
An answer to the Gamma question
Benoit Monin

Associate Professor
LACL

Université Paris-Est Créteil
Créteil, France

benoit.monin@u-pec.fr

Abstract
We answer in this paper an open question (known as the “Gamma
question”), related to the recent notion of coarse computability,
which stems from complexity theory. The question was formulated
by Andrews, Cai, Diamondstone, Jockusch and Lempp in “Asymp-
totic density, computable traceability and 1-randomness” [1]. The
Gamma value of an oracle set measures to what extent each set
computable with the oracle is approximable in the sense of density
by a computable set. The closer to 1 this value is, the closer the
oracle is to being computable. The Gamma question asks whether
this value can be strictly in between 0 and 1⇑2.

In this paper, we pursue some work initiated by Monin and Nies
in “A unifying approach to the Gamma question” [19]. Using notions
from computability theory, developed by Monin and Nies, together
with some basic techniques from the field of error-correcting codes,
we are able to give a negative answer to this question.

The proof we give also provides an answer to a related question,
asked by Denis Hirschfeldt in the expository paper “Some questions
in computable mathematics” [12]. We also solve the Gamma prob-
lem for bases other than 2, answering another question of Monin
and Nies.
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1 Introduction
1.1 A brief history of the Γ question
Generic-case complexity is a subfield of computational complexity.
It started with the observation that some problems that are difficult
to solve in full are easy to solve on “most inputs”, namely on a set
of inputs of density 1. This notion was introduced by Kapovich,
Myasnikov, Schupp and Shpilrain [17]. They showed among other
things that for a large class of finitely generated groups, the generic
case complexity of the word problem is linear.
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This notion has recently been extended to computability by
Jockusch and Schupp [15]. The authors identified two notions that
can be proved to be incomparable. The first is generic computability,
where one must always give the right answer, without having to
provide an answer for a small set of inputs. The second is coarse
computability, for which one always has to provide an answer, with
the right to be wrong on a small set of inputs. In both cases, a set
of inputs is considered small if it is of density 0; this will be made
precise in Section 2.

Hirschfeldt, Jockusch, McNicholl and Schupp [13] introduced
and studied a valueγ(A) to an arbitrary subsetA of natural numbers
which measures how closely A is from being coarsely computable,
that is, how closely A can be approximated by computable sets.
Namely, γ(A) is the least upper bound of lower asymptotic den-
sities of all sets {n ∈ N ∶ A(n) = C(n)} where C is computable
(see Section 2.2 for a more formal definition). Then Andrews, Cai,
Diamondstone, Jockusch and Lempp [1] assigned a value Γ to each
Turing degree. For a Turing degree d , they defined Γ(d) to be the
greatest lower bound of γ(A) where A is a set of degree d (see
Section 2.2 for a more formal definition). Hirschfeldt et al [13]
had shown that for any degree d , if Γ(d) > 1⇑2, then d must be
the computable degree, implying that Γ(d) = 1. This implied no
real 1⇑2 < r < 1 can be realized by the Γ value of a degree. They
also showed the existence of degrees d such that Γ(d) = 0. Later
Andrews et al [1] showed the existence of degrees d such that
Γ(d) = 1⇑2, and they asked whether a Turing degree could have a
Γ value strictly between 0 and 1⇑2.

In this paper, we answer this question by showing that if a
Turing degree has a Γ value strictly smaller than 1⇑2, then its Γ
value must be 0. This implies, together with the results of [1] and
[13] mentioned in the previous paragraph, that 0, 1⇑2 and 1 are the
only reals that can be realized by the Γ value of a degree, giving a
natural trichotomy of the Turing degrees.

1.2 On the relevance of the Γ question
From the second half of the 20th century until today, a considerable
amount of work has been conducted in order to understand the
realm of non-computable objects - most of the time elements of 2N.
Such sequences, as non-computable, will always remain somehow
inaccessible. Nonetheless it is still possible to study some of their
properties, in particular properties relating to their computational
power. Doing so, it becomes apparent that it is often not the proper-
ties of the object itself, that we are interested in, but the properties
of its equivalence class under the relation “X is computable using Y
as an oracle and Y is computable using X as an oracle” : The Turing
degrees.

Many such properties were introduced and studied, leading to
more and more detailed characterizations of the Turing degrees.
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Some of them became very popular, due to their numerous non-
trivially equivalent characterizations, as well as their use in many
situations. We give here two examples of such properties, that also
have interactions with the Γ question.

For the first example, we say that a degree d is PA, if d can
compute a complete and consistent extension of Peano Arithmetic
(by the well known Gödel’s first incompleteness theorem, no such
computable extension exists). The PA degrees have been widely
used and studied in computability theory. We provide here a non-
trivially equivalent (and rather intriguing) characterization, in order
to illustrate a typical theorem about characterizations of Turing
degrees. One direction is due to Dana Scott [20] and the other to
Solovay (unpublished) : “A degree d is PA iff for any computable
tree T ⊆ 2<N (a set of strings closed under prefixes), such that T
has at least one infinite path (a set of compatible elements of T ), d
computes an infinite path of T .

For the second example, we say that a degree d is computably
dominated if every function thatd computes, is dominated by a com-
putable function. The computable degree is of course computably
dominated, but it is not the only one. There are for instance com-
putably dominated PA degrees. A non-trivially equivalent (and still
rather intriguing) characterization of the non-computably dom-
inated degrees is as follow [19]: A degree d is non-computably
dominated, iff d can compute a function from N to N which equals
infinitely often every computable function from N to N.

Let us now come back to the Γ question. Here again, we question
a property related to the computational power a set A might have :
“being able to compute sets which are hard to approximate by com-
putable sets”. Before we continue, let us mention how the Γ question
relates with the two notions of computability introduced above :
Andrews et al. [1] showed that if A is of PA or non-computably
dominated degree, then we must have Γ(A) = 0. Monin and Nies
[19] showed later that the converse does not hold. In this paper, we
show that the only possible Γ values for a degree are 0, 1⇑2 and 1.
In order to help the reader understand what is surprising in this
trichotomy, we provide here a simplified version of this paper’s
main achievement.

Given any A ∈ 2N, we are interested in all the sequences of
binary strings {σn}n∈N with ⋃︀σn ⋃︀ = 2n , that are computable fromA.
We are then interested in algorithms P (not using oracles) taking n
in parameter, and trying then to approximate each string σn by a
string τn of the same length. We will show that for any A, exactly
one of the following is true:

1. There exists anA-computable sequence {σn}n∈N with ⋃︀σn ⋃︀ =
2n , such that for any algorithm P , there are infinitely many
n such that P is wrong on every bit of σn .

2. Both (2a) and (2b):
(2a) For any A-computable sequence {σn}n∈N with ⋃︀σn ⋃︀ = 2n ,

for any ε > 0, there is an algorithm which (asymptotically)
correctly guesses a fraction of 1⇑2 − ε bits of every σn .

(2b) There is also an A-computable sequence {σn}n∈N with
⋃︀σn ⋃︀ = 2n , such that for any ε > 0, no algorithm (asymptot-
ically) correctly guesses a fraction of 1⇑2 + ε bits of every
σn .

3. The set A is computable.

The first non-trivial part of this trichotomy is “Suppose (2b) is
not true. Then why mustA be computable?”. This had already been
answered by Hirschfeldt, Jockusch, McNicholl and Schupp [13]. The
second non-trivial part of this trichotomy is “Suppose (2a) is not
true. Then why must we have (1) ?”. A slightly more complicated
version of this question is answered with Theorem 3.11, the main
result of this paper.

1.3 The content of this paper
In order to solve the Γ question, we use the key notion of bounded
infinite often equality, that was introduced by Monin and Nies
[19]. Informally, given two computable functions f ,H from N to
N, we say that f is infinitely often equal with bound H , if it equals
infinitely often every computable function bounded by H . Monin
and Nies [19] showed that if a Turing degree contains a function
which is infinitely often equal with bound 2(2n), then its Γ value
must be 0. We show here that the following are equivalent for a
Turing degree d :

1. The Γ value of d is strictly smaller than 1⇑2.
2. d computes a function which is infinitely often equal with

bound 2(2n).
3. The Γ value of d is equal to 0.

We then deal with related questions that naturally arise from
the Γ question and have been asked previously. In particular Monin
and Nies assigned [19] for any integer q > 2 a value Γ in base q,
to any Turing degree. This new notion is naturally derived from
the original one, by considering infinite q-ary sequences instead of
infinite binary sequences. Monin andNies showed that if the Γ value
in base q of a Turing degree is strictly bigger than 1⇑q, the degree
is in fact the computable degree and its Γ value in base q must be
one. It is worth mentioning that the proof is not a straightforward
modification of the one from Hirschfeldt et al. in base 2. Monin and
Nies also argued that every known example of Turing degree with
a Γ value of 1⇑2 has a Γ value in base q of 1⇑q. They asked whether
this is always the case. We answer the question here by showing
that the following are equivalent for a Turing degree d :

1. The Γ value in base q of d is strictly smaller than 1⇑q.
2. d contains a function which is infinitely-often-equal with

bound 2(2n).
3. The Γ value (in any base) of d is equal to 0.

This will also imply that the only possible Γ value in base q of
a Turing degree are 0, 1⇑q and 1. Again, the proof will not be a
straightforward modification of the proof of the equivalent state-
ment for base 2.

We will finally argue that our proofs also give the same answer
to a version of the Γ question in the tt-degrees, asked in [11]. We
will briefly defend the relevance of this question and explain why
our proofs automatically settles the Γ question in the tt-degrees.

An analogue of the Γ question was also studied for the many-one
degrees, and in this case, Matthew Harrison-Trainor [10] was able
to provide the opposite answer, in extreme contrast to the situation
for Turing and truth-table degrees : For any r ∈ (︀0, 1⇑2⌋︀, there exists
anm-degree d with Γm(d) = r , where Γm is the version of Γ for
many-one degrees.
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1.4 On the relation between Γ and the error-correcting
codes

For one key step of the proof that Γ(d) < 1⇑2 implies Γ(d) = 0,
we will need to borrow some basic techniques from the field of
error-correcting codes, which copes with the problem of reliable
transmission of information on a noisy channel. If one wants to
transmit, say, a binary message of lengthm, the idea is to encode
this message in a codeword of length n >m, and to transmit this
codeword instead. The codeword must then be robust to the noise,
say random bit flip, that may occur during the transmission: If the
number of bit flips is not too large, the receiver must be able to
retrieve the initial message. The research in this area focuses on
improving robustness to various type of noise, as well as providing
efficient encoding and decoding algorithms.

Error-correcting codes are not only used in many data com-
munication protocols. They also have been an important tool in
theoretical computer sciences. They play a central role in different
areas such as cryptography (e.g. [21] and [4]), probabilistic proofs
(e.g. [3] [22] and [2]), pseudorandomness theory (e.g. [6]), and many
more. To our knowledge, it is one of the first time they are used in
computability theory. A previous example occurs in [5].

2 Preliminaries and notations
In the following, by N⋆, we mean the set of all strictly positive
integers (and by N the set of integers which are positive or null).
We work in the space of infinite sequences over a finite alphabet
{0, . . . ,q − 1} for an integer q > 1, denoted by qN. We call q-ary
sequences, or sequences elements ofqN andq-ary strings, or strings,
the finite sequences over the alphabet {0, . . . ,q − 1}. The set of
q-ary strings is denoted by q<N. We sometimes also use the word
sequence to denote sequences of various objects (typically integers),
and when we do so we will always specify it to avoid any ambiguity.

For q > 1 and for a string σ ∈ q<N, we denote the set of elements
ofqN extending σ by (︀σ⌋︀ and we call those sets cylinders. We denote
by λ the unique probability measure on qN such that λ((︀σ⌋︀) = q−⋃︀σ ⋃︀
for any string σ , where ⋃︀σ ⋃︀ denotes the length of σ . For a sequence
X ∈ qN and a finite interval I ⊂ N, we denote by X ↾I the string
X(I(0)) ˆ . . . ˆX(I(m−1)), wherem is the length of I . The notation
X ↾n for n ∈ N means X ↾

(︀0, ...,n−1⌋︀.
In this paper we will be interested in having a canonical coding

between sequences and functions f ∶ N → N which are strictly
bounded by some H ∶ N→ N. Such a function H will generally be
an order function, that is, a computable functionH such thatH(n) ≤
H(n + 1) and limn H(n) = +∞. In the context of q-ary sequences
and strings, to make the coding work nicely we will consider that
the bound H is always of the form qH̃(n). Given a q-ary sequence
X and such a bound H(n) = qH̃(n), we denote by fX the function
bounded byH , whose values are the integers encoded by successive
chunks of bits of X , of length H̃(n). Formally we define H ′(n) =
∑m<n H̃(m) (with H ′(0) = 0), and fX (n) to be the integer smaller
than qH̃(n) which is encoded by the string X ↾

(︀H ′(n),H ′(n+1)).

Conversely, given f with f (n) < H(n) = qH̃(n), we write Xf to
denotes the sequence X such that fX = f .

Finally, for a q-ary sequence X and a p-ary sequence Y , we write
Y ≤T X to mean that Y is Turing computable from X . We write
Y ≡T X if Y ≤T X and X ≤T Y . We write Y <T X if Y ≤T X but

not X ≤T Y . The equivalence classes for the relation ≡T are the
Turing degrees. Turing degrees are usually defined only over binary
sequences. Here the use of q-ary sequences for q > 2 will have its
importance. We thus consider that Turing degrees are defined over
the union of the q-ary sequences for all integers q > 1.

2.1 Concentration inequalities
We briefly recall here the few concentration inequalities that will
be used in this paper.

Definition 2.1. For q > 1, for a given n ∈ N and two strings
σ1,σ2 ∈ qn , the Hamming distance between σ1 and σ2 is the number
of positions where σ1 and σ2 differ. We denote by δ(σ1,σ2) the
normalized hamming distance:

δ(σ1,σ2) =
#{i < n ∶ σ1(i) ≠ σ2(i)}

n

For q > 1, n > 0 and σ a q-ary string of length n, Hoeffding’s
inequality bounds themeasure of the set ofq-ary strings of the same
length, whose Hamming distance with σ is smaller than 1− 1⇑q − ε
or larger than 1 − 1⇑q + ε (with ε > 0 such that both values are
greater than 0 and smaller than 1):

λ({τ ⋃︀ δ(σ ,τ) < 1 − 1⇑q − ε}) ≤ e−2ε2n (1)

λ({τ ⋃︀ δ(σ ,τ) > 1 − 1⇑q + ε}) ≤ e−2ε2n (2)

In the first case, the set {τ ⋃︀ δ(σ ,τ) < 1−1⇑q−ε} is the Hamming
ball of radius 1−1⇑q−ε and centered in σ , that we will denote with
B(σ , 1 − 1⇑q − ε). There are known slightly sharper bounds in this
case:

λ(B(σ , 1 − 1⇑q − ε)) ≤ q−n(1−Hq(1−1⇑q−ε)) (3)

where Hq(α) is the q-ary entropy function defined by:

Hq(α) = α logq(q − 1) − α logq(α) − (1 − α) logq(1 − α)

Note that Hq(0) = 0, that Hq(1 − 1⇑q) = 1 and that Hq is strictly
increasing on (︀0, 1 − 1⇑q⌋︀.

Equations (1), (2), (3) will be referred to in this paper as the
concentration inequalities. The reader can see [14] for (1) and (2),
and chapter 1 of [23] for (3).

2.2 Preliminaries on coarse computability
The notion of coarse computability received quite a lot of recent
attention by various authors (see for example [1] and [13]).

Definition 2.2. A sequence X is coarsely computable if there is a
computable sequence A such that the lim inf of the frequency of
positions n on which X(n) = A(n), equals 1. More formally, let us
introduce the function:

ρ(X ,A) = lim inf
n

1 − δ(X ↾n ,A↾n)

The sequence X is coarsely computable if for some computable
sequence A we have ρ(X ,A) = 1.

A real number can naturally be assigned to non-coarsely com-
putable objects. This number can be seen as an indication of how
far the object is from being coarsely computable.

γ(X) = sup
A computable

ρ(X ,A)
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We will refer to this as the γ value of X . Note that for any q > 1
and X ∈ qN, the supremum in the above definition is reached equiv-
alently by considering only computable q-ary sequences. Andrews,
Cai, Diamondstone, Jockusch and Lempp [1] had the interesting
idea to define a similar value for Turing degrees, which indicates
how far a degree is from being coarsely computable. Here on the
contrary, the definition depends on the base. We first present the
definition only for binary sequences, as it was defined first. We will
discuss later the case of q-ary sequences for q > 2.

Γ(d) = inf{γ(X)∶ X ∈ 2N is in the Turing degree d}

This will be referred to in this paper as the Γ value of d . In
practice we will often write Γ(X) for a set X ∈ 2N to mean Γ(d)
where d is the Turing degree of X . It is easy to see that one can
equivalently consider Γ(X) to be the infimum over the values γ(Y)
for every Y ≤T X , rather than just every Y ≡T X . The reason is that
given anyY <T X , we can add to the sequenceY all the information
about X at some very sparse computable set of positions, giving a
new set Turing equivalent to X , with the same γ value as Y ’s.

The Γ question is: which real numbers can be realized by the Γ
value of a degree? Hirschfeldt, Jockusch, McNicholl and Schupp
[13] showed that every real number r can be realized by the γ value
of a binary sequence. Their results also show that Γ(X) > 1⇑2 if and
only if X is computable and thus Γ(X) = 1 and gave examples of
sequences X with Γ(X) = 0. Then Andrews et al. [1] gave examples
of sequencesX with Γ(X) = 1⇑2. Monin andNies [19] then provided
new examples of sequences X with Γ(X) = 0, and new examples of
sequences X with Γ(X) = 1⇑2. The work of all these authors had
left so far open the existence of sequences X with 0 < Γ(X) < 1⇑2.
This paper achieve to fully answer the Γ question, by showing that
if Γ(X) < 1⇑2 then we must have Γ(X) = 0. Thus only the reals 0,
1⇑2 and 1 can be realized by the Γ value of a degree.

Monin and Nies also defined Γ values for bases other than 2. For
an integer q ≥ 2 and X ∈ qN we define the value Γq(X) as before
except we now consider an infimum over elements of qN which are
Turing equivalent to X . Finally for a (non rational) real r ∈ R we
define Γq(r) to be Γq(X) for X ∈ qN the canonical representation
of r in base q.

Monin and Nies showed that for any q ≥ 2 and any X ∈ qN, we
have Γq(X) > 1⇑q iff Γq(X) = 1 iff X is computable. They showed
that for any known example of real r such that Γ2(r) = 1⇑2, we also
have Γq(r) = 1⇑q for any q ≥ 2. They asked whether this is always
the case. We will also answer here this question in the affirmative.

2.3 Preliminaries on error-correcting codes

An encoding functionwith parameters k , n is a function E ∶ qk → qn

that maps aq-ary stringm of length k into a longer, redundantq-ary
string E(m) of length n. An inputm of the function is referred to as
the message, whereas its output E(m) is referred to as a codeword.
The error-correcting code itself, or simply the code, is defined to be
the image of the encoding function. In other words, it is the set of
all codewords which are used to encode the various messages.

In practice, we often work directly with subsetsC ⊆ qn of size qk .
The encoding function is then induced by taking any enumeration
of C , and such a set is said to be a (n,k)q -code.

A key parameter of a (n,k)q -code C is its distance, which refers
to the smallest Hamming distance between two codewords. We

write d(C) for the distance of C and δ(C) for its normalized dis-
tance, d(C)⇑n. If d is the distance of C , the receiver of a codeword
would be able to correct up to d⇑2 errors (assuming he knows the
encoding function): If the number of errors is smaller than d⇑2, the
originally transmitted string is simply given by the codeword that
is the closest to the received message.

Another important parameter of a code is its rate: For the sake of
efficiency, one would like the length n of a codeword not to be much
longer than the length k of messages we have to transmit. The rate
is the quantity k⇑n, and measures, in some sense, the amount of
redundancy added by the encoding.

The following proposition is almost trivial and says that it is
possible to build a code with good rate (independent from the
messages’ length) and with relative distance as close to 1 − 1⇑q
as we want (in the following ⟨︀r⧹︀ for a real r is the largest integer
smaller than or equal to r ).

Proposition 2.3 (Asymptotic Gilbert bound [23]). Let q > 1. Let ε
with 0 < ε < 1 − 1⇑q, let α = 1 −Hq(1 − 1⇑q − ε) and n ∈ N. There
exists a (n, ⟨︀αn⧹︀)q -code C of normalized distance δ ≥ 1 − 1⇑q − ε .

Proof. Suppose that we have a set C ⊆ qn such that for every
string τ ∈ qn , there exists σ ∈ C with δ(τ ,σ) < 1 − 1⇑q − ε . Thus
⋃σ ∈C B(σ , 1 − 1⇑q − ε) = qN and in particular ∑σ ∈C λ(B(σ , 1 −
1⇑q − ε)) ≥ 1. By the concentration inequality (3) above, λ(B(σ , 1−
1⇑q − ε)) ≤ q−n(1−Hq(1−1⇑q−ε)) which implies that

⋃︀C ⋃︀q−n(1−Hq(1−1⇑q−ε)) ≥ 1

Thus we must have at least q⟨︀n(1−Hq(1−1⇑q−ε))⧹︀ elements in C .
It follows that the code satisfying the proposition can be built

in a greedy manner: at any step, put in the code any string such
that its relative distance to every previously picked string is large
enough, until this is not possible. □

From the previous proposition, for every ε > 0 as small as we
want, there exists α > 0 such that we can build a (n, ⟨︀αn⧹︀)2-code
for any n ∈ N with normalized distance of at least 1⇑2 − ε . Thus we
can correct as close as we want to 1⇑4 of errors. It is not possible
with binary codes to correct more errors, and in general, with q-ary
codes, to correct more than (1 − 1⇑q)⇑2 errors: By the well known
Plotkin bound, the maximal number of strings of length n with
pairwise normalized distance larger than 1 − 1⇑q + ε is a constant
independent of n. This will not be good enough for us, and to solve
the Γ question, we will need to be able to correct up to a ratio of
1⇑2 errors for binary codes.

We will then use an alternate notion of decoding called list decod-
ing, proposed independently by Elias [8] andWozencraft [24] in the
late 50s. List decoding allows the decoder to output a list of possible
codewords rather than a unique one. Even when constrained to
output a relatively small number of answers, list decoding permits
recovery from errors well beyond the d⇑2 barrier that comes with
unique decoding.

This is formally done in the following theorem, known as the
list decoding capacity theorem. It says that for any ε , it is possible to
perform list decoding with lists of constant size and successfully
correct up to a ratio of 1 − 1⇑q − ε errors. Moreover, the rate of the
code can be made as close as we want to 1 − Hq(1 − 1⇑q − ε) by
taking larger and larger lists.

The word “capacity” in the theorem’s name refers to the quantity
1−Hq(1−1⇑q−ε) and goes back to the study of noisy channels. The
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reader can see for instance chapter 8 of [7] for more information
about the capacity of noisy channels.

Theorem 2.4 (The list decoding capacity theorem [9]). Let q > 1.
Let ε with 0 < ε < 1 − 1⇑q and n ∈ N. For any L ∈ N and 0 < α <
1 −Hq(1 − 1⇑q − ε) − 1⇑L, there exists a set C of q⟨︀αn⧹︀ many q-ary
strings of length n such that for any q-ary string σ of length n, there
are at most L elements τ of C with δ(σ ,τ) ≤ 1 − 1⇑q − ε .

Note that for 0 < ε < 1−1⇑q, we always have 0 < Hq(1−1⇑q−ε) <
1 and then one can always find suitable α and L.

The version of this theorem with q = 2 will suffice to solve the Γ
question in base 2. To solve the Γ question in bases larger than 2,
we will need a variation of the list decoding theorem. This variation
will be introduced later, in Section 4.1. The reader who is interested
in the proof of the list decoding theorem can also refer to the proof
we will give of its variation, which is very similar.

3 The possible Γ values
3.1 Previous work
Denis Hirschfeldt, Carl Jockusch, Timothy McNicholl, and Paul
Schupp showed the following theorem:

Theorem3.1 ([13]). LetX ∈ 2N. If Γ(X) > 1⇑2 thenX is computable
and Γ(X) = 1.

Informally, given a binary sequence X , the idea is to compute
from it another sequence Y where each bit of X is repeated in Y
a number of times much larger than the sum of the number of
times each previous bit is repeated. As some computable sequence
R must almost always agree with Y more than half of the time, it is
possible to use a so called “majority vote” technique: With at most
finitely many exceptions, the bit of X is the one that occurs the
most in R when looking at the positions where this bit is repeated
in Y . Andrews, Cai, Diamondstone, Jockush and Lempp showed
the first part of the following theorem (the second part being from
Hirschfeldt et al.):

Theorem 3.2 ([1, 13]). There exists X ∈ 2N such that Γ(X) = 1⇑2.
There exists X ∈ 2N such that Γ(X) = 0.

Andrews et al. [1] gave two distinct examples of sequences with
a Γ value of 1⇑2, and two distinct examples of sequences with a
Γ value of 0 (as mentioned in the introduction, the sequences of
non-computably dominated or PA degree). Later Monin and Nies
identified a unique notion covering the possible known examples
of sequences having a Γ value of 1⇑2, and they identified a unique
notion covering possible known examples of sequences having a Γ
value of 0: being respectively non-weakly Schnorr engulfing and
infinitely often equal with bound 2(2n).

We won’t give here more details about the property of being
weakly Schnorr engulfing and having a Γ value of 1⇑2. The reader
can refer to [19] for more details on the subject. The notion of being
infinitely often equal with bound h, introduced in [19], was new
and appears to be a key step in the resolution of the Γ question.

3.2 Being infinitely often equal
Definition 3.3. Given a bound H ∶ N↦ N we say that f ∶ N↦ N
is H -infinitely often equal (or H -i.o.e.) if f equals infinitely often
every computable function strictly bounded by H . A sequence A is
of H -i.o.e. degree if A Turing computes an H -i.o.e. function.

Note that as long as H ≥ 2, we obtain the same notion by re-
placing “infinitely often” by “at least once” in the definition: If f
equals only finitely often to some computable function bounded by
H ≥ 2, then there also exists a computable function bounded by H
which never equals f . Therefore if f equals every computable func-
tion bounded by H at least once, it must equals every computable
function bounded by H infinitely often.

If A is of 2(2n)-i.o.e. degree, then Γ(A) = 0. This uses a very
simple but key idea, that will also be reused to solve the Γ question.
In the following f (2n) and H(2n) are short notations to denote
respectively the functions n ↦ f (2n) and n ↦ H(2n).

Proposition 3.4 ([19]). Let H ∶ N→ N. Let f ∶ N→ N be bounded
by H . If f is H -i.o.e., then f (2n) must be H(2n)-i.o.e. or f (2n + 1)
must be H(2n + 1)-i.o.e.

Proof. By contrapositive, suppose there exist computable functions
д1 ≤ H(2n) and д2 ≤ H(2n + 1) such that д1(n) ≠ f (2n) for all but
finitely many n and such that д2(n) ≠ f (2n + 1) for all but finitely
many n. Then the computable function д such that д(2n) = д1(n)
and д(2n + 1) = д2(n) equals to f only finitely often, and f is then
not H -i.o.e. □

Corollary 3.5 ([19]). If a sequence A is of 2(2n)-i.o.e. degree, then
for any a ∈ N∗, the sequence A is of 2(a

n
)-i.o.e. degree.

Proof. Suppose that A is of 2(2n)-i.o.e. degree. Then from Proposi-
tion 3.4, A is of 2(22n

)-i.o.e. degree or A is of 2(22n+1
)-i.o.e. degree.

Also it should be clear that if a function is H -i.o.e., then it is also
H ′-i.o.e. for anyH ′ ≤ H . In any case we have thatA is of 2(22n

)-i.o.e.
degree.

By iterating the same argument, we have thatA is of 2(2kn)-i.o.e.
degree for any k ∈ N∗, and therefore that A is of 2(a

n
)-i.o.e. degree

for any a ∈ N∗. □

Theorem 3.6 ([19]). If a sequence A is of 2(2n)-i.o.e. degree, then
Γ(A) = 0.

Proof. By Corollary 3.5 it is enough to show that if A is of 2(a
n
)-

i.o.e. degree for a natural number a > 1, then Γ(A) ≤ 1⇑a. Let a > 1
be an integer and suppose that A computes a 2(a

n
)-i.o.e. function

f , that we can bound without loss of generality by 2(a
n
). Let Jn

be the integer interval (︀an−1,an) for n > 0, and let J0 = {0}. Note
that the length of Jn is at most of an . We define the f -computable
sequence B such that B ↾Jn is equal to the string corresponding to
the n-th value of f . Consider now any computable sequence X and
its bitwise complement X , together with the function д which to n
associates the integer corresponding to the stringX ↾Jn . As f equals
д infinitely often, then for infintely many n we have that X and B
agree on every point in Jn , and thus that X and B disagree on every
point in Jn . For any such n, the density below an of the set of points
where X and B agree is at most an−1⇑an . As this is true for every
computable X we have γ(B) ≤ 1⇑a and hence Γ(A) ≤ 1⇑a. □

We now introduce a concept related to infinite often equality,
which directly comes from inspecting aspects of the Γ question.
This notion is also what will connect the Γ question to the field of
error-correcting codes:
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Definition 3.7. Let H ∶ N → N be a computable function and
α ∈ (︀0, 1⌋︀. A sequence of binary strings {σn}n∈N where ⋃︀σn ⋃︀ = H(n)
is 2H(n)-infinitely often α-equal (or i.o.α-e.) if for every computable
sequence of binary strings {τn}n∈N, with ⋃︀τn ⋃︀ = ⋃︀σn ⋃︀, we have:

lim sup
n

1 − δ(σn ,τn) ≥ α

Informally, we want {σn}n∈N to be equal infinitely often, on a
fraction of at least α bits, to every computable sequence {τn}n∈N
where ⋃︀τn ⋃︀ = H(n).

3.3 Γ(X) < 1⇑2 implies Γ(X) = 0
The γ value of a sequence is defined by considering longer and
longer initial segments. In order to solve the question, we would
like to consider successive chunks of bits instead of initial segments.
This is done in the following theorem, which will also be used to
solve the Γ question for bases other than 2.

Theorem 3.8. Let ε > 0. Let q ≥ 2 and X ∈ qN. We have (2) implies
(1):

(1) Γq(X) ≥ 1⇑q − ε .
(2) For every k ∈ N∗, for any X -computable sequence of q-ary

strings {σn}n∈N where ⋃︀σn ⋃︀ = ⟨︀2n⇑k ⧹︀, there is a computable
sequence of q-ary strings {τn}n∈N with ⋃︀τn ⋃︀ = ⋃︀σn ⋃︀ such that
for every n, we have 1 − δ(σn ,τn) ≥ 1⇑q − ε .

Proof. Suppose that (2) is true. Consider any sequence Y ∈ qN

computed by X and fix c ∈ N∗. Pick k such that for n large enough
⟨︀2(n+1)⇑k ⧹︀ is smaller than 1⇑c times the sum of ⟨︀2i⇑k ⧹︀ for i ≤ n.
Such a thing is always possible: By the sum of the geometric series
we have that 2(n+1)⇑k −1 is equal to (21⇑k −1)∑n

i=0 2i⇑k . The larger
k is, the closer to 0 the quantity (21⇑k − 1) is. To have 2(n+1)⇑k ≤
1⇑c∑n

i=0⟨︀2i⇑k ⧹︀ we need to compensate the imprecisions due to the
additional −1 constant and due to the use of the floor function. This
is easily done for instance with k such that (21⇑k − 1) < 1⇑(2c).
Split then Y into chunks of bits {σn}n∈N with ⋃︀σn ⋃︀ = ⟨︀2n⇑k ⧹︀.

Thus the length of σn+1 is smaller than 1⇑c times the sum of the
length of ⋃︀σi ⋃︀ for i ≤ n. As {σn}n∈N is an X -computable sequence
satisfying (2), theremust exist a computable sequence {τn}n∈N with
⋃︀τn ⋃︀ = ⋃︀σn ⋃︀ such that for every n, we have 1−δ(σn ,τn) ≥ 1⇑q−ε . Let
R be the concatenation of the τn . Let H(n) = ∑n

i=0 ⋃︀σi ⋃︀. For every n
we have 1 − δ(X ↾H(n),R ↾H(n)) ≥ 1⇑q − ε .

We shall now show that the above quantity does not drop too
much for prefixes of length H(n) + i for i < H(n + 1) −H(n). By
hypothesis, among the H(n)+ i first bits (for n large enough), there
are at least H(n)(1⇑q − ε) bits which are guessed correctly by R.
Also the number of total bits is at most H(n + 1), which is at most
H(n) +H(n)⇑c . Thus for each i < H(n + 1) −H(n) the fraction of
bits which are guessed correctly before H(n) + i is at least:

H(n)(1⇑q − ε)
H(n) +H(n)⇑c

Which equals:
1⇑q − ε

1 + 1⇑c

Thus γ(Y) ≥ 1⇑q−ε
1+1⇑c . We can repeat this operation for c larger

and larger, making lower bounds on the γ values of Y closer and

closer to 1⇑q − ε . If this happens for every Y ∈ qN computable by X ,
we then have Γq(X) ≥ 1⇑q − ε . □

Note that the part (1) implies (2) in the previous theorem is also
true, and will follow from the proof of Theorem 4.3, which answers
the Γ question in base q: In the proof of Theorem 4.3, we deduce
from ¬(2) that X must have a Γq value of 0, then making ¬(1) true.

The following corollary relies on the fact that for binary se-
quences, if we know one value a bit does not take, we actually
know the value of the bit. We will need to elaborate a bit more for
q-ary sequences where q > 2.

Corollary 3.9. Let ε > 0. Let X ∈ 2N. We have (1) implies (2):

(1) Γ(X) < 1⇑2 − ε .
(2) There exists k ∈ N∗, and an X -computable sequence of strings

{σn}n∈N, which is 2⟨︀2
n⇑k

⧹︀-infinitely often (1⇑2 + ε)-equal.

Proof. Suppose (1). By Theorem 3.8. There exists k ∈ N∗, and an
X -computable sequence of binary strings {σn}n∈N where ⋃︀σn ⋃︀ =
⟨︀2n⇑k ⧹︀, such that for any computable sequence of binary strings
{τn}n∈N with ⋃︀τn ⋃︀ = ⋃︀σn ⋃︀, we have 1 − δ(σn ,τn) < 1⇑2 − ε for
infinitely many n.

Such a sequence must also be 2⟨︀2
n⇑k

⧹︀-infinitely often (1⇑2 + ε)-
equal: For any computable sequence of strings {τn}n∈N with ⋃︀τn ⋃︀ =
⋃︀σn ⋃︀, we can consider the computable sequence of strings {τ ′n}n∈N
where each τ ′n is the complement bitwise of τn . There must be
infinitely manyn such that 1−δ(σn ,τ ′n) < 1⇑2−ε and thus infinitely
many n such that 1 − δ(σn ,τn) > 1⇑2 + ε . □

Again, in the previous corollary, the direction (2) implies (1) is
also true and is proved similarly, but using the direction (1) implies
(2) of Theorem 3.8. Using this last corollary, we can now prove
with the help of the list decoding theorem, that if the Γ value of
a sequence is strictly smaller than 1⇑2, then it must actually be
0. Before we prove Theorem 3.11, we need to introduce a simple
technical tool:

Definition 3.10. Let {Tn}n∈ω be a sequence of finite sets of in-
tegers, that is, for each n we have Tn ⊆ N and ⋃︀Tn ⋃︀ < ∞. Such a
sequence {Tn}n∈ω is called a trace. We say that a trace captures
infinitely often a function д ∶ N→ N, if there are infinitely many n
such that д(n) ∈ Tn .

Finally we say that a trace {Tn}n∈ω is computable (resp. A-
computable) if each Tn is computable (resp. A-computable) uni-
formly in n, in a strong sense : An algorithm should tell us at once
all the integers which belong to Tn . Formally, there must exist a
computable (resp. A-computable) function f ∶ N→ N such that for
every n, f (n) = 2x0 + ⋅ ⋅ ⋅ + 2xr and Tn = {x0, . . . ,xr }.

Theorem 3.11. Let X ∈ 2N. The following are equivalent:
(1) Γ(X) < 1⇑2 − ε for some ε > 0.
(2) X is of 2(2n)-i.o.e. degree
(3) Γ(X) = 0.

Proof. (2)→ (3) is given by Theorem 3.6. (3)→ (1) is trivial. We
prove here (1) → (2). Suppose Γ(X) < 1⇑2 − ε for some ε > 0. In
particular from Corollary 3.9, X computes a sequence of binary
strings {σn}n∈N with ⋃︀σn ⋃︀ = ⟨︀2n⇑k ⧹︀ and which is 2⟨︀2

n⇑k
⧹︀-i.o.(1⇑2 +

ε)-e. for some k ∈ N∗. Let us pick ε′ with 0 < ε′ < ε .
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Using the list decoding theorem (Theorem 2.4 with the special
case q = 2), we pick L ∈ N and 0 < α < 1 such that for any n, there
exists a collection Cn of 2⟨︀α⟨︀2

n⇑k
⧹︀⧹︀ strings of length ⟨︀2n⇑k ⧹︀, such

that no string σ of length ⟨︀2n⇑k ⧹︀ has a relative Hamming distance
smaller than or equal to 1⇑2 − ε′ with more than L strings of Cn .
Note that such a collection of strings Cn is computable uniformly
in n. Fix an enumeration τn0 ,τ

n
1 , . . . of the elements of each Cn .

We define the followingX -computable trace {Tn}n∈N: For any n,
Tn is the collection of integers i such that the δ(σn ,τni ) ≤ 1⇑2 − ε′.
Note that eachTn is X -computable uniformly in n and that ⋃︀Tn ⋃︀ ≤ L
(possibly Tn is also empty). Note also that the values of Tn are
bounded by 2⟨︀α⟨︀2

n⇑k
⧹︀⧹︀.

We claim that every computable function д ∶ N→ N with д(n) ≤
2⟨︀α⟨︀2

n⇑k
⧹︀⧹︀, is captured infinitely often by {Tn}n∈N. Indeed, given

such a computable functionд bounded by 2⟨︀α⟨︀2
n⇑k

⧹︀⧹︀, let us consider
the computable sequence of strings {ρn}n∈N with ⋃︀ρn ⋃︀ = ⟨︀2n⇑k ⧹︀
defined by ρn = τni if д(n) = i . As {σn}n∈N is 2⟨︀2

n⇑k
⧹︀-i.o.(1⇑2+ε)-e.

and as ε′ < ε , there must exist infinitely many values n such that
δ(σn , ρn) ≤ 1 − (1⇑2 + ε′). But then by definition of {Tn}n∈N, for
each of these n, we must have д(n) ∈ Tn .

Thus for every computable function д which is bounded by
2⟨︀α⟨︀2

n⇑k
⧹︀⧹︀, there exist infinitely many n such that д(n) ∈ Tn . Now,

by the same argument than the one of Proposition 3.4, either
{T2n}n∈N must capture infinitely often every computable func-
tion bounded by 2⟨︀α⟨︀2

2n⇑k
⧹︀⧹︀, or {T2n+1}n∈N must capture infinitely

often every computable function bounded by 2⟨︀α⟨︀2
(2n+1)⇑k

⧹︀⧹︀. In
either case, {Tn}n∈N can compute a trace that captures infinitely
often every computable function bounded by 2⟨︀α⟨︀2

2n⇑k
⧹︀⧹︀.

By iterating the same idea, X can compute a trace {T ′n}n∈N with
⋃︀T ′n ⋃︀ ≤ L, which captures infinitely often every computable function
bounded by 2L2n . We can also without loss of generality assume
that each element of each T ′n is bounded by 2L2n , and thus assume
that each element of each Tn is coded on exactly L2n bits.

We now use the fact that ⋃︀T ′n ⋃︀ ≤ L for every n, to compute us-
ing T ′n a function h ≤ 2(2n) which equals infinitely often every
computable function bounded by 2(2n). First for every n, we add if
necessary some elements in T ′n such that ⋃︀T ′n ⋃︀ = L. Then we view
each element ei of T ′n as an L-tuple ∐︀e1

i , . . . ,e
L
i ̃︀. Formally e ji is

the j-th chunk of 2n consecutive bits coding ei . Consider the L

distinct X -computable functions h1, . . . ,hL given by hi(n) = eii
where ei = ∐︀e1

i , . . . ,e
i
i , . . . ,e

L
i ̃︀ is the i-th element of T ′n . We claim

that at least one hi is 2(2n)-i.o.e. Suppose otherwise, and con-
sider the L computable functions p1, . . . ,pL witnessing that: for
each i ≤ L, pi never equals hi . Then the computable function
p(n) = ∐︀p1(n), . . . ,pL(n)̃︀ is never captured by {T ′n}n∈N, as for
every n, the i-th component of p(n) (seen as an L-tuple) is differ-
ent from the i-th component of the i-th element of T ′n (seen as an
L-tuple). This contradicts our hypothesis, and then at least one
hi must be 2(2n)-i.o.e. Note that hi is computable from X . This
concludes the proof. □

4 Related questions
4.1 The Γ question for bases other than 2
In this section we show how to deal with bases other than 2, using
variants of the list decoding theorem.We start by using list decoding
to simplify the proof of the following result from Monin and Nies
[19]: If Γq(X) > 1⇑q + ε , then X is computable. The case q = 2
was done by Hirschfeldt, Jockusch, McNicholl and Schupp [13]
using a majority vote technique. Monin and Nies called on a quite
unrelated and difficult theorem from Kummer [18] to generalize to
bases other than 2. The use of list decoding gives a more direct and
simple proof:

Theorem 4.1 ([19]). Let q > 2. Let ε > 0. Let X ∈ qN. If Γq(X) >
1⇑q + ε , then X is computable.

Proof. Suppose Γq(X) > 1⇑q + ε . Let F(n) = (3⇑ε)n . By the sum of
the geometric series, we have F(n) > (2⇑ε)∑i<n

i=0 F(i) for every n.
We let F ′(n) = ∑i≤n F(n).

Using the list decoding theorem, we pick L ∈ N and 0 < α < 1
such that for any n, there exist a collection Cn of q⟨︀α F(n)⧹︀ strings
of length F(n), such that no string σ of length F(n) has a relative
Hamming distance smaller than 1 − 1⇑q − ε⇑2 with more than L
strings of Cn .

Let the X -computable sequence of strings {σn}n∈N with ⋃︀σn ⋃︀ =
F(n) be the encoding of X ↾

⟨︀α F ′(n)⧹︀ using the code Cn . Let Y be
the concatenation of the strings {σn}n∈N. As γq(Y) > 1⇑q + ε ,
there must exist a computable sequence of strings {τn}n∈N with
⋃︀τn ⋃︀ = ⋃︀σn ⋃︀ and such that δ(τn ,σn) < 1 − 1⇑q − ε⇑2 for every n.
Suppose otherwise, then for every computable sequence {τn}n∈N
with ⋃︀τn ⋃︀ = ⋃︀σn ⋃︀, there exists infinitely many n such that τn agrees
on less than 1⇑q + ε⇑2 bits with σn . As ⋃︀τn ⋃︀ is larger than 2⇑ε times
∑i<n
i=0 ⋃︀τi ⋃︀, a simple computation shows that also the concatenation

of the strings τi for i ≤ n agrees with less than 1⇑q + ε bits with
the concatenation of the strings σi for i ≤ n. In particular it would
contradict that γq(Y) > 1⇑q + ε .

Now to compute X we proceed as follow: For every n, there are
at most L strings ofCn which agree with τn on more than 1⇑q + ε⇑2
bits. Among them we know there must be the correct image of
X ↾

⟨︀α F ′(n)⧹︀ by the code Cn . Using {τn}n∈N, we can compute for
every n the sets Tn consisting of all the preimages of the strings of
Cn which agree with τn on more than 1⇑q + ε⇑2 bits. We can then
compute the tree T ⊆ q<N such that σ ∈ T iff ∃n such that σ ∈ Tn
and such that ∀m ≤ n σ extends a string inTm . For every n this tree
contains at most L strings of length n. Also we must have X ∈ (︀T ⌋︀.
In particular, there must be a prefix σ of X such that X is the only
infinite path of T extending σ . This makes X computable by a well
known following argument : suppose we have computed τ with
σ ≺ τ ≺ X , to know if the next bit is 0 or 1, we look for the smallest
n such that there are either no extensions of τ0 of length n in T ,
or no extensions of τ1 of length n in T . By Koenig’s lemma, as X
is the only extension of σ , the algorithm will find such an n and
therefore will know the next bit of X . □

Monin and Nies [19] asked whether for any real r and any q > 2,
we must have Γq(r) = 1⇑q iff Γ(r) = 1⇑2. We now answer the
question by showing that if Γq(r) < 1⇑q, then r Turing computes
a 22n -i.o.e. function which implies Γ(r) = 0. One can easily verify
that Γb+1(r) ≤ Γb(r), which allows us to conclude that Γq(r) = 0.
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In base 2 we use Corollary 3.9 which comes with the symmetry of
2N : If σ is far from a string τ , then σ is close to τ̄ , the complement
bitwise of τ . Of course, no such thing is possible in base q > 2.
But what is important is the use of unlikely events: in base 2 it is
unlikely to be far from a given string τ , and symmetrically it is as
unlikely to be close from τ̄ . We actually do not need this symmetry.
We can simply use the fact that it is unlikely in base q to be far
from a string τ .

This is why we need a variation of the list decoding theorem,
which does not correspond anymore to a concrete problem as it was
the case with error-correcting codes : Instead of assuming that we
never have too much error during our transition, we now assume
that we always have a lot. Being wrong many times is as unlikely
as being correct many times. Thus list decoding is also possible
when the number of errors is always sufficiently big.

Theorem 4.2 (Variation on list decoding). Let q > 2. Let ε > 0 and
n ∈ N. For L ∈ N large enough and α ∈ R+ small enough, there exists
a set C of q⟨︀αn⧹︀ many q-ary strings of length n such that for any
q-ary string σ of length n, there are at most L elements τ of C such
that δ(σ ,τ) > 1 − 1⇑q + ε .

Proof. We prove that if we pick at random the strings in C , the
theorem is true with positive probability. For a string σ ∈ qn , let us
define the somehow opposite of a Hamming ball :D(σ , 1−1⇑q+ε) =
{τ ∈ 2n ⋃︀ δ(σ ,τ) > 1−1⇑q+ε}. By the second concentration inequal-
ity, we have λ(D(σ , 1−1⇑q+ε)) ≤ q−nβ with β = 2ε2 logq(e) (Note
that a proof of the list decoding theorem can be done like the present
proof, but using the bound of the Hamming ball B(σ , 1 − 1⇑q − ε))
given by the third concentration inequality).

Consider L large enough and α small enough, such that α <
β − 1⇑L. Let k = ⟨︀αn⧹︀ and let C be a collection of qk strings picked
at random. For any subset of L + 1 of these strings, the probability
that a given string σ has a relative Hamming distance larger than
1 − 1⇑q + ε with each of them is bounded by q−βn(L+1). Thus the
probability that a given σ has a relative Hamming distance larger
than 1 − 1⇑q + ε with all the strings in any possible subsets of size
L + 1 ofC is bounded by ( q

k

L+1)q
−βn(L+1). And the probability that

this happens for any string σ is bounded by qn( q
k

L+1)q
−βn(L+1).

The following computation shows that this quantity is smaller than
1:

qn( q
k

L+1)q
−βn(L+1) ≤ qnqαn(L+1)q−βn(L+1)

(using k ≤ αn)
≤ q−n(L+1)(−α−1⇑(L+1)+β)

≤ q−n(L+1)(−β+1⇑L−1⇑(L+1)+β)

(using α < β − 1⇑L)
≤ q−n(L+1)((L+1−L)⇑L(L+1))

≤ q−n⇑L

It follows that that for any n, if C is a collection of q⟨︀αn⧹︀ strings
of length n that we pick at random, the probability that no string σ
of length n has a relative Hamming distance bigger than 1− 1⇑q + ε
with more than L strings of C is positive and goes to 1 as n goes
to infinity. In particular, for any n, there exists such a collection of
strings. □

It is now clear how to call on this new list decoding theorem, to
solve the Γ question in any base:

Theorem 4.3. Let q > 2. Let ε > 0. Let X ∈ qN. Suppose Γq(X) <
1⇑q − ε . Then X computes a 2(2n)-i.o.e. function.

Proof. FromTheorem 3.8, theremust existk ∈ N∗ and anX -computable
sequence of q-ary strings {σn}n∈N where ⋃︀σn ⋃︀ = ⟨︀2n⇑k ⧹︀, such that
for every computable sequence of q-ary strings {τn}n∈N, we have
1 − δ(σn ,τn) < 1⇑q − ε for infinitely many n.

Using the variation of the list decoding theorem (Theorem 4.2),
we pick L ∈ N and 0 < α < 1 such that for any n, there exists a
collection Cn of q⟨︀α⟨︀2

n⇑k
⧹︀⧹︀ strings of length ⟨︀2n⇑k ⧹︀, such that no

string σ of length ⟨︀2n⇑k ⧹︀ has a relative Hamming distance bigger
than 1− 1⇑q+ ε with more than L strings ofCn . Fix an enumeration
τn0 ,τ

n
1 , . . . of the elements of each Cn .

The proof continues similarly to the one in base 2, except that it
is now impossible to be far from more than L strings of Cn instead
of impossible to be close. We define similarly as in the proof of
Theorem 3.11, the following X -computable trace {Tn}n∈N: For any
n, Tn is the collection of integers i such that the δ(σn ,τni ) > 1 −
1⇑q + ε . As in Theorem 3.11, {Tn}n∈N is X -computable, the values
of Tn are bounded by q⟨︀α⟨︀2

n⇑k
⧹︀⧹︀ and from Theorem 4.2 we know

that ⋃︀Tn ⋃︀ ≤ L.
As in the proof of Theorem 3.11, we show that every computable

function д ∶ N → N with д(n) ≤ q⟨︀α⟨︀2
n⇑k

⧹︀⧹︀, is captured infinitely
often by {Tn}n∈N. Indeed, given such a computable function д

bounded by q⟨︀α⟨︀2
n⇑k

⧹︀⧹︀, consider the computable sequence of q-ary
strings {ρn}n∈N with ⋃︀ρn ⋃︀ = ⟨︀2n⇑k ⧹︀ defined by ρn = τni if д(n) = i .
By hypothesis on the sequence {σn}n∈N, there must exist infinitely
many values n such that δ(σn , ρn) > 1 − 1⇑q + ε . But then by
definition of {Tn}n∈N, for each of these n, we must have д(n) ∈ Tn .

Now, As in the proof of Theorem 3.11, one easily argue that X
computes a trace {T ′n}n∈N with ⋃︀T ′n ⋃︀ = L which captures infinitely
often every computable function bounded by qL2n . We can also
without loss of generality assume that each element of each T ′n is
bounded by qL2n , and thus coded on exactly L2n bits. As in the
proof of Theorem 3.11, one easily shows that {T ′n}n∈N (and thus
X ) computes a function h ≤ q(2n) which is equal infinitely often to
every computable function bounded by q(2n). Therefore as every
q(2n)-i.o.e. function is also a 2(2n)-i.o.e. function, X computes a
2(2n)-i.o.e. function. □

4.2 The Gamma question in the tt-degrees
A well understood and studied notion in the Turing degrees is the
one of being computably dominated. We say that X ∈ 2N is com-
putably dominated if every function from N to N that X computes
is bounded by a computable one. One of the first given examples of
sequences with a Γ value of 0 are the non-computably dominated
sequences. This class is quite large in several senses (it has measure
1 and it is co-meager). Also for a given sequence X , we have the
following well known equivalence [16]:

1. X is computably dominated
2. the truth-table degrees containing X coincides with the Tur-

ing degrees containing X .
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We say that X ≥t t f if there exists a functional which is total
using any oracle, and which gives f whenX is used as an oracle. So
(2) above means that whenever X is used as an oracle to compute a
function, then the functional using X can be made total on every
oracle other than X . This property was used for instance in [1] to
show that the computably dominated randoms have a Γ value of
1⇑2.

As the Γ question was solved already on the Turing degree which
are not computably dominated (their Γ value is 0), this gave rise
to an analogue of the Γ question in the tt-degrees. The function
Γt t (X) is defined like the function Γ(X), except the infimum is
now taken over all the binary sequences in the tt degrees of X .
Denis Hirschfeldt [11] asked about the possible Γ values for the
tt-degrees. Our proofs actually also solves the Γ question in the
tt-degrees:

The equivalent of Corollary 3.9 for the tt-degrees is the following:
If Γt t (X) < 1⇑2−ε , then there exists k ∈ N∗, and a 2⟨︀2

n⇑k
⧹︀-infinitely

often (1⇑2 + ε)-equal sequence of strings {σn}n∈N which is truth-
table computable from X . Also in the proof of Theorem 3.11, the
computation of a trace of at most L values which traces infinitely
often every function bounded by 2⟨︀α⟨︀2

n⇑k
⧹︀⧹︀ from a 2⟨︀2

n⇑k
⧹︀-infinitely

often (1⇑2 + ε)-equal sequence of strings is clearly tt . Then the
computation (the extraction at a set of computable positions) of
such a trace with bound 2L2n instead of 2⟨︀α⟨︀2

n⇑k
⧹︀⧹︀ is also clearly tt .

Finally the extraction of a 2(2n)-i.o.e. function from such a trace is
also tt .
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