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Abstract
We prove that for every class C of graphs with effectively bounded

expansion, given a first-order sentence φ and an n-element struc-

ture A whose Gaifman graph belongs to C , the question whether φ
holds inA can be decided by a family of AC-circuits of size f (φ) ·nc

and depth f (φ) + c logn, where f is a computable function and c
is a universal constant. This places the model-checking problem

for classes of bounded expansion in the parameterized circuit com-

plexity class para-AC1
. On the route to our result we prove that

the basic decomposition toolbox for classes of bounded expansion,

including orderings with bounded weak coloring numbers and low

treedepth decompositions, can be computed in para-AC1
.

1 Introduction
Model-checking on sparse structures. We study themodel-checking

problem for first-order logic (FO): given a relational structureA and

a first-order sentence φ over the vocabulary of A, decide whether φ
holds in A. A naive algorithm for this problem recursively browses

through all evaluations of each quantified variable and runs in time

nO ( |φ |)
, where n is the size of the universe of A. Thus, the running

time is polynomial for every fixed φ, but the degree of the polyno-
mial depends on φ. In the language of parameterized complexity,

this means that the model-checking problem for first-order logic

on arbitrary structures is in the complexity class XP when parame-

terized by the input formula φ. This is traditionally put in contrast

to the class FPT (for fixed-parameter tractable) where we require
the existence of an algorithm with running time f (φ) · nc for a

computable function f and universal constant c; thus, the degree
of the polynomial factor has to be independent of the parameter.

See [9, 11, 16] for an introduction to parameterized complexity.

In general structures we do not hope for an FPT algorithm for

model-checking FO, because the problem is complete for the class

AW[⋆] (cf. [16]). Already the problem of deciding the existence of a

clique of size k in a given graph of size n, which is easily expressible
by a first-order formula with k existential quantifiers, is W[1] hard
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in general, so believed not to be FPT when parametrized by k , i.e.,
solvable by an algorithm with running time f (k ) · nc for some

computable f and fixed c . However, it was realized that on sparse
structures, i.e. those whose Gaifman graph is sparse, efficient pa-

rameterized algorithms for model-checking FO exist. Starting with

the result of Seese [30], who gave an FPT algorithm on structures

with universally bounded degree, a long line of research focused on

showing fixed-parameterized tractability of the problem for more

and more general classes of sparse structures: of bounded local

treewidth [17] (this includes planar and bounded-genus structures),

excluding a fixed minor [15], and locally excluding a minor [10].

This line of research naturally converged to studying abstract

notions of sparsity: classes of bounded expansion and nowhere dense
classes. These two concepts form foundations of a deep and rapidly

developing theory of sparse graph classes, first introduced and

pursued by Nešetřil and Ossona de Mendez [23–26], which by now

has found multiple applications in combinatorics, algorithm design,

and logic. We refer the reader to the book of Nešetřil and Ossona de

Mendez [27] for a comprehensive overview of the field as of 2012,

and to the lecture notes of the first two authors for a compact and

updated exposition of the basic toolbox [29].

Formally, a graph H is a depth-r minor of a graph G if H can be

obtained from a subgraph of G by contracting mutually disjoint

connected subgraphs of radius at most r . A class of graphs C has

bounded expansion if there is a function f : N → N such that for

every r ∈ N, in every depth-r minor of a graph from C the ratio be-

tween the number of edges and the number of vertices is bounded

by f (r ). More generally, C is nowhere dense if there is a function
t : N→ N such that no graph from C admits the clique Kt (r ) as a
depth-r minor. Class C has effectively bounded expansion, respec-
tively is effectively nowhere dense, if the respective function f or t
as above is computable. These definitions are naturally generalized

to classes of relational structures by considering the Gaifman graph

of a structure.

Many classes of sparse graphs studied in the literature have (ef-

fectively) bounded expansion. These include: planar graphs, graphs

of bounded maximum degree, graphs of bounded treewidth, and

more generally, graphs excluding a fixed (topological) minor. A

notable negative example is that classes with bounded degener-
acy, equivalently with bounded arboricity, do not necessarily have

bounded expansion, as there we have only a finite bound on the

edge density in subgraphs (aka depth-0 minors). Every class of

bounded expansion is nowhere dense, but the converse does not

necessarily hold [25].

By the result of Dvořák, Král’, and Thomas [13], the FO model-

checking problem on any class C of effectively bounded expansion

admits a linear FPT algorithm, i.e. with running time f (φ) · n for

computable f . Grohe, Kreutzer, and the second author [21] lifted

this result to any effectively nowhere dense class C ; here, the

dependence on the structure size n is almost linear, i.e. of the form
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n1+ε
for any ε > 0. As observed by Dvořák et al. [13], the result

of Grohe et al. [21] is the final answer as long as subgraph-closed

classes are concerned: on any subgraph-closed class C that is not

nowhere dense, the FO model-checking problem is already AW[⋆]-

complete. Conceptually, this means that the notion of nowhere

denseness exactly characterizes classes of inputs where sparsity-

based arguments can lead to efficient parameterized algorithms for

deciding first-order definable properties.

Parameterized circuit complexity. In this paper we take a differ-

ent angle on the parameterized complexity of model-checking FO,

namely that of circuit complexity. A fundamental fact from descrip-

tive complexity is that FO is essentially equivalent to AC0
(c.f. [22]

for a precise statement). In particular, every fixed first-order ex-

pressible property can be checked by a family of AC-circuits of
polynomial size and constant depth. More precisely, provided the

property is expressed by a first-order sentence φ, the circuit for n-

element inputs has size nO ( |φ |)
and depth O ( |φ |). Viewing this via

the standard interpretation of circuits as an abstraction for parallel

algorithms, this is a highly parallelizable algorithm performing total

(sequential) XP work. Obviously, in general we cannot expect the

problem to be solvable by circuits of FPT size (i.e. of size f (φ) · nc

for computable f and constant c), as evaluating such circuits would

yield a sequential FPT algorithm, implying FPT = AW[⋆]. However,

the question for known classes for which FO model-checking is FPT
persists: how, and in what sense, can we solve FO model-checking

on these classes using circuits of FPT size and low depth? Viewing

circuits again as a model for parallelization, this would correspond

to a well-parallelizable FPT algorithm.

Curiously, even though the complexity-theoretical foundations

of parameterized complexity are expressed using circuit complex-

ity, the question of what are the appropriate analogues of standard

circuit complexity classes in parameterized complexity was not sys-

tematically studied up to very recently, when Elberfeld et al. [14]

and Bannach et al. [3] introduced an appropriate definitional layer

and gave several foundational results. Slightly informally, a pa-

rameterized problem is in the class para-ACi (where i > 0) if it

can be solved by an (appropriately uniform) family of AC-circuits
(Cn,k )n,k ∈N, where the circuitCn,k solves the problem on inputs of

size n and parameter value k , such that eachCn,k has size f (k ) ·nc

and depth f (k ) + c · log
i n, for a computable function f and uni-

versal constant c . The classes para-NCi are defined similarly using

NC-circuits. The class para-AC0
is defined slightly differently: we

require the depth to be bounded by a universal constant, indepen-

dent of the parameter. By allowing the depth to be bounded by a

function of the parameter we obtain the larger class para-AC0↑
. We

give the formal definitions and fix the notation in Section 2.

In [3] Bannach et al. showed how the technique of color coding
can be implemented in para-AC0

, leading to a first batch of results

for several parameterized problems. Later, Bannach and Tantau [4]

showed that model-checking monadic second-order logic (MSO)

can be done in para-AC0↑
on structures of bounded treedepth and in

para-NC2+ε
for any ε > 0 on structures of bounded treewidth; here,

the parameter is both the formula and the treedepth, respectively

the treewidth of the input structure. This is a parameterized circuit

complexity analogue of the classic theorem of Courcelle stating

that model-checking MSO is fixed-parameter tractable when pa-

rameterized by the formula and the treewidth of the input structure.

Recent advances show descriptive relations between parameterized

circuit complexity and fragments of FO with a bounded number of

variables [8], and applications to kernelization [5].

In this light, it is natural to ask about the parameterized circuit

complexity of model checking FO on sparse structures. Investigat-

ing this question is precisely the goal of this work. Our main result

is encompassed by the following theorem.

Theorem 1.1. Suppose C is a graph class with effectively bounded
expansion and let Σ be a relational vocabulary of arity 2. Then the fol-
lowing problem parameterized by φ ∈ FO[Σ] is in para-AC1: given a
Σ-structureA whose Gaifman graph belongs to C , determine whether
A |= φ.

Unraveling the definitions, Theorem 1.1 states thatmodel-checking

FO on Σ-structures with Gaifman graphs belonging to C can be

done using a family of AC circuits (Cn,φ )n∈N,φ ∈FO[Σ]
, where Cn,φ

verifies the satisfaction of φ on structures with n elements, and

each Cn,φ has size f (φ) · nc and depth f (φ) + c logn, for a com-

putable function f and universal constant c . Viewing circuits as

an abstraction for parallel algorithms, this means that the problem

can be solved in parallel time f (φ) + c logn and performing total

work f (φ) ·nc . Hence Theorem 1.1 can be regarded as a parallelized

variant of the result of Dvořák et al. [13].

The assumption in Theorem 1.1 that Σ has arity 2 allows us to

abstract away the question of how the input is represented, as we

simply assume that each relation in A is encoded on input as a one-

or two-dimensional boolean table. In the presence of higher-arity

relations, the choice of an encoding could influence the statements

about bounds on circuit sizes in a technical way. We prefer to

avoid these issues and simply assume that there are no higher-arity

relations.

Our techniques. We prove Theorem 1.1 by analyzing the existing

approach to proving fixed-parameter tractability in the sequential

case. Essentially, the idea is to first compute a suitable decomposi-

tion of the input structure, and then leverage this decomposition

to give a quantifier elimination procedure for first-order logic. A

suitable decomposition has the form of a low treedepth coloring
that uses a bounded number of colors; it is known that such col-

orings exist for graphs from classes of bounded expansion [23].

Efficient algorithms for computing low treedepth colorings pro-

vided by Nešetřil and Ossona de Mendez [23] allowed Dvořák et

al. [13] to give an efficient quantifier elimination procedure that

reduces every first-order formula to a quantifier-free formula at

the cost of extending the structure by adding new unary relations

and unary functions, which however do not change the Gaifman

graph. From this, an algorithm for model-checking follows. Later,

Grohe and Kreutzer [19] gave a new presentation of the quantifier

elimination procedure, which is conceptually quite different from

the original argument of [13]. In particular it reduces every formula

to an existential formula instead of a quantifier-free one, but the

extension of the structure does not use function symbols.

Our work toward the proof of Theorem 1.1 is divided into two

parts. First, we prove that a low treedepth coloring of the graph

can be computed in para-AC1
. Second, using this result we revisit

the quantifier elimination procedure and show that it can be imple-

mented in para-AC1
.

For computing a low treedepth coloring, on high level we follow

the standard approach: first find a vertex ordering of the given graph

with bounded weak coloring number, and then apply a coloring
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procedure on this vertex ordering to get a low treedepth coloring.

Classic implementations of both these steps are sequential, however

we show that both of them can be performed in para-AC1
. For the

first step, the main idea is to construct the ordering by extracting

the vertices not one by one, as a sequential algorithm would do, but

in much larger chunks. Namely, we perform logn rounds where in

each round at least half of the remaining vertices are extracted and

ordered, which directly translates to a construction of a para-AC1

circuit family. This comes at a price in the quality of the obtained

ordering; in other words, we trade the approximation factor of the

algorithm for its parallelization. For the second step, we follow the

classic divide-and-conquer approach to parallel coloring graphs

of bounded maximum degree. Then we extend this to graphs of

bounded degeneracy by applying essentially the same technique

of dividing the graph into logn parts, each inducing a graph of

bounded maximum degree.

We remark that the approach explained above is heavily inspired

by the existing body of work on distributed algorithms for sparse
graphs. We relied on ideas from Barenboim and Elkin [7] who,

among other results, gave an O (logn)-time distributed algorithm

that, given a graph of degeneracy d , finds its proper coloring with

O (d2) colors1. In particular, Barenboim and Elkin showed how to

compute an approximate degeneracy ordering of such a graph in

O (logn) communication rounds by extracting half of the remaining

vertices in each round; our algorithm for this step is a circuit im-

plementation of this procedure, lifted to the weak coloring number

instead of degeneracy. Using the results of [7] and the approach

via fraternal augmentations, Nešetřil and Ossona de Mendez [28]

gave a logarithmic-time distributed algorithm that, given a graph

from a fixed class of bounded expansion, computes its treedepth-p
coloring using a constant number of colors, for any constant p.

For the quantifier elimination procedure, we essentially revisit

the existing approach and show that it can be implemented in

para-AC1
. This requires technical attention in several places, but

conceptually there is no new ingredient. Our argument is roughly

based on the exposition of Grohe and Kreutzer [19]. However, we

obtain a stronger final form, similar to that of Dvořák et al. [13],

replace the usage of FO types with an explicit combinatorial argu-

ment in the spirit of marking witnesses as in [13], and streamline

the presentation.

Due to space constraints some proofs (marked with ⋆) are not

presented in this extended abstract and can be found in the full

version of the paper.

2 Preliminaries
All graphs considered in this paper are simple, i.e. do not contain

self-loops or multiple edges connecting the same pair of vertices.

We use standard graph notation, see e.g. [9].

We explain the definitional layer of parameterized circuit com-

plexity basing our notation on Bannach et al. [3], though prior

foundational work on parameterized circuit complexity was done

by Elberfeld et al. [14]. An AC-circuit C is a directed acyclic graph

with node set consisting of input, conjunction (AND), disjunction

(OR), and negation (NOT) gates. There are no restrictions on the

fan-in or fan-out of the gates. One or more sources of C are desig-

nated as the output gates, and both input and output gates of C are

1
Barenboim and Elkin use the parameter arboricity which differs from degeneracy by

multiplicative factor at most 2.

ordered. If (u1, . . . ,un ) and (v1, . . . ,vm ) are the input and output

gates of C , respectively, then C evaluates a function from {0, 1}n

to {0, 1}m defined as follows: given input x = (x1, . . . ,xn ), set the
value of each input gate ui to xi , evaluate the gates of the circuit in
a bottom-up manner naturally, and define the output y to be the

sequence of values computed in gates (v1, . . . ,vm ). The depth of

a circuit is the length of a longest path from an input gate to an

output gate. The size of a circuit is the number of its gates.

A parameterized transformation is a function F : {0, 1}⋆ → {0, 1}⋆

together with a polynomial-time computable function κ : {0, 1}⋆ →

I, called parameterization. Here I is some indexing set for param-

eters and we assume that its elements can be encoded as binary

strings. A parameterized problem is just a parameterized transfor-

mation with the output always belonging to {0, 1}, for false and

true, respectively.

A parameterized transformation is in the class FPT if there is

an algorithm that computes it in time f (k ) · nc on inputs of size n
and parameter value k , where f is a computable function and c is a
universal constant. It is in the class linFPT if moreover c = 1 and

κ (·) is linear-time computable.

For an indexing set I, we may consider a family (Cn,k )n∈N,k ∈I
of AC-circuits, where each Cn,k has exactly n inputs. We say that

such a family is dlogtime-uniform if there exists an algorithm that

given n ∈ N, k ∈ I, and i ∈ N, all encoded in binary, computes the

i-th bit of the encoding of Cn,k in time f (k ) +O (log i + logn), for
some computable function f . All circuit families in this paper are

dlogtime-uniform; this will always follow from the construction in

a straightforward manner, so we refrain from providing technical

details in order not to obfuscate the main ideas.

For i > 0, we say that a parameterized transformation (F ,κ) is
in para-ACi if there exists a dlogtime-uniform family of circuits

(Cn,k )n∈N,k ∈I such that (a) Cn,k has size f (k ) · nO (1)
and depth

f (k ) +O (log
i n) for some computable function f : I → N; (b) for

each x ∈ {0, 1}⋆, the output of C |x |,κ (x ) applied to x is F (x ). Note
that the above definition implicitly assumes that for all x ,x ′ with
|x | = |x ′ | and κ (x ) = κ (x ′), the outputs F (x ) and F (x ′) have the
same length, as this length must be equal to the number of outputs

of C |x |,κ (x ) . Bannach et al. [3] also define a larger class para-ACi↑

by relaxing the restriction on the depth from f (k ) +O (log
i n) to

f (k ) · log
i n, for a computable function f . It is easy to see that

para-ACi ⊆ para-ACi↑ ⊆ para-ACi+ε for any ε > 0.

For i = 0, the classes para-AC0
and para-AC0↑

are defined

slightly differently: in para-AC0
we require that the depth of the

circuits is O (1), i.e. bounded by a universal constant independent

of the parameter, while in para-AC0↑
we allow the depth of Cn,k

to be bounded by f (k ), for a computable function f .
Let us briefly elaborate on the differences between the classes

para-ACi and para-ACi↑. Both definitions are natural candidates for
what a parameterized analogue of ACi should be, as in both cases

the class becomes ACi whenever k is fixed to be a constant. How-

ever, bounding the depth by f (k ) + c · logni instead of f (k ) · logni

gives better guarantees when transforming the circuit to a formula

(a circuit with maximum fan-out 1). For instance, every para-NC1

circuit (where we restrict fan-in to be at most 2) can be unrav-

elled to an equivalent para-NC1
formula, which is the analogue

of a well-known property of NC1
, but this is no longer the case

for para-NC1↑
, because the formula size would be nf (k ) instead of

f (k ) · nO (1)
. Similarly, every para-AC0

circuit can be unravelled to

3



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Michał Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk

an equivalent para-AC0
formula, but this property is not shared by

para-AC0↑
. Nevertheless, classes para-ACi↑ are still worth study-

ing due to encompassing many natural algorithms. This state re-

flects the situation in parameterized analogues of nondeterministic

logspace, where the difference between bounding the space by

f (k ) + c logn and by f (k ) · logn has dramatic implications for de-

terminization results. We refer to the work of Elberfeld et al. [14]

for a broader exposition of these connections.

Graph problems. Typically, throughout this paper the input to

a parameterized transformation will be a graph G on n vertices.

In this case we will always assume that the input is encoded as

the n × n binary adjacency matrix of the graph; thus the circuit

computing the transformation needs to have n2
inputs. Abusing

the above notation somewhat, for parameterized circuit classes, we

will interpret the |x | for an encoding x of G as the number n of

vertices ofG , instead of the actual length n2
of x . Thus, the domain

of a parameterized transformation defined on graphs consists of

all words of length n2
for some integer n, interpreted as adjacency

matrices, and each circuitCn,k will actually have n2
inputs. In case

the input to the transformation consists of a graph together with

some additional piece of information (e.g. additional numerical

parameters, a coloring of the graph, or an ordering of its vertices),

the appropriate encoding of this additional information (the form

of which will be specified later) is provided via extra input gates.

In all cases, the circuitCn,k will be responsible for the treatment of

instances with n vertices and parameter value k .

Basic circuit constructions. One of the fundamental results for

parameterized circuit complexity is that counting up to a threshold

parameter d can be done in para-AC0
. More precisely, consider the

problem Threshold parameterized by d : given a word x ∈ {0, 1}⋆,
determine whether x has at most d ones. A naive construction of a

constant-depth circuit would be to check every d-tuple of inputs,

but this would result in a circuit of size Ω(nd ). However, Bannach
et al. [3] showed that Threshold in fact is in para-AC0

using a

parallel implementation of color coding.

Theorem 2.1 (Lemma 3.3 of [3]). Threshold is in para-AC0.

As a corollary, given a graph, we can G compute in para-AC0

the set of vertices of G that have degree at most d .

Corollary 2.2 (⋆). The following transformation parameterized by
d is in para-AC0: given a graph G, compute the set of vertices of G
that have degree at most d .

Another primitive in our algorithms will be counting distances

in graphs up to a fixed threshold r ∈ N. This is encapsulated in the

following lemma.

Lemma 2.3 (⋆). There exists a dlogtime-uniform family of AC-
circuits (Dn,r )n,r ∈N such that each Dn,r , given a n-vertex graph G,
outputs the n × n boolean matrix encoding, for each pair of vertices
u,v of G, whether the distance between u and v in G is at most r .
Each Dn,r has size nO (1) and depth O (log r ).

Proof sketch. LetA be the adjacency matrix ofG with ones added on

the diagonal. Then it suffices to computeAr , the r th boolean power

of A, that is, its r th power in the (OR,AND)-semiring over {0, 1}.

Observe that Ar can be computed from A by a circuit of size nO (1)

and depth O (log r ) using the iterative squaring algorithm. □

3 Bounded degeneracy
In this section we study the case of graphs of degeneracy d . Those
are graphs which can be linearly ordered in such a way that every

vertex has at most d smaller neighbors. It is well known that a

class C of graphs has degeneracy bounded by some constant d if

and only if there is a number c such that in every subgraph H of a

graph G ∈ C, the ratio between the number of edges and number

of vertices in H is bounded by c . Therefore, bounded degeneracy is

similar to bounded expansion, but we only bound the density of

depth-0 minors, i.e., subgraphs. Many proof techniques concerning

bounded expansion classes stem from the techniques for classes

of bounded degeneracy. This is no different in our paper. In this

section, we prove some parallelized variants of known results for

classes of bounded degeneracy. Specifically, it is known that graphs

of degeneracy d admit a proper coloring using d + 1 colors, and

in Lemma 3.6, we show that a coloring using O (d2) colors can be

computed in para-AC1
. In the following section, we extend this

result to classes of bounded expansion.

Definition and basic properties. A vertex ordering of a graph G
is any ordering σ = (v1, . . . ,vn ) of the vertices of G. A vertex

ordering σ can be also understood via the linear order⩽σ onV (G )
imposed by it: u ⩽σ v iff u = v or u appears earlier than v in σ .
Whenever a vertex ordering of an n-vertex graph is represented

in a circuit construction, we assume that it is represented as the

n × n boolean matrix encoding the order ⩽σ . The degeneracy of

the ordering σ is the least d such that every vertex v ∈ V (G ) has at
most d neighbors u satisfying u <σ v . The degeneracy of a graph is

the smallest possible degeneracy of its vertex orderings.

We use the following fact that a graph of degeneracy d has a

linear number of edges, and moreover there are few vertices with

degrees significantly larger than d .

Proposition 3.1 (⋆). An n-vertex graph G of degeneracy at most d
has at most dn edges. Moreover, for every real c ⩾ 1, G has less than
n
c vertices of degree larger than 2cd .

Finally, we recall the well-known fact that a graph of degeneracy

d admits a proper coloring with d + 1 colors. Recall here that a

proper coloring of a graph is a coloring of its vertices such that

no edge has both endpoints of the same color. Equivalently, every

color class is an independent set.

Proposition 3.2. A graph of degeneracy d admits a proper coloring
with d + 1 colors.

Proof. LetG be the graph in question and let σ be a vertex ordering

of G of degeneracy d . Consider the following greedy procedure

that colors vertices of G with colors {1, . . . ,d + 1}: iterate through

vertices of G in the order of σ and for each vertex u assign to it

any color that is not present among the neighbors of u smaller in σ .
Since there are at most d such neighbors, such a color will always

exist. □

Our goal in this section is to prove a parallelized variant of

Proposition 3.2. This will be achieved in Lemma 3.6 below.

3.1 Block vertex orderings and computational aspects
Wewill use a relaxed variant of degeneracy orderingswhere vertices

come in ordered blocks and every vertex has few neighbors in its

own and smaller blocks.
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Definition 3.3. A block vertex ordering of a graph G is an ordered

partition τ = (B1,B2, . . . ,Bℓ ) of the vertex set of G; its length is

the number of blocks ℓ. The degeneracy of τ is the least integer d
such that for each i ∈ {1, . . . , ℓ}, every vertex v ∈ Bi has at most d
neighbors in

⋃i
j=1

Bj .

A block vertex ordering τ as above naturally imposes a total

quasi-order ⩽τ on the vertex set of G: u ⩽τ v iff u ∈ Bi and
v ∈ Bj with i ⩽ j . In our circuits we will assume that a block vertex

ordering of an n-vertex graph is represented by the n × n boolean

matrix encoding ⩽τ .

Obviously, if σ = (v1, . . . ,vn ) is a vertex ordering of G, then
the degeneracy of σ is equal to the degeneracy of the block vertex

ordering ({v1}, . . . , {vn }). On the other hand, if τ = (B1, . . . ,Bℓ )
is a block vertex ordering ofG of degeneracy d , then by ordering

each block arbitrarily and concatenating these orderings we obtain

a vertex ordering of G of degeneracy at most d .
It will be important however that provided G has bounded de-

generacy, we may find a block vertex ordering of small degeneracy

that is of logarithmic length. This idea is also the cornerstone of

the work of Barenboim and Elkin [7], who gave logarithmic-time

distributed algorithms to approximately color graphs of bounded

degeneracy. Our block vertex orderings correspond to H -partitions
in their nomenclature, and similarly to us they show that an H -

partition of small degeneracy and logarithmic size can be efficiently

computed by repeatedly taking vertices of small degree. Actually,

Barenboim and Elkin attribute the idea to an earlier work of Arikati

et al. [1] that used the PRAM model of parallel algorithms.

Lemma 3.4. The following transformation parameterized by d is
in para-AC1: Given an n-vertex graph G of degeneracy at most d ,
compute a block vertex ordering of G of degeneracy at most 4d and
length at most logn.

Proof sketch. We describe combinatorially how the block vertex

ordering is constructed. Starting with G0 = G , define the last block
to consist of all vertices of G0 that have degree at most 4d in G0;

by Proposition 3.1 with c = 2, this block constitutes more than

half of the vertex set of G0. Remove the block from G0 yielding a

graphG1 and apply again the same procedure toG1. That is, define

the second-to-last block to consist of all vertices of G1 that have

degree at most 4d in G1 and remove this block yielding G2; since

G1 is a subgraph of G, again Proposition 3.1 ensures us that in

this manner we remove more than half of the remaining vertex

set. Thus the construction finishes with an empty graph after at

most logn iterations and yielding at most logn blocks in total. It is

straightforward to see that the degeneracy of the obtained block

vertex ordering is at most 4d . It is easy to see that we can implement

the above procedure using an AC-circuit family with prescribed

size and depth constraints. □

By ordering arbitrarily each block of the block vertex ordering

given by Lemma 3.4 we obtain the following corollary: given a

graphG of degeneracy at most d , computing a vertex ordering ofG
of degeneracy at most 4d can be done in para-AC1

. In other words,

this is a 4-approximation algorithm for degeneracy in para-AC1
,

where the target degeneracy is the parameter.

It is natural to ask whether the following problem of determining

degeneracy exactly is also in para-AC1
: for a parameterd , determine

whether the degeneracy of a given graph is at most d . Recall here
that this problem can be solved in polynomial time. We give a

negative answer to this side question by proving the following

theorem.

Theorem 3.5 (⋆). The following problem is P-hard under logspace
reductions: Given a graph G , determine whether the degeneracy of G
is at most 2.

Thus, if determining degeneracy exactly was in para-AC1
, or

even in para-ACi for any i , then NC = P. Moreover, the same can

be concluded about approximating degeneracy up to any factor

α < 3

2
.

3.2 Coloring graphs of bounded degeneracy
Recall from Proposition 3.2 that graphs of bounded degeneracy can

be colored using a bounded number of colors. In this section, we

show the following, parallelized variant of this result.

Lemma 3.6 (⋆). The following transformation parameterized by d
is in para-AC1: Given a graph of degeneracy at most d , compute some
proper coloring with (4d + 1)2 colors.

Recall that a similar statement in the context of distributed com-

puting was obtained by Barenboim and Elkin [7]. The rest of Sec-

tion 3 is devoted to outlining a proof of Lemma 3.6.

We shall first present how to greedily color bounded degree

graphs in para-AC1
, and then leverage this understanding to color

graphs of bounded degeneracy in para-AC1
. But before this, we

present a key technical lemma that will be used multiple times.

Essentially it says that provided we have already achieved some

proper coloring with h colors, we may then use it to compute a

better coloring using a circuit of depth linear in h. This trick was

also used by Barenboim and Elkin [7].

Lemma 3.7. There exists a dlogtime-uniform family of AC-circuits
(Kn,d,h )n,d,h∈N such that each Kn,d,h , given a n-vertex graph G
together with its block vertex ordering τ = (B1, . . . ,Bℓ ) with ℓ ⩽ h
and of degeneracy d with each block Bi being an independent set in
G , computes a proper coloring ofG with d + 1 colors. Each Kn,d,h has
size nO (1) and depth O (h).

Proof sketch. We build a coloring λ : V (G ) → {1, . . . ,d + 1} in h
rounds, where in round i all vertices from block Bi receive their
colors in λ. In round i every vertex u ∈ Bi inspects all its neighbors
and sets its own color to be the smallest color that is not present

among its neighbors residing in lower blocks. Note that such a color

always exists since the number of neighbors is at most d , by the

assumption about the degeneracy of the input block vertex ordering,

and there are d + 1 colors available. To see that λ constructed in

this way will be a proper coloring of G, observe that every edge

uv of G connects two vertices from different blocks, say u ∈ Bi
and v ∈ Bj for i < j. Hence v will pick its color in λ to be different

than λ(u). It is easy to implement this procedure by an AC-circuit
of polynomial size and depth O (h). □

Corollary 3.8 (⋆). There is a dlogtime-uniform family ofAC-circuits
(Ln,d,h )n,d,h∈N such that each Ln,d,h , given a n-vertex graph G of
maximum degree at most d together with its proper coloring with h
colors, computes a proper coloring ofG with d + 1 colors. Each Ln,d,h
has size nO (1) and depth O (h).

Our first step towards Lemma 3.6 is the treatment of graphs

of bounded degree. A graph of maximum degree at most ∆ can

5
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be greedily colored with ∆ + 1 colors. A naive implementation of

this greedy procedure is sequential, but we will show now how to

perform this task in para-AC1
. We remark that finding optimum or

near-optimum proper colorings of graphs of bounded maximum

degree is a very classic topic in distributed computing with a vast

existing literature. We refer to the work of Barenboim [6] for the

currently fastest algorithms and an excellent overview of the area.

We first show a weaker result, namely that a proper coloring

with ∆ + 1 colors of a graph of maximum degree at most ∆ can be

computed in para-AC1↑
, when parameterized by ∆. Recall that this

means that we allow depth f (∆) · logn instead of f (∆) +O (logn).
This can be done using a simple Divide&Conquer trick, which

dates back to a classic O (∆ logn)-time distributed algorithm for

this problem of Goldberg et al. [18] (see also [2]).

Lemma 3.9. The following transformation parameterized by ∆ is in
para-AC1↑: Given a graph of maximum degree at most ∆, compute
some proper coloring with ∆ + 1 colors.

Proof sketch. We perform a divide-and-conquer algorithm. Given

the input graph G with n vertices, arbitrarily partition its vertex

set into two subset V1 and V2, each of size at most ⌈n/2⌉. Let G1

and G2 be the subgraphs induced by V1 and V2 in G, respectively.
Each ofG1,G2 has maximum degree at most ∆, hence we can apply

the algorithm recursively to both these graphs, yielding proper

colorings λ1, λ2 ofG1 andG2, respectively, each using ∆ + 1 colors.

By taking the union of these two colorings, where colors from

different subgraphs are considered different, we obtain a proper

coloring of G with 2∆ + 2 colors. We may now apply the circuit

given by Corollary 3.8 for h = 2∆ + 2 to compute a coloring of G
with ∆ + 1 colors. Again it is easy to turn the above algorithm into

a circuit. □

We now show containment in para-AC1
.

Lemma 3.10. The following transformation parameterized by ∆ is
in para-AC1: Given a graph of maximum degree at most ∆, compute
some proper coloring with ∆ + 1 colors.

Proof. Let every vertex u of G arbitrarily (say, according to the

order of inputs) put numbers 1, . . . , deg(u) on edges incident to

it; thus every edge is labelled with two numbers, one originating

from each endpoint. Such a labeling can be computed by a circuit

of size f (∆) · nO (1)
and depth O (1) using the circuits provided by

Theorem 2.1 to count, for every neighbor v of u, the number of

neighbors of u with smaller indices than v .
For every pair of indices (i, j ) with 1 ⩽ i ⩽ j ⩽ ∆, letGi, j be the

subgraph ofG withV (Gi, j ) = V (G ) and E (Gi, j ) consisting of those
edges e of G, for which one endpoint of e labelled e with i , and the

second labelled it with j . Observe that the maximum degree ofGi, j
is at most 2, since every vertex u of G can be adjacent to at most

two edges of Gi, j : the one it labelled with i and the one it labelled

with j. Using Lemma 3.9 we can compute, for each 1 ⩽ i ⩽ j ⩽ ∆,

a proper 3-coloring λi, j of Gi, j using an AC-circuit of size nO (1)

and depth O (logn). Next we construct a product coloring λ of G

with 3
(∆+1

2
)
colors: a color of a vertex u in λ is the

(
∆+1

2

)
-tuple of

colors of u in the colorings λi, j for all 1 ⩽ i ⩽ j ⩽ ∆. Since each
edge of G participates in exactly one of subgraphs Gi, j , it is clear

that λ is a proper coloring ofG . We may finally apply Corollary 3.8

for h = 3
(∆+1

2
)
to compute a proper coloring of G with ∆ + 1 colors

using an AC-circuit of size nO (1)
and depth O (3(

∆+1

2
) ). Thus, in

total we have constructed a circuit of size f (∆) · nO (1)
and depth

O (3(
∆+1

2
) + logn). □

We finally have all the tools to prove Lemma 3.6.

Proof of Lemma 3.6. By Lemma 3.4 we may compute a block vertex

ordering τ of G of degeneracy at most 4d and length at most logn
in para-AC1

. Partition the edges of G into two graphs G1,G2 on

the same vertex set as G: the edge set of G1 consists of all edges

whose endpoints lie in the same block of τ , while the edge set of
G2 consists of all edges whose endpoints lie in different blocks of τ .
Observe that G1 is a graph of maximum degree at most 4d , hence
we may apply Lemma 3.10 to compute some proper coloring λ1

with 4d + 1 colors in para-AC1
. On the other hand, τ is a block

vertex ordering of G2 with degeneracy at most 4d , length at most

logn, and every block being an independent set in G2. Hence, we

may apply Lemma 3.7 to compute a proper coloring λ2 of G2 with

4d + 1 colors using a circuit of polynomial size and depth O (logn).
Finally, let λ be the product coloring of λ1 and λ2: the color a vertex

u receives in λ is the pair of colors it received in λ1 and λ2. Since

each edge of G participates either in G1 or in G2, λ constructed in

this manner is a proper coloring ofG with (4d + 1)2 colors. The fact
that the constructed circuit satisfies the required size and depth

bounds follows directly from the construction and from the bounds

provided by Lemma 3.4, Lemma 3.7, and Lemma 3.10. □

4 Computing low treedepth colorings
The fact that graphs of bounded degeneracy admit a proper col-

oring using a bounded number of colors can be generalized to

graphs of bounded expansion, using the notion of low treedepth
colorings. Intuitively, for a fixed p ∈ N, a treedepth-p coloring is a

coloring using a bounded number of colors, such that any p color

classes induce a graph which has a depth-first search (DFS) forest of

bounded depth. Such colorings turn out to be very useful for many

algorithmic purposes, notably, for model-checking. In this section,

we generalize the result from the previous section, and show that

such colorings can be computed in para-AC1
. As previously, such

colorings are obtained by first finding an appropriate ordering of

the graph, related to the notion of weak reachability, which we

recall below.

4.1 Weak coloring number
Suppose G is a graph, r ∈ N, and σ is a vertex ordering of G. For
two vertices u,v ∈ V (G ) with u ⩽σ v , we say that u is weakly
r -reachable from v if there is a path of length r in G that leads

from v to u and whose internal vertices are all larger than u in σ .
The set of vertices weakly r -reachable from v in σ is denoted by

WReachr [G,σ ,v]. The weak r -coloring number of σ is equal to

wcolr (G,σ ) = max

v ∈V (G )
|WReachr [G,σ ,v]|

and the weak r -coloring number of G, denoted wcol(G ), is the
smallest weak r -coloring number of a vertex ordering of G. The
following theorem is the main result of this section.

Theorem 4.1 (⋆). The following transformation parameterized by
integers r and d is in para-AC1: Given a graph G whose all depth-
(r − 1) have edge density at most d , compute a vertex ordering of G

6
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withwcolr (G ) ⩽ д(r ,d ), whereд : N×N→ N is a fixed computable
function.

Our approach to proving Theorem 4.1 is as follows. The weak

coloring numbers are closely related to another measure called

admissibility. More precisely, every order witnessing that the r -
admissibility is small also witnesses that the weak r -coloring num-

ber is small. For computing r -admissibility there exists a greedy

approximation algorithm [12, 20]. We turn this greedy approxima-

tion algorithm into a low-depth circuit using a similar trick as we

did for degeneracy. In each single step of the algorithm we make

use of the color coding toolbox provided by Bannach et al. [3].

For applications we will need to efficiently compute the weak

r -reachability relation, as expressed in the next lemma.

Lemma 4.2 (⋆). Consider the following problem parameterized by r :
Given a graph G, its vertex ordering σ , and two vertices u and v ,
determine whether u is weakly r -reachable from v in σ . Then this
problem can be solved by a dlogtime-uniform family (Wn,r )n,r ∈N of
AC-circuits where eachWn,r has size nO (1) and depth O (log r ).

Proof. It suffices to verifywhetheru ⩽σ v and the distance between

u and v in the subgraph induced by vertices not smaller in σ than

u is at most r . The former can be read from an input gate, while the

latter can be done using a circuit of size nO (1)
and depth O (log r )

by Lemma 2.3. □

4.2 Low treedepth colorings
Being able to efficiently compute vertex orderings with low weak

coloring numbers enables us to compute low treedepth colorings.

Let us now introduce the relevant definitions.

A separation forest2 of a graphG is a forest F on the same vertex

set as G such that whenever uv is an edge in G, then either u is

an ancestor of v , or v is an ancestor of u in F The treedepth of a

graph G is the smallest possible depth of a separation forest of G.
For an integer p, a coloring λ : V (G ) → {1, . . . ,M } is a treedepth-p
coloring of G if every i-tuple of color classes in λ, i ⩽ p, induces in
G a graph of treedepth at most i .

It is shown in [23] that a class C of graphs has bounded expansion

if and only if for every p there is a number M such that every

graph G ∈ C admits a treedepth-p coloring using M colors. We

remark that the above definition of a treedepth-p coloring can be

relaxed, yielding a less restrictive definition that is sufficient for

most algorithmic purposes, including our purposes in this paper.

Namely, it would be sufficient to require that everyp-tuple of classes
induces in G a graph of treedepth at most f (p), for some function

f : N→ N. It follows from the proof in [23] that this weaker variant

yields a notion that is still equivalent to having bounded expansion.

Below, we use the original notion of treedepth-p colorings.

We now show how to compute low treedepth colorings orderings

with low weak r -coloring numbers.

Suppose G is a graph and σ is a vertex ordering of G. For r ∈ N,
let G⟨r ,σ ⟩ be the weak r -reachability graph of σ , whose vertex set
is V (G ) and where u <σ v are considered adjacent if and only if

u ∈ WReachr [G,σ ,v]. The following lemma explains the relation

between weak r -reachability graphs and low treedepth colorings.

2
This notion is also called elimination forest in the literature; we find the name separa-
tion forest more explanatory.

Lemma 4.3 (implicit in Theorem 2.6 of [31]). For any graph G,
its vertex ordering σ , and integer p ∈ N, every proper coloring of
G⟨2p−2,σ ⟩ is a treedepth-p coloring of G.

Observe that if G is a graph with a vertex ordering σ such that

wcol
2
p−2 (G,σ ) ⩽ c for some c ∈ N, then σ is actually a vertex order-

ing of G⟨2p−2,σ ⟩ of degeneracy c − 1. This implies that G⟨2p−2,σ ⟩
admits a proper coloring with c colors. We already know how to

efficiently compute vertex orderings with low weak r -coloring
numbers for graphs from any class of bounded expansion, see The-

orem 4.1. Applying Lemma 3.6 to the graph G⟨2p−2,σ ⟩, we get a
parallelized algorithm for computing a treedepth-p coloring of a

given graphG. We get the following result as an immediate corol-

lary.

Theorem 4.4 (⋆). Suppose C is a class of effectively bounded ex-
pansion. Then for every p ∈ N there exists a constant M = M (p),
computable from p, such that the following transformation param-
eterized by p is in para-AC1: given a graph G ∈ C , compute its
treedepth-p coloring usingM colors.

Proof. Let r = 2
p−2

. Since C has effectively bounded expansion,

there exists a constant d ∈ N, computable from p, such that no

graph from C admits a depth-(r − 1) topological minor with edge

density larger than d . Consequently, given G ∈ C we may apply

the circuit provided by Theorem 4.1 to compute a vertex ordering

σ of G with wcolr (G,σ ) ⩽ д(r ,d ), where the latter is again a con-

stant computable from p. This circuit has size f (p,d ) · nO (1)
and

depthO (logn), for computable f . Next, by applying the circuit pro-
vided by Lemma 4.2 to each pair of vertices in G we may compute

the adjacency matrix of the graph G⟨r ,σ ⟩. Since σ witnesses that

G⟨r ,σ ⟩ is (д(r ,d ) − 1)-degenerate, by applying the circuit provided

by Lemma 3.6 toG⟨r ,σ ⟩ we may compute a proper coloring of this

graph using at most M B (4д(r ,d ))2 colors, which is a constant

depending on p in a computable manner. Lemma 4.3 asserts that

this coloring is a treedepth-p coloring of G. The claimed size and

depth bounds on the obtained circuit follow directly from the con-

struction and from bounds provided by Theorem 4.1, Lemma 4.2,

and Lemma 3.6. □

We remark that the problem of computing a low treedepth col-

oring can be also approached using fraternal augmentations, as
was done e.g. in [13, 23, 28]. Both in our line of reasoning and in

this approach the key step is computing a vertex ordering of low

degeneracy, that is, Lemma 3.4. However, we feel that taking this

approach would make the argument considerably more technical

and would require relying on more involved black-boxes.

4.3 Computing separation forests
A low treedepth coloring is still not enough for the model-checking

algorithm to work, as we also need to compute separation forests

witnessing that appropriate induced subgraphs have bounded treedepth.

In general computing separation forests of optimal depth is a hard

computational problem, but if one allows approximate depth there

is a very simple and well-known way to do it (see Section 17.3

in [27]), namely, any DFS forest of G provides a separation forest

of depth at most 2
h
if G has treedepth at most h.

As shown by Bannach et al. [4, Lemma 6], on graphs of bounded

treedepth a DFS forest can be computed in para-AC0↑
parameter-

ized by treedepth.

7
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Lemma 4.5 (⋆, see also Lemma 6 of [4]). The following transforma-
tion parameterized byh is in para-AC0↑: Given a graph of treedepthh,
compute any its DFS forest (represented by its parent relation, encoded
as a boolean n × n matrix).

5 Model checking
In this section we prove our main result, Theorem 1.1. The general

idea of our proof is as follows. We prove the existence of a certain

efficient quantifier-elimination procedure for classes of bounded

expansion. This is first done in the case of forests of bounded depth.

This lifts immediately to classes of bounded treedepth. Finally, this

lifts to classes of bounded expansion, via low treedepth colorings.

We assume familiarity with basic notation for relational struc-

tures. Unary relations will be also called labels for brevity. The
Gaifman graph of A, denotedG (A), hasV (A) as the vertex set, and
we make two distinct elements u,v adjacent in G (A) iff u and v
appear together in some relation in A.

5.1 Quantifier elimination on forests of bounded depth
In this section we work out a basic primitive for our quantifier

elimination procedure, namely the case of unordered, labeled forests

of bounded depth.

Rooted forests. Suppose T is a rooted, unordered forest, so far

without any labels. We use standard notions like parent, child,

ancestor, descendant, and we follow the convention that each node

is regarded as its own ancestor and descendant. The size |T| of a
forest T is the number of nodes in it. The depth of a node x is the

number of its ancestors, and the depth of a forest T is the largest
depth of a node in T.

Throughout this section we work with forests of depth at most

d , for a fixed constant d ∈ N. A forest T of depth at most d will be

modeled as a relational structure whose universe is the node set

and there is one binary relation parent, where parent(x ,y) holds if
x is the parent of y.

Proposition 5.1. There exist existential formulas

lcd0 (x ,y), lcd1 (x ,y), . . . , lcdd (x ,y) ∈ FO[parent],

each of quantifier depth at most 2d , such that for every forest T of
depth at most d , i ∈ [0,d], and nodes x ,y we have T |= lcdi (x ,y) if
and only if x and y have exactly i common ancestors in T.

Observe that the condition in Proposition 5.1 can be equivalently

stated as follows: lcd0 (x ,y) holds iff x and y have no common

ancestor (i.e. they reside in different trees of the forest), and for

i ⩾ 1 lcdi (x ,y) holds iff the least common ancestor of x and y
is at depth i in T. Note that for a node x , the formula lcdi (x ,x )
holds if and only if x is at depth i . Moreover, the condition that

x is an ancestor of y can be expressed as follows: lcdi (x ,y) holds
iff lcdi (x ,x ) holds, for all i ∈ [0,d]. Thus the formulas lcdi can be

used to check the depths of nodes and the ancestor relation (using

boolean combinations).

For a forest T and a finite label set Λ, a Λ-labeling of T is any

structure obtained from T by adding a unary relation c for each
label c ∈ Λ. A Λ-labeling of a forest will be also called a Λ-labeled
forest.

Lcd types. Fix a label set Λ; we consider Λ-labeled forests of depth

at most d . A formula ψ (x̄ ) ∈ FO[{parent} ∪ Λ] is lcd-reduced if

it uses neither quantifiers nor the parent relation, but it may use

formulas lcdi for i ∈ [0,d] as atoms. That is, an lcd-reduced formula

is a boolean combination of label tests and formulas lcdi . Note that
lcd-reduced formulas are closed under boolean combinations.

We now show how to eliminate a single existential quantifier

for bounded depth forests. This will be used later for quantifier

elimination on low-treedepth decompositions.

Lemma 5.2 (⋆). Let d ∈ N and Λ be a label set. Then for every
formula φ (x̄ ) ∈ FO[{parent} ∪ Λ] with |x̄ | ⩾ 1 and of the form

φ (x̄ ) = ∃y ψ (x̄ ,y)

whereψ is lcd-reduced, there exists a label set Λ̂, and an lcd-reduced
formula φ̂ (x̄ ) ∈ FO[{parent} ∪ Λ̂], such that for every Λ-labeled
forest T of depth at most d , there is a Λ̂-relabeling S of T such that
φ (T) = φ̂ (S).

Moreover, the following effectiveness assertions hold. The label set
Λ̂ is computable from d and Λ, the formula φ̂ is computable from
φ,d,Λ, and the following transformation which computes S given T,
parameterized by φ,d,Λ is in linFPT and in para-AC0↑.

5.2 Quantifier elimination for bounded expansion classes
Skeletons. We first introduce skeletons, which are relational struc-

tures formed by putting a bounded number of forests of bounded

depth on top of each other. Essentially, they will be our abstraction

for low treedepth decompositions.

Let Γ be a vocabulary (of arity 2) and let d ∈ N. A Γ-structure
A is a Γ-skeleton of depth d if for every binary relation R ∈ Γ, the
structure obtained from A by dropping all relations apart from R
and preserving the universe is a rooted forest of depth at most d ,
with R serving the role of the parent relation. Note that thus all
binary relations in Γ serve the roles of bounded-depth forests.

For every binary relation R ∈ Γ and i ∈ [0,d] we may construct

a formula lcdRi (x ,y) as in Proposition 5.1, but using R instead of

parent. As before, a formula φ (x̄ ) ∈ FO[Γ] is lcd-reduced if it does
not use any quantifiers or binary relations, but may use formulas

lcdRi as atoms; thus, it is a boolean combination of label checks

and atoms lcdRi . We note that lcd-reduced formulas can be easily

turned into existential formulas. For future reference we observe

that lcd-reduced formulas can be efficiently evaluated.

Lemma 5.3 (⋆). The following problem parameterized by d ∈ N and
an lcd-reduced formula α (x̄ ) ∈ FO[Γ] is in para-AC0↑ and can be
computed in time O (d |α |): given a Γ-skeleton A of depth d and a
tuple ū ∈ V (A) |x̄ | , verify whether A |= α (ū).

Guarded structures. For the remainder of this section we fix a

graph class C with effectively bounded expansion. Without loss of

generality we may assume that C is closed under taking subgraphs.

Let us fix the functionM (·) given by Theorem 4.4 for the class C ;

this means that given a graph G ∈ C and parameter p we may

compute a treedepth-p coloring of G using at mostM (p) colors in
para-AC1

.

A structureA is guarded by C if the Gaifman graph ofA belongs

to C . Further, a structure B with the same universe as A (but

possibly different vocabulary) is guarded by A if the Gaifman graph

of B is a subgraph of the Gaifman graph of A. Note that if A guards

B and B guards C then A guards C, and if further A is guarded by

C , then so are B and C.

8
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Quantifier elimination. We finally proceed to our main goal, the

quantifier elimination procedure for FO on structures with Gaifman

graphs from C . The following definition explains our goal in this

procedure.

Definition 5.4. Let Σ be a vocabulary (of arity 2) and let φ (x̄ ) ∈
FO[Σ] for a tuple of variables x̄ = (x1, . . . ,xk ). We say that φ (x̄ )
is reducible if there exists d ∈ N, a vocabulary Γ, an lcd-reduced

formula α (x̄ ) ∈ FO[Γ], and, for every Σ-structure A guarded by C ,

a Γ-skeleton B of depth at most d guarded by A such that φ (A) =
α (B).

This reducibility is effective if d , Γ, and α are computable from Σ
and φ, and the transformation computing B givenA, parameterized

by Σ and φ, is in linFPT and para-AC1
.

Note that in Definition 5.4, the fact that A is guarded by C and

guards B, entails that B is guarded by C . Hence we may further

apply further reducibility on the structure B and so on. This chain-

ing property of the notion of reducibility will be crucial in our

reasoning.

In the following, whenever a vocabulary of a formula is not spec-

ified, it is an arbitrary vocabulary. Given Definition 5.4, quantifier

elimination can be stated in a very simple way.

Theorem 5.5. Every formula φ (x̄ ) with |x̄ | ⩾ 1 is effectively re-
ducible.

The proof of Theorem 5.5 is by induction on the structure of the

formula. We find it most convenient to directly solve the case of

existential formulas first, from which both the induction base and

the induction step will follow.

Lemma 5.6. Every existential formula with at least one free variable
is effectively reducible.

Proof. Let φ (x̄ ) ∈ FO[Σ] be the formula in question, where Σ is a

vocabulary and x̄ = (x1, . . . ,xk ) are the free variables of φ. We may

assume that φ is in prenex existential form, say, φ (x̄ ) = ∃ȳ ψ (x̄ , ȳ),
where ȳ = (y1, . . . ,yℓ ) andψ (x̄ , ȳ) is quantifier-free. Suppose A is

the given Σ-structure guarded by C . We describe how a suitable

skeleton B guarded by A should be constructed, while its depth

d , its vocabulary Γ, and the final lcd-reduced formula α (x̄ ) will be
constructed along the way.

Let p = k+ℓ and letG = G (A). SinceG ∈ C , there is a treedepth-

p coloring λ : V (A) → [M] of G, where M = M (p), which can be

computed in para-AC1
and in linFPT using Theorem 4.4 and the

results of [23, 26], respectively. LetU be the family of all subsets

of [M] of size p. ForC ∈ U , letVC = λ−1 (C ) be the set of elements

with colors from C , and let GC = G[VC
] be the subgraph induced

by them. Then GC
has treedepth at most p. As observed before,

we may compute, for each C ∈ U , a DFS forest FC of the induced

subgraph GC
of depth at most d B 2

p − 1 in para-AC0↑
(and in

linFPT by just running a depth-first search).

Fix any C ∈ U and let TC be the unlabeled forest of depth at

most d with node set VC
and binary relation parentC interpreted

as the parent relation of FC . We now prove that the substructure

induced in A by VC
can be entirely encoded in a labeling of TC .

Claim 1 (⋆). There exists a label set ΛC , a ΛC -labeling SC of TC ,
and, for every relation R ∈ Σ, an lcd-reduced formula ηCR with as
many free variables as the arity of R such that R (A[VC

]) = ηCR (S
C ),

where A[VC
] denotes the substructure of A induced by VC .

Now consider formulaψC (x̄ , ȳ) ∈ FO[{parentC } ∪ΛC ] obtained

from ψ (x̄ , ȳ) by replacing each relation symbol R with the corre-

sponding formulaηCR . Sinceψ was quantifier-free,ψC is lcd-reduced.

Let

φC (x̄ ) B ∃ȳ ψ
C (x̄ , ȳ).

Since k ⩾ 1, we may iteratively apply Lemma 5.2 to consecutive

quantifiers in φC , starting with the deepest. This yields a new label

set Λ̂C , a Λ̂C -relabeling UC of SC , and an lcd-reduced formula

αC (x̄ ) such that αC (UC ) = φC (SC ).
We now build B and its vocabulary Γ. Start by setting the uni-

verse of B to be equal to the universe of A, and Γ is so far empty.

For each C ∈ U add a unary relation classC to Γ, and interpret it

in B so that it selects the vertices of VC
. Next, import all the rela-

tions from all structures UC to B. That is, for each C ∈ U we add

{parentC } ∪ Λ̂C to the vocabulary Γ, while the interpretations of
these relations are taken from SC . Note that thus elements outside

of VC
do not participate in relations parentC .

This concludes the construction of Γ and B. Note that the only

binary relations in Γ are the relations parentC forC ∈ U , and in B
each of them induces a forest of depth at most d . Moreover, since

each FC is a DFS forest of GC
, it follows that B is guarded by A.

Hence, B is a Γ-skeleton of depth d guarded by A, as requested.
Consider the formula

α (x̄ ) B
∨
C ∈U

*.
,
αC (x̄ ) ∧

k∧
i=1

classC (xi )
+/
-
.

Observe that α (x̄ ), as a boolean combination of lcd-reduced formu-

las, is lcd-reduced. We claim that α (B) = φ (A). On one hand, by

the construction it is clear that α selects only tuples that satisfy

φ, thus α (B) ⊆ φ (A). To see the reverse inclusion, observe that

whenever we have some valuation ū of x̄ such that φ (ū) holds, this
is witnessed by the existence of some valuation v̄ of ȳ such that

ψ (ū, v̄ ) holds. Since |ū | + |v̄ | = k + ℓ = p and λ was a treedepth-p
coloring, there exists C ∈ U such that all elements of ū and v̄

belong to VC
. For this C the formula αC (ū) ∧

∧k
i=1

classC (ui ) will
be satisfied and, consequently, ū will be included in α (B).

This proves reducibility. Effectiveness follows immediately from

complexity bounds provided by the invoked results and a straight-

forward implementation of the construction of Claim 1. □

We now use Lemma 5.6 to give all the ingredients needed for

the inductive proof of Theorem 5.5.

Lemma 5.7 (⋆). The following assertions hold:
(a) Every quantifier-free formula with at least one free variable is

effectively reducible.
(b) The negation of an effectively reducible formula is effectively

reducible.
(c) Every formula of the form φ (x̄ ) = ∃y ψ (x̄ ,y) for an effectively

reducibleψ and with |x̄ | ⩾ 1 is also effectively reducible.

5.3 Piecing together the proof of Theorem 1.1
With quantifier elimination in place, we may conclude the proof of

our main result, Theorem 1.1.

Proof of Theorem 1.1. Let A be an input Σ-structure on n elements,

for a vocabulary Σ of arity at most 2, and let φ ∈ FO[Σ] be the input

sentence. We would like to apply Theorem 5.5 to φ. However there
is a slight mismatch: Theorem 5.5 assumes that the input formula

9
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has at least one free variable. To circumvent this, let z be a fresh
variable that is not used in φ and let us consider φ as a formula φ (z)
with one free variable z that is never used. Note that φ (z) is true
either for every element of A or for no element of A, depending
on whether φ is true or false in A. Now apply Theorem 5.5 to φ (z),
yielding a Γ-skeleton B of some depth d guarded by A and an lcd-

reduced formula α (z) ∈ FO[Γ] such that α (B) = φ (A). It remains

to evaluate α on any element of the structure using Lemma 5.3. □

The same reasoning allows to reprove the result of Dvořák et

al. [13] that for every class of effectively bounded expansion C ,

it can be verified in linear-FPT time whether an input sentence φ
holds in a given structure whose Gaifman graph belongs to C .

6 Conclusions
In this paper we showed that the model-checking problem for

first-order logic on classes of effectively bounded expansion is in

para-AC1
, which means that it can be solved by a family of AC-

circuits of size f (φ) · nO (1)
and depth f (φ) + O (logn), where f

is a computable function. This can be regarded as a parallelized

variant of the result of Dvořák et al. [13] stating that the problem

is fixed-parameter tractable.

By the result of Grohe et al. [21], model-checking FO is fixed-

parameter tractable even on every nowhere dense class of structures.

When trying to generalize our result to the nowhere dense setting,

the main issue is that the proof of Grohe et al. [21] does not yield

a robust quantifier elimination procedure, but a weak variant of

Gaifman local form that is sufficient for fixed-parameter tractability

of model-checking, but not variations of the problem.

Our techniques uncover tight connections between the paradigms

of distributed computing and circuit complexity in the context of

sparse graphs classes. Methods of the theory of sparsity seem very

well-suited for the design of distributed algorithms, yet so far little is

known. Nešetřil and Ossona de Mendez gave a logarithmic-time dis-

tributed algorithm to compute low treedepth colorings on classes of

bounded expansion [28]. In the light of this paper, it is very natural

to repeat the question asked by Nešetřil and Ossona de Mendez [28]

of whether on every class of bounded expansion, model-checking

local first-order formulas can be performed by a distributed algo-

rithm with running time f (φ) · logn in the local broadcast model.

As computation of low treedepth colorings is already settled [28], it

remains to examine the quantifier elimination procedure; we hope

that our presentation of this argument may help with this. Stronger

models of communication (such as the so-called congested clique
model) may allow efficient distributed algorithms for more general

problems, like model-checking of first-order formulas that are not

necessarily local.
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