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Abstract
�e popular library TensorFlow (TF) has familiarised the main-
stream of machine-learning community with programming lan-
guage concepts such as data-�ow computing and automatic dif-
ferentiation. Additionally, it has introduced some genuinely new
syntactic and semantic programming concepts. In this paper we
study one such new concept, the ability to extract and manipulate
the state of a computation graph. �is feature allows the convenient
speci�cation of parameterised models by freeing the programmer
of the bureaucracy of parameter management, while still permi�ing
the use of generic, model-independent, search and optimisation
algorithms. We study this new language feature, which we call
‘graph abstraction’ in the context of the call-by-value lambda calcu-
lus, using the recently developed Dynamic Geometry of Interaction
formalism. We give a simple type system guaranteeing the safety
of graph abstraction, and we also show the safety of critical lan-
guage properties such as garbage collection and the beta law. �e
semantic model suggests that the feature could be implemented in
a general-purpose functional language reasonably e�ciently.

CCS Concepts •�eory of computation→ Semantics and rea-
soning; •So�ware and its engineering→ Formal language def-
initions;

Keywords Geometry of Interaction, semantics of programming
languages, TensorFlow
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1 TF as a programming language
TensorFlow (TF) is a popular and successful framework for ma-
chine learning, based on a data-�ow model of computation [1].
It is programmable via an API, available in several mainstream
languages, which is presented as a shallowly embedded domain-
speci�c language (DSL). As a programming language, TF has several
interesting features. First of all, it is a data-�ow language, in which
the nodes are mathematical operations (including matrix opera-
tions), state manipulation, control �ow operations, and various
low-level management operations. �e programmer uses the host
language, which can be Python, Java, Haskell etc., to construct a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
LICS ’18, Oxford, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5583-4/18/07. . .$15.00
DOI: 10.1145/3209108.3209127

language term (‘computation graph’). �e graphs are computation-
ally inert until they are activated in a ‘session’, in which they can
perform or be subjected to certain operations. Two such operations
are essential, execution and training. �e execution is the usual
modus operandi of a data-�ow graph, mapping inputs to outputs.
Training is the wholesale update of the stateful elements of a com-
putation graph so that a programmer-provided error measure (‘loss
function’) is minimised. �e optimisation algorithm computing the
new state of the computation graph is also user provided, but it
may use automatic di�erentiation.

Many ingredients of TF are not new, in particular data-�ow [7]
and automatic di�erentiation [11]. However, the language quietly
introduced a striking new semantic idea, in order to support the
training mode of operation of a computation graph, the wholesale
update of the stateful elements of a data-�ow graph. To enable
this operation, the state elements of the graph can be collected
into a single vector (‘tensor’). �ese parameters are then optimised
by a generic algorithm, such as gradient descent, relative to the
data-�ow graph itself and some loss function.

We are dissecting TF’s variable update into two simpler opera-
tions. �e �rst one, which is the focus of this paper, is turning a
stateful computation graph into a function, parameterised by its
former state. We call this ‘graph abstraction’ (abs). �e second
step is the actual update, which in the case of TF is imperative. In
this paper we will consider a functional update, realised simply by
applying the abstracted graph to the optimised parameters.

For the sake of simplicity and generality, we study graph ab-
straction in the context of a pure higher-order functional language
for transparent data-�ow computation. In this language ‘sessions’
are not required because computation graphs are intrinsic in the
semantics of the language. A term will be evaluated as a conven-
tional computation or will result in the construction of a data-�ow
graph, depending on its constituent elements. Consequently, any
term of the language can participate in the formation of data-�ow
graphs, including lambda abstractions and open terms.

�e blending of data-�ow into a functional language is an idea
with roots in functional reactive programming [18], although our

x = t f . p l a c e h o l d e r ( ” f l o a t ” )
a = t f . V a r i a b l e ( 1 )
b = t f . V a r i a b l e ( 0 )
# C o n s t r u c t c ompu t a t i on graph f o r l i n e a r model
model = t f . add ( t f . m u l t i p l y ( x , a ) , b )
with t f . S e s s i o n ( ) as s :

s . run ( i n i t )
# T r a i n t h e model
s . run ( o p t i m i s e r , data , model , l o s s f u n c t i o n )
# Compute y u s i n g t h e upda t ed model
y = s . run ( a ) ∗ 7 + s . run ( b )

Figure 1. Linear regression in TF
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semantic model is more akin to self-adjusting computation [2]. �e
new feature is the ability to collect certain elements of the graph
(‘variables’ in TF lingo, ‘cells’ in our terminology) into a single
data-structure, in order to update it as a whole. �e way this is
handled in our language is by deprecating a data-�ow graph into a
lambda expression with the collected cell vector as its argument.

We call our calculus ‘idealised tensor �ow’ (ITF). Let us see
how a basic example is handled in TF vs. ITF. For readability, we
use a simpli�ed form of the Python bindings of TF. �e program
is a parameterised linear regression model, optimised then used
by applying it to some value (7), as in Fig. 1. �e corresponding
program in ITF is given below:

let a = {1}
let b = {0}
let model x = a × x + b

let (model ′,p) = absmodel

let p′ = optimiser data p model ′ loss f unction

let model ′′ =model ′ p′

let y =model ′′ 7

or, more concisely
let (model ′,p) = abs (λx .{1} × x + {0})
let y =model ′ (optimiser data p model ′ loss f unction) 7

In both TF and ITF a data-�ow network corresponding to the
expression a × x + b is created, where a and b are variables (cells
respectively, indicated by {−}). New values of a and b are computed
by an optimiser parameterised by the model, training data, and
a loss function. As it is apparent, in TF the computation graph
is constructed explicitly by using constructors such as tf.add and
tf.multiply instead of the host language operators (+,×). In contrast,
in ITF a term is turned into a graph whenever cells are involved.
Another key di�erence is that in TF the variables are updated
in place by the optimiser, whereas in ITF the let ( f ,p) = abs t
construct ‘abstracts’ a data-�ow graph t into a regular function f ,
while collecting the default values of its cells in a vector p.

2 ITF
Let F be a (�xed) set and A be a set of names (or atoms). Let
(F,+,−,×,/) be a �eld and {(Va ,+a ,×a ,•a )}a∈A anA-indexed fam-
ily of vector spaces over F. �e typesT of the languages are de�ned
by the grammar T ::= F | Va | T → T . We refer to the �eld type
F and vector types Va as ground types. Besides the standard alge-
braic operations contributed by the �eld and the vector spaces, we
provide a family of fold operations folda , which are always over
the bases of the vector space indexed by a:

0,1,p : F (�eld constants)
+,−,×,/ : F→ F→ F (operations of the �eld F)

+a : Va → Va → Va (vector addition)
×a : F→ Va → Va (scalar multiplication)
•a : Va → Va → F, (dot product)

folda : (Va → Va → Va ) → Va → Va (fold)

All vector operations are indexed by a name a ∈ A, and symbols +
and × are overloaded. �e role of the name a will be discussed later.
�roughout the paper, we use $ to refer to a ground-type operation

(i.e. $ ∈ {+,−,×,/,+a ,×a ,•a | a ∈ A}), and # to refer to a primitive
operation (i.e. # ∈ {+,−,×,/,+a ,×a ,•a , folda | a ∈ A}).

Terms t are de�ned by the grammar t ::= x | λxT .t | t t | p | t #
t | {p} | ATa ( f ,x ).t , where T is a type, f and x are variables, and
p ∈ F is an element of the �eld. We identify t folda u with folda t u.
�e novel syntactic elements of the language are cells {p} and a
family of type- and name-indexed graph abstractions ATa ( f ,x ).t .
Graph abstraction as discussed in the introduction is de�ned as
syntactic sugar abs t ≡ (A ( f ,x ).( f ,x )) t .

Let A ⊂�n A be a �nite set of names, Γ a sequence of typed
variables xi :Ti , and ~p a sequence of elements of the �eld F (i.e. a
vector over F). We write A ` Γ if A is the support of Γ. �e type
judgements are of shape: A | Γ | ~p ` t : T , and type derivation rules
are given below.

A ` Γ,T
A | Γ, x : T , ∆ | − ` x : T

A | Γ, x : T ′ | ~p ` t : T

A | Γ | ~p ` λxT
′
.t : T ′ → T

p ∈ F

A | Γ | − ` p : F
A | Γ | ~p ` t : T ′ → T A | Γ | ~q ` u : T

A | Γ | ~p, ~q ` t u : T

A | Γ | ~p ` t1 : T1 A | Γ | ~q ` t2 : T2 # : T1 → T2 → T

A | Γ | ~p, ~q ` t1 # t2 : T

p ∈ F

A | Γ | p ` {p } : F

A, a | Γ, f : Va → T ′, x : Va | ~p ` t : T A ` Γ,T ′,T

A | Γ | ~p ` AT
′

a (f , x ).t : T ′ → T

Note that the rules are linear with respect to the cells ~p. In a
derivable judgement A | Γ | ~p ` t : T , the vector ~p gives the
collection of all the cells in the term t .

Graph abstraction AT
′

a ( f ,x ).t serves as a binder of the name a
and, therefore, it requires in its typing a unique vector type Va
collecting all the cells. Because of name a, this vector type cannot
be used outside of the scope of the graph abstraction. An immediate
consequence is that variables f and x used in the abstraction of a
graph share the type Va , so that this type cannot be involved in
other graph abstractions. �is is a deliberate restriction, because
abstracting di�erent graphs results in vectors of parameters of
unknown, at compile-time, sizes. Mixing such vectors would be a
source of unsafe behaviour.

3 Graph-rewriting semantics
We �rst present an abstract machine, with roots in the Geometry
of Interaction [10], which will be used to interpret the language.
�e state of the machine is a graph with a selected edge (token) an-
notated with extra information. �e token triggers graph rewriting
in a deterministic way by selecting redexes, and it also propagates
information through the graph. �is abstract machine is a vari-
ant of the Dynamic GoI (DGoI) machine, which has been used to
give uniform, cost-accurate models for call-by-need and call-by-
value computation [13, 14]. �e graph-rewriting style of the DGoI
will prove to be a convenient execution model which matches the
data-�ow-graph intuitions of TF and ITF. �e interpretation is ‘op-
erational’, in the sense that computational costs of its steps are at
most linear in the size of the program. Some proofs and in-depth
discussions can be only found in an extended version.

3.1 Graphs and graph states
A graph is de�ned by a set of nodes and a set of edges. �e nodes
are partitioned into proper nodes and link nodes. A distinguished
list of link nodes forms the input interface and another list of link
nodes forms the output interface. Edges are directed, with at least
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Figure 2. Connection of edges

one endpoint being a link node. An input link (i.e. a link in the
input interface) is the source of exactly one edge and the target of
no edge. Similarly an output link (i.e. a link in the output interface)
is the source of no edge and the target of exactly one edge. Every
other link must be the source of one edge and the target of another
one edge. A graph may contain adjacent links, but we identify
them as a single link, by the notion of ‘wire homeomorphism’ [12]
used in a graphical formalisation of string diagrams. We may write
G (n,m) to indicate that a graph G has n links in the input interface
andm links in the output interface. From now on we will refer to
proper nodes as just ‘nodes’, and link nodes as ‘links’.

Links are labelled by enriched types T̃ , de�ned by T̃ ::= T | !T | !

F
where T is any type of terms. Adjacent links are labelled with the
same enriched types, to be coherent with the wire homeomorphism.
If a graph has only one input, we call it ‘root’, and say the graph has
enriched type T̃ if the root has the enriched type T̃ . We sometimes
refer to enriched types just as ‘types’, while calling the enriched
type !

F ‘cell type’ and an enriched type !T ‘argument type’. Note
that the types used by the labels are ignored during execution, but
they make subsequent proofs easier.

Nodes are labelled, and we call a node labelled with X an ‘X -
node’. We have several sorts of labels. Some represent the basic
syntactic constructs of the lambda calculus: λ (abstraction), @
(application), p ∈ F (scalar constants), ~p ∈ Fn (vector constants),
and # (primitive operations). Node P handles the decomposition of
a vector in its elements (coordinates). Node A indicates the graph
abstraction. Nodes !, ?, D, and C play the same role as exponential
nodes in proof nets [9], handling sharing and copying for argument
types. Adaptations of these nodes, namely !, ?, Dand C, are for
sharing (but not copying) of cells. Note that we use generalised
contractions (C, C) of any input arity, which includes weakening.
We sometimes write W (resp. W) to emphasise a contraction C
(resp. C) has no inputs and hence is weakening.

We use the following diagrammatic conventions. Link nodes are
not represented explicitly, and their labels are only given when they
cannot be easily inferred from the rest of the graph. By graphical
convention, the link nodes at the bo�om of the diagram represent
the input interface and they are ordered le� to right; the link nodes
at the top of the diagram are the output, ordered le� to right. A
double-stroke edge represents a bunch of edges running in parallel
and a double stroke node represents a bunch of nodes.

�e connection of edges via nodes must satisfy the rules in Fig. 2,
where !~T denotes a sequence !T1, . . . , !Tm of enriched types, and
# : T1 → T2 → T is a primitive operation. �e outline box in
Fig. 2 indicates a sub-graph G (1,n1 + n2), called a !-box. Its input
is connected to one !-node (‘principal door’), while the outputs
are connected to n1 ?-nodes (‘de�nitive auxiliary doors’), and n2?-nodes (‘provisional auxiliary doors’).

A graph context is a graph with exactly one distinguished node
that has label ‘�’ and any interfaces. We write a graph context
as G[�] and call the unique extra �-node ‘hole’. When a graph G
has the same interfaces as the �-node in a graph context G[�], we
write G[G] = G[�/G] for the substitution of the hole by the graph
G. �e resulting graph G[G] indeed satis�es the rules in Fig. 2,
thanks to the matching of interfaces.

Finally, we say a graph G (1,0) is composite, if its !-nodes satisfy
the following: (i) they are outside !-boxes; (ii) there is a unique
total order on them; and (iii) their outputs are connected to (scalar)
constant nodes. Each connected pair of a !-node and a constant node
is referred to as ‘cell’. A composite graph G (1,0) can be uniquely
decomposed as below, and wri�en as G = H ◦ (~p)‡:

G(1, 0) = H(1, n)

! !

(~p)‡(~p)‡ = ...

where

p0 pn�1

where H (1,n) contains no !-nodes, ~p ∈ Fn , and cells are aligned le�
to right according to the ordering. A graph is said to be de�nitive if
it contains no !-nodes and all its output links have the cell type !

F.
�e graph-rewriting semantics works on composite graphs.

De�nition 3.1 (Graph states). A graph state σ = ((G,e ),δ ) con-
sists of a composite graph G = H ◦ (~p)‡ with a distinguished link e ,
and token data δ = (d, f ,S ,B) that consists of a direction d ::= ↑ | ↓,
a rewrite �ag f ::= � | λ | $ | ? | ! | F(n), a computation stack
S ::= � | @ : S | ? : S | λ : S | p : S | ~p : S , and a box stack
B ::= � | e ′ : B, where p ∈ F, ~p is a vector over F, n is a natural
number, and e ′ is a link of the graph G.

In the de�nition above we call the link e of (G,e ) the ‘position’
of the token. �e rewrite �ag determines the applicable graph
rewriting. �e computation stack tracks intermediate results of
program evaluation and the box stack tracks duplications. We call
λ, scalar and vector constants ‘token values’. Together, the two
stacks determine the trajectory of the token, which models the �ow
of program evaluation.

3.2 Transitions
We de�ne a relation on graph states called transition ((G,e ),δ ) →
((G ′,e ′),δ ′). Transitions are either pass or rewrite.

Pass transitions occur if and only if the rewrite �ag is �. �ese
transitions do not change the overall graph but only the token, as
shown in Fig. 3. In particular, the stacks are updated by changing
only a constant number of top elements. In the �gure, only the node
targeted by the token is shown, with token position and direction
indicated by a black triangle. �e symbol ‘−’ denotes any token
value, k = k1 $k2, X ∈ { !

,

?

,

D

,D}, Y ∈ { !

,

?

,

D

} and Z ∈ {C,

C

}.
�e order of evaluation is right-to-le�. A le�-to-right application

is possible, but more convoluted for ordinary programs where the
argument is o�en of ground type. An abstraction node (λ) either
returns the token with a value λ at the top of the computation stack
or triggers a rewrite, if @ is at the top of the computation stack,
hence no a downward pass transition for application. �e token
never exits an application node (@) downward due to rewrite rules
which eliminate λ-@ node pairs.

A ground-type operation ($) is applied to top two values of the
computation stack, yielding a value k = k1 $k2, in its downward
pass transition. �e downward pass transition over a fold operation
raises the rewrite �ag F(n), using the size of the token value ~p ∈ Fn .
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Figure 4. Rewrite transitions: computation

When passing a Z -node (i.e. C or C) upwards, the token pushes the
old position e to the box stack. It uses the top element e ′ of the
box stack as a new position when moving downwards the Z -node,
requiring e ′ to be one of the inputs of the node. �e other nodes (?,
A and P) only participate in rewrite transitions.

Rewrite transitions are wri�en as

((G[G],e ), (d, f ,S ,B)) → ((G[G ′],e ′), (d, f ′,S ,B′))

and they apply to states where the rewrite �ag is not �, i.e. to which
pass transitions never apply. �ey replace the (sub-)graph G with
G ′, keeping the interfaces, move the position, and modify the box
stack, without changing the direction and the computation stack.
We call the sub-graph G ‘redex’, and a rewrite transition ‘f -rewrite
transition’ if a rewrite �ag is f before the transition.

�e redex may or may not contain the token position e , but it
is always de�ned relative to it. We call a rewrite transition ‘local’
if its redex contains the token position, and ‘remote’ if not. Fig. 4,
Fig. 7b and Fig. 7c de�ne local rewrites, showing only the redexes.
We explain some rewrite transitions in detail.

�e rewrites in Fig. 4 are computational in the sense that they
are the common rewrites for CBV lambda calculus extended with
constants (scalars and vectors) and operations. �e �rst rewrite is
the elimination of a λ-@ pair, a key step in beta reduction. Following
the rewrite, the incoming output link of λ will connect directly to
the argument, and the token will enter the body of the function.
Ground-type operations ($) also reduce their arguments, if they
are constants k1 and k2, replacing them with a single constant
k = k1 $k2. If the arguments are not constant-nodes (Z1 and Z2 in
the �gure), then they are not rewri�en out, leading to the creation
of computation (data-�ow) graphs when cells are involved.

Rewrite rules for the fold operations are in Fig. 5. Once the
rewrite �ag F(n) is raised, the sub-graph G above the fold node (F)
is recursively unfoldedn times. �is yieldsG itself with a weakening
(W) if n = 0, and a graph Hn

n otherwise. If n > 0, for any 0 < i < n,
the i-th unfolding Hn

i inserts an application to the basis ~en−i ∈ Fn ,
noting that the bases themselves are not syntactically available.

F

G

!

?

F (0), S, B ⇤, S, B

GW

F

G

!

?

⇤, S, B

Hn
n

F (n), S, B

? ?

@

!@

!D

C

~en�i

Hn
i :=

Hn
i�1

G

?

@

!@

!DHn
1 :=

~en�1

Figure 5. Rewrite transition: unfolding over the bases

�e rewrites in Figs. 7a–7c de�ne three classes of rewrites in-
volving !-boxes. �ey govern duplication of sub-graphs, and the
behaviour of graph abstraction, including application of its result
function. �ey are triggered by rewrite �ags ‘?’ or ‘!’ whenever the
token reaches the principal door of a !-box.

�e �rst class of the !-box rewrites are remote rules, in which the
rewrites apply to parts of the graphs that have not been reached by
the token yet. A redex of a remote rule is determined relative to the
token position, namely as a sub-graph of E in Fig. 6 that consists of
a !-box H , whose principal door is connected to either a A-node, a
P-node with more than one inputs, a C-node, or another !-box. �e
principal door of the !-box H has to satisfy the following: (i) the
node is ‘box-reachable’ (see Def. 3.2 below) from one of de�nitive
auxiliary doors of the !-box G (in Fig. 6), and (ii) the node is in the
same ‘level’ as one of de�nitive auxiliary doors of the !-box G, i.e.
the node is in a !-box if and only if the door is in the same !-box.

De�nition 3.2 (Box-reachability). In a graph, a node/linkv is box-
reachable from a node/link v ′ if there exists a �nite sequence of
directed paths p0, . . . ,pi such that: (i) if i > 0, for any 0 ≤ j < i , the
path pj ends with the root of a !-box and the path pj+1 begins with
an output link of the !-box, and (ii) the path p0 begins with v and
the path pi ends with v ′.
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We call the sequence of paths in the above de�nition ‘box-path’.
Box-reachability is more general than normal graph reachability,
since it may involve a !-box whose doors are not connected.

In order to de�ne the remote rewrite rules let us introduce some
notation. We write G[X/Y ] for a graph G in which all Y -nodes are
replaced with X -nodes of the same signature, and write G[ϵ/Y ] for
a graph G in which all Y -nodes (which must have one input and
one output) are replaced with links. �e remote rewrite rules are
given in Fig. 7a.

�e top le� remote rule is graph abstraction, that takes into
account the sub-graph G ◦ (~p)‡ outside its redex (i.e. the !-box H ,
its doors and the A-node). �e sub-graph G ◦ (~p)‡ contains exactly
all nodes that are graphically reachable, in a directed way, from
auxiliary doors ( ?) of the !-box H . It is indeed a composite graph,
with G containing only C-nodes or ?-nodes, due to the typing. �e
cells (~p)‡ may not be all the cells of the whole graph, but a unique
and total order on them can be inherited from the whole graph.

Upon applying the graph abstraction rule, the two input edges
of the A-node will connect to the result of graph abstraction, a
function and arguments. �e function is created by replacing the
cells (~p)‡ with a projection (P), inserting a λ-node and a dereliction
( D). A copy of the cells used by other parts of the graph is le�
in place, which means the sub-graph G ◦ (~p)‡ is le� unchanged.
Another copy is transformed into a single vector node (~p) and linked
to the second input of graph abstraction, which now has access to
the current cell values. �e unique and total ordering of cells (~p)‡
is used in introducing the P-node and the ~p-node, and makes graph
abstraction deterministic.

Note that the graph abstraction rule is the key new rule of the
language, and the other remote rules are meant to support and
complement this rule. �ese remote rules can involve nodes only
reached by box-reachability, because we want all parameters of a
model to be extracted in graph abstraction, including those con-
tributed, potentially, by its free variables. A ‘shallow’ local version
of graph abstraction would be simpler and perhaps easier to imple-
ment but not as powerful or interesting.

�e bo�om le� remote rule eliminates a contraction node (C),
and replicates the !-boxH connected to the contraction. �e bo�om
right rule handles vector projections. Any graph H handling a
vector value with n dimensions is replicated n times to handle each
coordinate separately. �e projected value is computed by applying
the dot product using the corresponding standard base. In these two
rules, the names in H are refreshed using the name permutation
action πN , where N ⊆ A, de�ned as follows: all names in N are
preserved, all other names are replaced with fresh (globally to the
whole graph) names.

Names indexing the vector types must be refreshed, because
as a result of copying, any graph abstraction may be executed
several times, and each time the resulting computation graphs and
cells must be kept distinct from previously abstracted computation
graphs and cells. Note that in general types are ignored during
execution but including them in the graphs makes proofs easier.

�e top right remote rule cause an ‘absorption’ of the !-box
H into the !-box H ′ it is connected to. Because the ?-nodes of
!-boxes arise from the use of global or free variables, this box-
absorption process models that of closure-creation in a conventional
operational semantics. �e !-box H ′ in Fig. 7a is required not to be
the !-box where the token position is.

�e local version of absorption, where the lower !-box has the
token position in it, belongs to the second class of !-box rewrites
shown in Fig. 7b. A�er this local absorption is exhaustively applied,
the rewrite �ag changes from ‘?’ to ‘!’, and the last class of rewrites,
shown in Fig. 7c are enabled. �ese rules handle copying of shared
closed values, i.e. !-boxes accompanied by no ?-nodes.

�e �rst two rules in Fig. 7c (Y < {D,C}) change rewrite mode to
pass mode, by se�ing the rewrite �ag to �. �e third rewrite copies
a !-box. It requires the top element e of the box stack to be one of
input links of the contraction node (C). �e link e determines the
copy of the !-box G that has the new token position in. As in the
remote duplication rule, names are refreshed in the new copies.

All transitions presented so far are well-de�ned.

Proposition 3.3 (Form preservation). All transitions send a graph
state to another graph state, in particular a composite graphG ◦ (~p)‡

to a composite graph G ′ ◦ (~p)‡ of the same type.

Proof. Transitions make changes only in de�nitive graphs, keeping
the cells (~p)‡ which contains only constant nodes and !-nodes.
Transitions do not change redex interfaces. �

Recall that we identify adjacent links in a graph as a single link,
using wire homeomorphism. All transitions can be made consistent
with wire homeomorphism by incorporating the ‘identity’ pass
transition that only changes the token position along a link.

All the pass transitions are deterministic and so are local rewrites.
Remote and copying rewrites are not deterministic but are con�uent,
as no redexes are shared between rewrites. �erefore, the overall
beginning-to-end execution is deterministic.

De�nition 3.4 (Initial/�nal states and execution). Let G be a com-
posite graph with root e . An initial state Init (G ) on the graph G
is given by ((G,e ), (↑,�,? : �,�)). A �nal state Final (G,κ) on the
graph G, with a token value κ, is given by ((G,e ), (↓,�,κ : �,�)).
An execution on the graph G is any sequence of transitions from
the initial state Init (G ).

Proposition 3.5 (Determinism of �nal states). For any graph state
σ , the �nal state Final (G,κ) such that σ →∗ Final (G,κ) is unique up
to name permutation, if it exists. �

Corollary 3.6 (Determinism of executions). For any initial state
Init (H ), the �nal state Final (G,κ) such that Init (H ) →∗ Final (G,κ)
is unique up to name permutation, if it exists.

3.3 Translation of terms to graphs
A derivable type judgementA | Γ | ~p ` t : T is inductively translated
to a composite graph (A | Γ | ~p ` t : T )†, as shown in Fig. 8,
where names in type judgements are omi�ed. �e top le� graph
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Figure 7. Rewrite transitions: !-boxes

in the �gure shows the general pa�ern of the translation, where
(A | Γ | ~p ` t : T )† has three components: weakening nodes (W),
cells Pt = (~p)‡, and the rest Gt . �e translation uses variables
as additional annotations for links, to determine connection of
output links. In the �gure, the annotation !Γ denotes the sequence
x0 : !T0, . . . ,xm−1 : !Tm−1 of variables with enriched types, made
from Γ = x0 : T0, . . . ,xm−1 : Tm−1, and !∆ is made from ∆ in the
same way. �e other annotations are restrictions of !Γ. Let FV(u) be
the set of free variables of a term u. �e annotation !Γ1, appearing
in inductive translations of typing rules with one premise, is the
restriction of !Γ to FV(t ), and !Γ0 is the residual. �e annotations !Γt ,
!Γt t ′ and !Γt ′ , in translations of typing rules with two premises, are
restrictions of !Γ to FV(t )\FV(t ′), FV(t )∩ FV(t ′) and FV(t ′)\FV(t ),
respectively. Note that the translation is not compositional in the
component of weakening nodes (W).

3.4 Soundness
�e �rst technical result of this paper is soundness, which expresses
the fact that well typed programs terminate correctly, which means
they do not crash or diverge. �e challenge is, as expected, dealing
with the graph abstraction and related rules.

�eorem 3.7 (Soundness). For any closed program t such that A |
− | ~p ` t : T , there exist a graph G and a token value κ such that:
Init ((A | − | ~p ` t : T )‡) →∗ Final (G,κ).

Our semantics produces two kinds of result at the end of the
execution. One, intensional result, is the graph G. It will involve
the cells of values ~p and computation depending on them, which
are not reduced during execution. �e other one, extensional result,
is the value κ carried by the token as it ‘exits’ the graph G. �e
value κ will always be either a scalar, or a vector, or the symbol λ
indicating a function-value result.

�e proof, omi�ed here due to the limited space, uses logical
predicates on de�nitive graphs, to characterise safely-terminating
graphs inductively on types. �e key step is to prove that graph
abstraction preserves the termination property of a graph, which
involves an analysis of sub-graphs that correspond to data-�ow (i.e.
ground-type computation only with cells, constants and ground-
type operations). Graph abstraction enables more rewrites to be
applied to a graph, by turning non-duplicable cells into duplicable
function arguments of ground types. �anks to the call-by-value
evaluation, the newly enabled rewrites can only involve the data-
�ow sub-graphs and hence do not break the termination property.
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Figure 8. Inductive translation

4 Programming in ITF
Let us consider a more advanced example which will show how the
treatment of cells and graph abstraction in ITF reduces syntactic
overhead and supports our semantic intuitions. We create a lin-
ear model for a set of points in the plane corresponding to (x ,y)
measurements from some instrument. �e model must represent
the relationship between y and x not pointwise but as a con�dence
interval. Concretely, let us look at two (parameterised) such mod-
els: linear regression with con�dence interval (CI) and weighted
regression (WR) [4]. �e �rst model is suitable when training data
has measurement errors independent of the value of x , while the
second model is suitable when errors vary linearly with x .1

Letpair = λx .λy.λz.z x y be the Church-encoding of pairs and let
f = λa.λb .λx .a×x +b be a generic linear function with unspeci�ed
parameters a and b. Let opt ci and opt wr be generic learning
functions that can be applied to some model m and seed p, de�ned
elsewhere, suitable for CI and WR, respectively, incorporating the

1�ese examples and more can be explored in the online visualiser: h�ps://cwtsteven.
github.io/GoI-TF-Visualiser/

reference data points, suitable loss functions, and optimisation
algorithms.

An ITF program for the con�dence-interval model is shown
below, emphasising each step in the construction.

let a = {1}
let ci = pair ( f a {1}) ( f a {2}) (con�dence interval)
let (pcim,p) = abs ci (parameterised CI model)
let pci = opt ci pcim (learn CI parameters)
let cim = pcim pci (concrete CI model)

�e model consists of a pair of linear functions which share the
same slope (a) but may have di�erent intercepts. �e graph abstrac-
tion turns the computation graph ci into a conventional function
pcim which will take three parameters. However, the number of
parameters of the function is hidden into the vector type of the
argument. �e generic optimisation function opt ci will compute
the best values for the parameters (pci) which can be then used to
create a concrete model cim which can be then used, as a regular
function, in the subsequent program.

https://cwtsteven.github.io/GoI-TF-Visualiser/
https://cwtsteven.github.io/GoI-TF-Visualiser/
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Figure 9. Graph-abstracting the CI model

In contrast, the weighted-regression model is a pair of indepen-
dent linear functions. �e structure of the program is otherwise
similar.

let wr = pair ( f {1} {0}) ( f {1} {0}) (weighted regression)
let (pwrm,p) = abswr (parameterised WR model)
let pwr = opt wr pwrm (learn WR parameters)
let wrm = pwrm pwr (concrete WR model)

�ese codes can be wri�en more concisely, e.g.
let ci = (λa.pair ( f a {1}) ( f a {2})) {1}
let cim = (A(pcim,p).pcim (opt ci pcim)) ci

let wr = pair ( f {1} {0}) ( f {1} {0})
let wrm = (A(pwrm,p).pwrm (opt wr pwrm)) wr

�is relatively simple example illustrates several key features of
ITF. First, there is no distinction between regular lambda terms and
data-�ow graphs. A higher-order computation graph is constructed
automatically. Second, cells are treated as references rather than
as constants, ensuring that the programmer has a grasp on how
many parameters can be adjusted by the optimiser. For CI there are
three parameters, the (shared) slope and two intercepts, whereas
for WR there are four parameters, two slopes and two intercepts.
�ird, cells are collected into parameters of the graph-abstracted
function not just from the term to which abs is applied, but from
its free variables as well.

�e key step in both examples is the graph abstraction. Figs. 9-
10 show how the two models di�er. �e !-box G represents the
programming context when graph abstraction is triggered. Pre-
abstraction the computation graphs of CI share a cell, resulting post-
abstraction in a function with a shared argument. In contrast, the
WR computation graph and resultant function involve no sharing.

In the absence of graph abstraction, the obvious alternatives in
a functional se�ing, such as explicitly parameterising models with
vectors involves error-prone index manipulation to control sharing
([k0; . . . ;km] is a vector and p[i] is element access), for example:

let f p x = p[0] × x + p[1]
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Figure 10. Graph-abstracting the WR model

let ci p = pair ( f [p[0];p[1]]) ( f [p[0];p[2]])
let cim = ci (opt ci ci )

let wr p = pair ( f [p[0];p[1]]) ( f [p[2];p[3]])
let wrm = wr (opt wr wr )

�e alternatives are comparably awkward.

5 Contextual equivalence
Usually programs (closed ground-type terms) are equated if and
only if they produce the same values. However in the presence of
cells, this is not enough. For example, evaluating programs {1} + 2,
1 + 2 and 1 + {2} yields the same token value (3) but di�erent �nal
graphs, which can be made observable by graph abstraction.

De�nition 5.1 (Token-value equivalence). Two composite graphs
G1 (0,1) and G2 (0,1) are token-value equivalent, wri�en as G1=̇G2,
if there exists a token value κ such that the following are equiva-
lent: Init (G1) →∗ Final (G ′1,κ) for some composite graph G ′1, and
Init (G2) →∗ Final (G ′2,κ) for some composite graph G ′2.

We li� token-value equivalence to a congruence by de�nition,
just like the usual program equivalence is li�ed to open terms.

De�nition 5.2 (Graph-contextual equivalence). Two graphsG1 (n,m)
andG2 (n,m) are graph-contextually equivalent, wri�en asG1 � G2,
if for any graph context G[�] that makes two composite graphs
G[G1] and G[G2] of ground type, the token-value equivalence
G[G1]=̇G[G2] holds.

�e graph-contextual equivalence � is indeed an equivalence
relation, and also a congruence with respect to graph contexts.
We say a binary relation R on graphs implies graph-contextual
equivalence, if R ⊆ �.

In the DGoI machine, the token always moves along a node,
and a redex can always be determined as a sub-graph relative to
the token position. �is locality of the machine behaviour enables
us to give some instances of the graph-contextual equivalence by
means of the following variant of simulation, ‘U-simulation’. Let
(·)+ stand for the transitive closure of a binary relation.

De�nition 5.3 (U-simulation). A binary relation R on graph states
is a U-simulation, if it satis�es the following two conditions. (I) If
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σ1 R σ2 and a transition σ1 → σ ′1 is possible, then (i) there exists a
graph state σ ′2 such that σ2 → σ ′2 and σ ′1 R+ σ ′2, or (ii) there exists
a sequence σ ′1 →

∗ σ2 of (possibly no) transitions. (II) If σ1 R σ2
and no transition is possible from the graph state σ1, then there
exist composite graphs G1 and G2 and a token value κ such that
σ1 = Final (G1,κ) and σ2 = Final (G2,κ).

Intuitively, a U-simulation is the ordinary simulation between
two transition systems (the condition (I-i) in the above de�nition),
‘Until’ the le� sequence of transitions is reduced to the right se-
quence (the condition (I-ii)). �e reduction may not happen, which
resembles the weak until operator of linear temporal logic. �e con-
dition (I-i) involves the transitive closure R+, in case the reduction
steps are multiplied.

Proposition 5.4. Let R be a U-simulation. If σ1 R σ2, then there
exists a token value κ such that the following are equivalent: σ1 →∗

Final (G1,κ) for some composite graph G1, and σ2 →∗ Final (G2,κ)
for some composite graph G2. �

We will use U-simulations to see if some rewrites on graphs,
which may or may not be triggered by the token, imply the graph-
contextual equivalence.

Proposition 5.5. Let ≺ be a binary relation on graphs with the
same interface, and its li�ing ≺ on graph states de�ned as follows:
((G[G1],e ),δ ) ≺ ((G[G2],e ),δ ) i� G1 ≺ G2 and the position e is in
the graph-context G[�]. If the li�ing ≺ is a U-simulation, the binary
relation ≺ implies the graph-contextual equivalence �.

Proof. We assume G1 ≺ G2, and take an arbitrary graph con-
text G[�] that makes two composite graphs G[G1] and G[G2].
�e li�ing ≺ relates initial states on these composite graphs, i.e.
G[G1] ≺ G[G2]. �erefore, if it is a U-simulation, these two graphs
are token-value equivalent G[G1]=̇G[G2], by Prop. 5.4. We can
conclude the graph-contextual equivalence G1 � G2. �

Finally, the notion of contextual equivalence of terms can be
de�ned as a restriction of the graph-contextual equivalence, to
graph-contexts that arise as translations of (syntactical) contexts.

De�nition 5.6 (Contextual equivalence). Two termsA | Γ | ~p ` ti :
T ′ (i = 1,2) in the same derivable type judgement are contextually
equivalent, wri�en as A | Γ | ~p ` t1 ≈ t2 : T ′, if for any context
C〈·〉T such that the two type judgements A | Γ | ~q ` C〈ti 〉 : T
(i = 1,2) are derivable for some vector ~q and some ground type T ,
the token-value equivalence (A | Γ | ~q ` C〈t1〉 : T )†=̇(A | Γ | ~q `
C〈t2〉 : T )† holds.

5.1 Garbage collection
Large programs generate sub-graphs which are unreachable and
unobservable during execution (garbage). In the presence of graph
abstraction the precise de�nition is subtle, and the rules for garbage
collection are not obvious. We show safety of some forms of garbage
collection, as below.

Proposition 5.7 (Garbage collection). Let ≺W , ≺W ′ and ≺GC be
binary relations on graphs, de�ned by

W

W

C C C C

!

?

G

?

W

W

X0

�W �W 0

�GC

where the X -node is either aW-node, or a P-node with no input. �ey
altogether imply the graph-contextual equivalence, i.e. ≺W ∪ ≺W ′

∪ ≺GC implies the graph-contextual equivalence.

Sketch of proof. �e relation≺W ∪ ≺W ′ ∪ ≺GC li�s to a U-simulation,
where the condition (I-ii) in Def. 5.3 is not relevant. We then use
Prop. 5.5. �

5.2 Beta equivalence
We can prove a form of beta equivalence, where the function ar-
gument is a closed value without cells. �e substitution t[u/x]
is de�ned as usual. �e proof is by making U-simulations out of
special cases of λ-rewrites and !-rewrites, and is also by the garbage
collection shown above.

Proposition 5.8 (Beta equivalence). Let v be a value de�ned by
the grammar v ::= p | λxT .t | ATa ( f ,x ).t . If the type judgement
A′ | − | − ` v : T ′ is derivable, the contextual equivalence A | Γ |
~p ` (λxT

′

.t )v ≈ t[v/x] : T holds. �

6 Conclusion and related work
Machine learning can take advantage of a novel programming
idiom, which allows functions to be parameterised in such a way
that a general purpose optimiser can adjust the values of parameters
embedded inside the code. �e nature of the programming language
design challenge is an ergonomic one, making the bureaucracy of
parameter management as simple as possible while preserving
soundness and equational properties. In this paper we do not aim
to assess whether the solution proposed by TF re�ects the best
design decisions, but we merely note that automating parameter
management requires certain semantic enhancements which are
surprisingly complex.

�e new feature is the extraction of the variable-dependencies
of a computation graph (the parameters) into a single vector, which
can be then processed using generic functions. Moreover, we place
this feature in an otherwise pure, and quite simple, programming
language in order to study it semantically (ITF). Our contribution
is to provide evidence that this rather exotic feature is a reasonable
addition to a programming language: typing guarantees safety of
execution (soundness), garbage collection is safe, and a version of
the beta law holds. Moreover, the operational semantics does not
involve ine�cient (worse than linear) operations, indicating a good
potential for implementability. Reaching a language comparable
in sophistication and e�ciency with TF is a long path, but we are
making the �rst steps in that direction [3]. �e advantages of using
a stand-alone language, especially when there is evidence that it
has a reasonably well behaved semantics, are signi�cant, as EDSLs
su�er from well known pitfalls [17].

Other than TF, we only know of one other language which
supports the ability to abstract on state (‘wormholing’), with a
similar motivation but with a di�erent application domain, data
science [16]. For keeping the soundness argument concise the lan-
guage lacks recursion, but sound extensions of GoI-style machines
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with this feature have been studied in several contexts and we
do not think it presents insurmountable di�culties [5, 15]. Fur-
ther extensions of the language, in particular e�ects, pose serious
challenges however.

We chose to give a semantics to ITF using the Dynamic Geometry
of Interaction (DGoI) [13, 14], a novel graph-rewriting semantics
initially used to give cost-accurate models for various reduction
strategies of the lambda calculus. �e graph model of DGoI is
already, in a broad sense, a data-�ow graph with higher-order
features, which is a natural �t for the language we aim to model.
�e semantics of call-by-value lambda calculus is based on the
one in [14], where it is shown to be e�cient, in a formal sense.
In this paper we do not formally analyse the cost model of ITF
but we can see, at least informally, that the operations involved in
handling language extensions such as cells, computation graphs,
and graph abstraction are not computationally onerous. Some of
the more expensive operations, such as box-reachability, could be
implemented in constant time using ‘jump links’ between the end-
points of a path, thus trading o� space and time costs. �e idea of
jumping can be found in the GoI literature [6, 8].

Pragmatically speaking, even though the infrastructure required
to support computation graphs and graph abstraction involves a
non-negligible overhead, the impact of this overhead on the running
cost of a typical machine-learning program as a whole is negligible.
�is is because the running cost of machine-learning programs is
dominated by the learning phase, realised by the optimisers. �is
phase involves only ‘conventional’ functions, the result of graph
abstraction, in which all the overhead can be simply discarded as
super�uous. �is overhead is only required in the model creation
phase, which is not computationally intensive.

�is paper represents a �rst step in the study of ITF, focussing
on what we believe to be the most challenging semantic feature of
the language. In the future we plan to study the execution mode
of the graphs, by propagating automatically changes to the cells
through the graph, much like in incremental or self-adjusting com-
putation, and the way such features interact with graph abstraction.
Finally, in the longer term, to develop a usable functional counter-
part of TF we also aim to incorporate a safe version of automatic
di�erentiation, as well as probabilistic execution.
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