a small gadget is also simple. As a result, we show that CP does
not p-simulate 2-OBDD-PS1 and that Res does not p-simulate (1,+6)-BP-PS1.
The lower bounds for CP and Res follow from a result of Garg et al. [3] and
an unpublished result of Alekhnovich and Razborov [1], respectively. Finally, in
this project we prove that extended Frege p-simulates b-OBDD-PS1.
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