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Abstract
We present a new quasi-polynomial algorithm for solving parity

games. It is based on a new bisimulation invariant measure of com-

plexity for parity games, called the register-index, which captures

the complexity of the priority assignment. For fixed parameter k ,
the class of games with register-index bounded by k is solvable in

polynomial time.

We show that the register-index of parity games of size n is

bounded by O(logn) and derive a quasi-polynomial algorithm.

Finally, we give a descriptive complexity account of the quasi-

polynomial complexity of parity games: The winning regions of

parity games with p priorities and register-index k are described

by a modal µ formula of which the complexity, as measured by its

alternation depth, depends on k rather than p.

CCS Concepts • Theory of computation→ Complexity the-
ory and logic; Logic and verification; Modal and temporal logics;

Keywords parity games, modal µ calculus, algorithmic complex-

ity, descriptive complexity
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1 Introduction
Parity games are two-player games of infinite duration, played

on finite graphs labelled with integer priorities. They arise at the

intersection of logic, games, and automata theory, with applications

in reactive synthesis and verification. In particular, they are the

model-checking games for the modal µ calculus, Lµ . Solving parity

games – that is, deciding which player has a winning strategy – is

the subject of much research, focused both on understanding their

complexity and developing practical solvers [25].

Despite extended efforts, the exact complexity of solving parity

games remains an open problem. The problem is in UP∩coUP [21]

and admits a quasi-polynomial algorithm [9, 12, 16, 23]. While

∗
Work supported by BMBF project no. 01IS160253 "ARAMiS II"

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00

https://doi.org/10.1145/3209108.3209115

a general polynomial algorithm is still elusive, many restricted

classes of parity games are known to be solvable in polynomial,

or even sub-polynomial time. This is the case for classes of games

with a logarithmic number of priorities [9] as well as for classes

of games where the structure of the underlying graph is restricted:

parity games of bounded Kelly-width [19], DAG-width [3] and

entanglement [4] are all solvable in polynomial time, while those

with bounded tree-width and clique-width are even in LogCFL [15],

the class of languages logspace reducible to context-free languages.

These structural measures on the graph of a parity game are

orthogonal to the size of the priority assignment. However, the

complexity of a parity game is not solely due to its structure nor

to the size of its priority assignment, but to how both interact. For

example, the cycles in a graph may be intertwined, causing high

entanglement, yet unless the priorities are equally entangled within

these cycles, this measure is not an accurate reflection of algorith-

mic complexity. The key insight of this paper is to capture the

complexity of the priority assignment with a new measure which is

logarithmically bounded in the size of the graph. This yields a new

quasi-polynomial algorithm and a descriptive complexity account

of the quasi-polynomial solvability of parity games.

A. A new measure of complexity
Our first contribution is to parametrise the complexity of the

priority assignment of a parity game. We introduce the register-
index as a new, Lµ describable, bisimulation invariant measure of

complexity for parity games, which captures, roughly speaking,

how many priorities the winner of a parity game needs to keep

in memory in order to produce a witness of their victory. Like

entanglement, register-index is defined in game-theoretic terms,

using a parametrised k-register game that is played on a parity game

arena.

We then define a k-parameterised polynomial-time algorithm

which, for fixed k , solves parity games of register-index up to k .
This adds parity games of bounded register-index to the classes of

parity games known to be solvable in polynomial time. Notably,

even the class of games of register-index 1 contains non-trivial

parity games of arbitrarily high entanglement, tree-width, Rabin-

index, Kelly-width, DAG-width and arbitrarily many priorities, as

well as the known parity games exhibiting worst-case performance

for recursive [2, 14], strategy improvement [13], and one of the

existing quasi-polynomial algorithms [12].

We then show that the register-index of a parity-game of size n
is O(logn). This yields a novel proof that parity games are solvable

in quasi-polynomial time, based on reducing solving a parity game

of size n with p priorities to solving one of sizeO(plognn logn)with
O(logn) priorities.

B. An Lµ account of register-index
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Although the runtime of this algorithm does not improve over

existing quasi-polynomial algorithms, it provides a novel, Lµ per-

spective on solving parity games in quasi-polynomial time. In the

second half of the paper, we link the quasi-polynomial solvability of

parity games to their descriptive complexity. It is well known that

the winning regions of parity games with maximal priority p are

described by a Lµ formula of which the alternation depth depends

only on p. We show that the alternation depth of the Lµ formula

describing the winning regions of parity games of register-index

up to k and of maximal priority p depends only on k , rather than

p. Its size is O(kpk ). Since register-index is logarithmic in the size

of the game, a Lµ formula of alternation depth k and size O(kpk )

describes the winning regions of parity games of size up to 2
k
with

up to p priorities.

Finally, we show that register-index, when extended to Lµ for-

mulas, is a decidable upper bound on the semantic complexity of

formulas, and demonstrate that it is sensitive to non-trivial syntac-

tic inefficiencies.

C. Overview
In brief, we provide new insights into the complexity of parity

games and link their quasi-polynomial solvability to their descrip-

tive complexity. Its main contributions are:

• Introducing a new, bisimulation invariant measure of com-

plexity for parity games (Section 3);

• Showing that for fixed k solving parity games of register-

index up to k is in P, thus adding parity games of bounded

register-index to the classes of parity games known to be

solvable in polynomial time (Theorem 3.6); Classes of games

of different register-index are studied in Section 4;

• Bounding the register-index of parity games of size n with

O(logn) (Theorem 4.7), resulting in a new quasi-polynomial

parity game algorithm (Section 5);

• Relating register-index to complexity in Lµ (Section 6).

2 Background
2.1 Parity games
Definition 2.1 (Parity games). Aparity game is an infinite-duration

two-player zero-sum path-forming game, played between Even and

her opponent Odd on a finite game graph G = (V ,Ve ,Vo ,vι ,E,Ω)
called the arena. The vertices V of the arena are partitioned into

those belonging to Even, Ve , and those belonging to Odd, Vo . The
priority assignment Ω : V → I maps every vertex to a priority in

I , a finite prefix of the non-negative integers. Starting at an initial

state vι ∈ V , a play proceeds with the owner of the current state

v choosing a state v ′ among its successors in the directed edge

relation E ⊆ V ×V . Thus the players collaboratively form a play,

consisting of a potentially infinite path along the edges of the game

graph. If the play is finite, the owner of its last position loses; Oth-

erwise Even wins if the highest priority visited infinitely often is

even, else Odd wins.

A (positional) strategy σ for a player P ∈ {Even,Odd}maps every

position v belonging to P in a parity game to one of its successors

σ (v). A play π = v0v1... is said to agree with σ when for all i , if vi
belongs to P , then vi+1 is σ (vi ). A strategy σ for player P is said

to be winning for P if all plays starting at vι that agree with σ are

winning for P .

Theorem 2.2. [11] In all parity games, one of the players has a
positional winning strategy.

It will often be convenient to assign priorities to edges instead of

vertices, with Ω : E → I . A parity game with edge priorities can be

converted into onewith node priorities by introducing intermediate,

priority-carrying nodes onto all edges and assigning a low priority

to other vertices.

We denote the set {1, 2, ...,n} with [n].

2.2 Entanglement
Register-index is inspired by and related to entanglement, which

was introduced by Berwanger and Grädel [4] as a measure of how

intertwined the cycles of a graph are.

Definition 2.3 (Entanglement). Entanglement is defined with a

detective game in which a team of k detectives tries to catch a thief.

The thief picks his initial position, while the detectives start outside

of the graph. At each move, the detectives can either stay as they

are or one of them can move to the current position of the thief.

The thief then chooses a successor state not occupied by a detective.

If such a state does not exist, the detectives win. If the thief can

keep playing infinitely, he wins. Then, the entanglement of a graph

is the minimal k for which k detectives have a winning strategy.

For example, n-cliques have entanglement n − 1 and acyclic graphs

have entanglement 0.

A positional strategy σ for player P on a parity game G induces

a subgraph Gσ in which positions belonging to player P only have

one successor. The entanglement of a parity game is the minimum

entanglement of a subgame Gσ induced by a positional winning

strategy σ .

Theorem 2.4. [4] Parity games of bounded entanglement are solv-
able in polynomial time.

The proof of this theorem uses a k-super-detective game, solvable
in polynomial time for fixed k . For parity games on graphs of

entanglement k , Even wins the parity game if and only if she wins

the k-super-detective game. The k-register game, introduced next,

can be seen as a bisimulation-invariant, infinite duration variation

of this game
1
.

Although not bisimulation invariant, entanglement is related

to Lµ : the entanglement of a finite graph corresponds to the num-

ber of fixpoint variables needed to describe it up to bisimulation

with a Lµ formula – a fact used to show the strictness of the Lµ
variable hierarchy [6]. The winning regions of parity games of

bounded entanglement are LFP-describable [10]. The relationship

between entanglement and other structural measures is discussed

in Berwanger et al. 2012 [5], while directed and undirected graphs

of entanglement two are studied in Grädel et al. 2009 [17] and

Belkhir and Santocanale 2007 [1] respectively.

3 The register-index of parity games
Like entanglement, the register-index of parity games is defined

using a parametrised game: thek-register game. This game is played

on a parity game arena, on which in addition to winning the parity

game, player Even has produce a witness of her victory using a

fixed amount of memory. This section introduces the k-register

1
Very roughly, instead of having to catch the thief just once, the super-detective needs

to catch the thief infinitely often after a high even priority and only finitely often after

a higher odd priority.
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game and shows that it is an under-approximation of a parity game:

if for any k Even wins the k-register game on a parity game G , she
also wins in the parity game onG; for every parity gameG in which

Even wins, there is k such that Even wins in the k-register game

onG . We call the minimal such k the register-index ofG . Solving a
parity game G of bounded register-index then reduces to solving a

k-register game onG which, for fixed k , can be done in polynomial

time.

3.1 Register games
The k-register game consists of a normal parity game, augmented

with k registers. Each register records the highest priority that has

occurred in the parity game since it was last reset. The registers

are ranked according to how long it has been since their last reset,

with a newly reset register having rank 1. Initially, all registers

contain 0 and the ranking is arbitrary. One player, let’s say Even,

is given control of the registers. At each turn, Even can choose to

reset a register of any rank r . If the register contains the priority p,
this produces output 2r if p is even and 2r + 1 otherwise. As long

as Even resets registers infinitely often, this produces an infinite

sequence in [2k + 1]ω . To win, Even has to either win finitely in

the underlying parity game, or produce an infinite sequence of

outputs that satisfies her parity condition: the maximal priority

output infinitely often must be even.

We now define formally the k-register game on a parity gameG
with priority domain I . Since the winning condition of the register

game is a parity condition, we present the k-register game on

a parity game arena G as a parity game on an arena Rk
e (G), of

which the positions are positions of G paired with vectors in Ik

that represent the contents of the registers. An additional binary

variable t indicates whether the next move is a potential register

reset (t = 0), or a move in the underlying parity game (t = 1).

Definition 3.1 (k-Register game). LetG be a parity game (VG ,VG
e ,

VG
o ,v

G
ι ,E

G ,ΩG ) and let I be the co-domain of ΩG
: VG → I . For

a fixed non-zero parameter k ∈ N, the arena of the k-register

game Rk
e (G) onG in which Even controls the registers, consists of

Rk
e (G) = (V ,Ve ,Vo ,vι ,E,Ω) as follows. While G carries its priori-

ties on its vertices, for the sake of clarity, Rk
e (G) carries them on

its edges: Ω : V → [2k + 1].

• V is a set of positions (p, x̄ , t) ∈ VG × Ik × {0, 1},

• Vo consists of (p, x̄ , 1) such that p ∈ VG
o ,

• Ve consists of V \Vo ,
• vι is (v

G
ι , 0̄, 0),

• E is the disjoint union of sets of edges Emove , Eskip and Er
for all r ∈ [k] where:
Emove consists of edges ((p, x̄ , 1), (p

′, x̄ ′, 0)) such that

– (p,p′) ∈ EG and

– x ′i = max(ΩG (p′),xi ).
Eskip consists of edges ((p, x̄ , 0), (p, x̄ , 1)).
For each r ∈ [k], Er consists of edges ((p, x̄ , 0), (p, x̄

′, 1)) such

that:

– x ′i = xi for i > r ,
– x ′i = xi−1 for 1 < i ≤ r ,
– x ′

1
= 0.

• Ω assigns priorities from [2k + 1] to edges as follows:

– Edges of Emove and Eskip have priority 1;

– An edge ((p, x̄ , 0), (p, x̄ ′, 1)) ∈ Er has priority 2r if xr is

even, and priority 2r + 1 otherwise.

start

0 0

1

2

Figure 1. Parity game of register-index 2

Priority 1 – 2 1 – 0 2 – 1 – 2 – 1

Reset – 2 – – 1 – – 2 – 1 – 2 –

Reg. 1 1 0 2 2 0 0 2 0 1 0 2 0 1

Reg. 2 1 1 2 2 2 2 2 2 2 2 2 2 2

Output – 5 – – 2 – – 4 – 3 – 4 –

Figure 2. Fragment of a play in a 2-register game.

Terminology: Given a play in Rk
e (G), we call the underlying

play its projection onto the first element of each visited position.

At a position (p, x̄ , t), we write that:

• a priority q ∈ I occurs if ΩG (p) = q;
• a register of rank r ∈ [k] holds priority q ∈ I if xr = q;
• Even resets the register of rank r and outputs j ∈ [2k + 1] if

the play follows an edge in Er of priority j;
• q is recorded at rank r if Even resets the register of rank r at
a position (p, x̄ , 0) where xr = q;

• the interval of a position p at which Even resets a register a
is the fragment of the play since the previous reset of a (not

necessarily at the same rank).

A strategy for Odd in G induces a strategy for Odd in Rk
e (G). A

strategy for Even in G, paired with a resetting strategy in Rk
e (G)

from positions (p, x̄ , 0) induces a strategy for Even in Rk
e (G).

The k-register game arena Rk
o (G) where Odd controls the reg-

isters is similar except that positions (p, x̄ , 0) are in Vo , edges in
Emove ∪ Eskip have priority 0, and edges ((p, x̄ , 0), (p, x̄ ′, 1)) of Er
have priority 2r if xr is even, and 2r − 1 otherwise. The k-register
game with Even (resp., Odd) in control of registers on a parity

game arenaG is the parity game on the arena Rk
e (G) (resp., R

k
o (G)).

Unless stated otherwise, the k-register game on G refers to Rk
e (G).

Example 3.2. Figure 1 shows an edge-labelled arena in which

Even wins the parity game but loses the 1-register game. In the

1-register game, Odd’s strategy is to stay at a position until Even

resets the unique register and then repeat this in the other position.

The unique register will then alternatively hold 1 and 2 (and briefly

0 between moves). If Even resets registers infinitely often, this

strategy produces outputs 2 and 3 infinitely often, causing Even to

lose.

The register contents during a play in the 2-register game is

shown in Figure 2. Note how a reset of rank 2 causes the contents

of the register of rank 1 to move into the register of rank 2. Even

can win by resetting the register of rank 1 after seeing 1 or 0, and

the one of rank 2 after seeing 2.

Dedicated readers may find it helpful to work out the register-

index of the 4-node parity game in Figure 5.
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For fixed k , the k-register game on G is a parity game on an

arena of polynomial size and of priority domain [2k + 1]: it can be

solved in polynomial time in the size of G.

3.2 Register-index
We first prove two fundamental properties of k-register games.

Lemma 3.3. If Odd has a winning strategy in G, he also has a
winning strategy in Rk

e (G), for all k . Dually, if Even has a winning
strategy in G, she also has a winning strategy in Rk

o (G), for all k .

Proof. We show that a winning strategy τ for Odd in G is also

winning in Rk
e (G), for any k .

Odd obviously wins finite plays that agree with τ . Odd also wins
if a play only contains a finite number of resets. For an infinite play

with infinitely many resets that agrees with τ , consider the highest
rank r at which registers are reset infinitely often. Observe that for

a newly reset register to reach rank r , a register of rank r or higher
has to be reset at least once. Therefore if a reset of rank r occurs at
a position p, then the the interval of p begins no later than at the

previous position at which a reset of rank r or higher occurred. As
a result, as long as there are infinitely many resets, the dominant

odd priority of the play is recorded infinitely often at rank r . The
maximal priority output infinitely often is therefore odd. The proof

of the dual statement is similar. □

The converse does not hold: Even can have a winning strategy in

a parity gameG but still lose the k-register game onG (see Example

3.2). However, for every parity game G, there is a k , bounded by

the number of even priorities in G (and, as we will see later, by

1 + logn), such that Even has a winning strategy inG if and only if

she has a winning strategy in Rk
e (G).

Lemma 3.4. LetG be a parity game with k even priorities, in which
Even has a winning strategy. Even has a winning strategy in Rk

e (G).

Proof. Even’s strategy in Rk
e (G) is to play a positional winning

strategy in the underlying parity game G and reset registers as

follows: when an even priority p occurs in the underlying game for

the first time, she resets the register of highest rank, and whenever

p occurs again, she resets that same register, regardless of its current

rank.

A reset then records the highest priority seen between two oc-

currences of an even priority (excluding the first occurrence, but

including the second). The rank of a register a reset at the occur-
rence of an even priority p is the number of distinct even priorities

that have occurred since the last occurrence of p, plus one: every
occurrence of a new even priority triggers the reset of a register that

was last reset earlier than a, thus increasing the rank of a; repeated
occurrences of even priorities between consecutive occurrences of

p trigger the reset of registers of smaller rank than a. Therefore, if
a register is reset atv and another one at v ′, and the interval ofv is

contained within the interval of v ′, then the reset at v ′ is of strictly
higher rank than the reset at v .

Let q be the highest priority that occurs in a play π infinitely

often, q′ the highest odd priority that is recorded infinitely often,

and r the highest rank at which q′ is recorded infinitely often. Now

consider a suffix of π in which q is the first occurring priority and in
which no odd priority larger than q′ occurs. In this suffix, whenever

at a positionv a register is reset and q′ is recorded, the interval atv
is nested within two consecutive occurrences of q, as else q would

be recorded instead of q′. Therefore, if q′ is recorded at rank r , the
next reset at a position where q occurs records q at a higher rank

than r . As a result, q is recorded infinitely often at a rank higher

than r , so the maximal output produced infinitely often is even.

Similarly, if Odd wins a parity game G with k odd priorities, he

has a winning strategy in Rk
o (G). □

Definition 3.5 (Register-index). The register-index of a parity game

G is the least integer k such that Even wins both G and Rk
e (G) or

Odd wins both G and Rk
o (G). This amounts to the least k such that

Rk
e (G), R

k
o (G) and G have the same winner.

Theorem 3.6. Parity games of bounded register-index are solvable
in polynomial time.

Proof. For a fixed parameter k , let G = (V ,Ve ,Vo ,vι ,E,Ω) be a

parity game of register-index at most k with priority co-domain I :
Even has a winning strategy in G if and only if she has a winning

strategy in Rk
e (G). The game Rk

e (G) is itself a parity game, with

state spaceV × Ik × {0, 1} and priorities [2k + 1]. As k is fixed, this

is Ptime-solvable.

□

4 Some register-index properties
This section studies register-index inmore details. First, we compare

register-index to other measures, then we prove one of the core

theorems of this paper: register-index is logarithmic in the size of

the game. In brief:

• The number of priorities in a parity game is an upper bound

on its register-index (Lemma 3.4);

• Parity games in which a k-set of vertices intersects all cycles
have register-index at most k (Lemma 4.1).

• Games of register-index 1 can have arbitrarily high entan-

glement and number of priorities;

• For all m there are parity games of register-index m with

entanglement 2.

• Rabin index and register-index are orthogonal.

• A parity game of size n has register-index at most 1 + logn
(Theorem 4.7).

As with entanglement, the register-index depends only on the

subgraphs induced by winning strategies. Therefore all examples

are one-player games where Odd controls all positions but Even

wins.

4.1 Register-index and entanglement
In some cases, entanglement and register-index coincide:

Lemma 4.1. If there is a set of positions S of size k that intersects all
cycles, then the parity game has register-index (and entanglement) at
most k .

Proof. The winning player can use a positional winning strategy

in the underlying game and reset registers as follows: at the first

occurrence of v ∈ S she resets the register of maximal rank, and

at each subsequent occurrence of v , she resets the same register,

regardless of its rank. Each register that is reset at least twice

records the highest priority that occurs in a cycle from a position

in S to itself. As S intersects all cycles, registers get reset infinitely

often. The underlying strategy forces all cycles to be dominated by

a priority of the winning parity; all outputs are of this parity. □
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Figure 3. A parity game of register-index 1
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Figure 4. A parity game of register-index 2

In general entanglement and register-index are orthogonal:

Lemma 4.2. There are parity games of register-index 1 with both
arbitrarily high entanglement and number of priorities.

Proof. Consider then cliqueCn (Figure 3) where all nodesvi , i ∈ [n]
belong to Odd, with the following edge-priorities: the edge from

vi , i ∈ [n] to vj , j ∈ [n] if i > j has priority 2i; the edge from vj to
vi has priority 2i − 1. This parity game has entanglement n and 2n
priorities. Even wins R1

e (Cn ): she resets the register whenever an
even priority is seen. Any path with only odd priorities, followed

by an even priority p, sees no priorities higher than p. Therefore,
every recorded priority – and hence every output – is even. □

Example 4.3. To see how changes in the order of priorities affect

the register-index, reverse the edges of Cn (Figure 4) to obtain a

family of parity games of register-index 2 and of size, entanglement

and number of priorities Ω(n). Even’s winning strategy in the 2-

register game consists of resetting at each turn the register of rank

1 if it contains an odd priority, and resetting the register of rank 2

otherwise.

Lemma 4.4. For allm, there exists a parity game of register-index
at leastm and entanglement 2.

Proof. LetH0 be the game arena consisting of a single node, belong-

ing to Odd, with a self-loop of priority 0. This unique node is also

the initial node of H0.

Then, for all n > 0, the arena Hn consists of two distinct copies

of Hn−1 with initial positions v0 and v1 respectively, with an edge

(v0,v1) of priority 2n − 1 and an edge (v1,v0) of priority 2n. The
position v0 is also the initial position of Hn . See Figure 5.

Even wins these parity games Hn because all cycles are domi-

nated by an even priority. H0 is of entanglement 1, while Hi for

i > 0 is of entanglement 2. We will show that for n > 0, Odd has a

winning strategy in the n-register game Rn
e (Hn ).

We reason inductively, and show that for each Hn , i) from the

initial position in Rm
e (Hn ) form ≥ n, with a register configuration

in which register contents are bounded by 2n − 1, Odd can force

the game to output 2n + 1 or a higher odd priority, before returning

to the initial position, and ii) Even loses in Rn
e (Hn ).

Base case. We first show that Odd has a winning strategy in

R1

e (H1). His strategy is to always loop in the current position until

Even resets the unique register, then move to the other position.

This causes both 1 and 2 to be recorded infinitely often at rank 1,

producing 2 and 3 infinitely often. Note that if Odd uses this same

strategy inRm
e (H1) form ≥ 1, starting from a register configuration

in which register contents are bounded by 1, although he can’t

necessarily win, he can force the game to either stay away from

the initial position, or output 2n + 1 or a higher odd priority before

returning to the initial position.

Inductive step. Assume i) and ii) for Hn .

i) Consider the following strategy for Odd in Rm
e (Hn+1) for

m ≥ n + 1. He first moves from v , the initial position of Hn+1 onto

the initial positionv ′ of the second component ofHn+1, via the odd

priority 2n+ 1. Then, he plays inHn , which only contains priorities

smaller than 2n + 1, with a strategy that is winning in Rn
e (Hn ). To

counter this strategy, Even has eventually to reset a register of rank

n + 1 or higher, after which Odd returns to the initial position. This

is his strategy τn+1. Observe that if at the initial position all register

contents are bounded by 2n + 1, then Even will either lose in the

second Hn component, or reset a register of rank n + 1 or higher

when it contains the odd priority 2n + 1, outputting 2n + 3 or a

higher odd priority.

ii) We show that he also has a winning strategy in Rn+1

e (Hn+1).

He begins by playing τn+1 until 2n + 3 is output and the play is

back at the initial position. Note that the registers now all contain

2n+2, so he can not yet repeat τn+1. Instead, he plays a strategy that

is winning in Rn
e (Hn ) in the first Hn component of Hn+1. Again,

Even will lose unless she resets register n + 1 infinitely often. After

she has reset the register at rank n + 1 at least n + 1 times, all the

registers hold values smaller than 2n + 1. Odd can then return to

the initial position, and again use τn+1 to force output 2n + 3. Thus

by alternating between using τn+1 to force the maximal odd output,

and clearing the registers of higher priorities in order to be able to

use τn+1 again, Odd forces 2n + 3 to be output infinitely often.

Hence Hn has register-index at least n + 1.

□
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Figure 5.H0,H1,H2,H3 : A family of parity games of high register-

index and entanglement at most 2

4.2 Rabin-index and register-index
Another related measure is the Rabin index [20] which, like register-

index, considers both the structure of cycles in a parity game and

its parity assignment. The idea of the Rabin index is to capture the

minimal priority assignment that preserves winning regions and

strategies regardless of the ownership partition of the game graph.

Definition 4.5 (Rabin index). Given a directed graph G = (V ,E),
two priority assignments Ω,Ω′

over V are equivalent if for all

partitions of V into Ve and Vo , and all v ∈ V , the parity games

(V ,Vo ,Ve ,v,Ω) and (V ,Vo ,Ve ,v,Ω
′) have the same winner and

same set of winning strategies. The Rabin index of a parity game

G with priority assignment Ω is then the size of the smallest co-

domain of any equivalent priority assignment over the graph of

G.

Lemma 4.6. For all k there are parity games of register-index at
least k and Rabin index 1 and vice versa.

Proof. Since the Rabin index is agnostic to the ownership of nodes

and register-index depends on the subgraphs induced by winning

strategies, we can build games of low register-index and high Rabin

index as follows: a game consisting of a starting position belonging

to Even with one successor in a winning region of register-index 1,

and another in a parity game of Rabin index k has register-index 1

and Rabin index at least k . Conversely, the graphs Hn of register-

index at least n + 1 are all of Rabin index 1, as witnessed by the

trivial colouring which assigns 0 to all positions. Rabin index and

entanglement are therefore orthogonal.

□

4.3 A logarithmic bound on register-index
In this section we prove one of the main results of this paper:

Theorem 4.7. The register-index of parity games of size n is at most
1 + logn.

Before diving into the main proof, we define the following:

Definition 4.8. A strategy σ for Even in a k-register-game of maxi-

mal priority q is defensive if, from a configuration where the highest

ranking register contains q or a higher even priority, plays which

agree with σ never output 2k + 1.

Definition 4.9. The defensive register-index ofG where Even wins

the parity game is the least integer k such that Even wins Rk
e (G)

with a defensive strategy. The register-index ofG is bounded by its

defensive register-index.

Proof. Let G = (V ,Ve ,Vo ,vι ,E,Ω) be the parity game induced by a

positional winning strategy σ for Even in some parity game: nodes

v ∈ Ve have a unique successor, namely σ (v). Let q be the least

even priority larger or equal to all priorities appearing in G. We

start by proving that if G has defensive register-index r > 1, it has

two distinct subgames of defensive register-index r − 1.

If r = 2, this is trivial: all singleton games have register-index 1.

We now consider the case of r > 2.

LetG1, ...,G j be the maximal strongly connected subgames ofG
induced by veritices of priority up to q − 2, and let their defensive

register-indices be k1, ...,kj respectively: ki is the number of reg-

isters Even needs in order to win with a defensive strategy in the

ki -register game from all positions of Gi . Let km be a maximum

among these, or 1 if G has no strongly connected subgames of pri-

ority up to q − 2.

We show that km ≥ r − 1. For contradiction, assume km < r − 1.

Even’s strategy in the r − 1-register game on G is as follows. She

resets the register of rank r − 1 only when q occurs. Then, in each

subgame Gi , she simulates her winning strategy in the ki -register
game using only the ki lowest ranking registers, leaving the register
of rank r − 1 untouched. This forces Odd to eventually leave every

subgame Gi , or lose. Since every cycle is dominated by an even

priority, a play that eventually leaves every subgame Gi , or which

eventually doesn’t enter subgames any more, is either finite and

winning for Even, or sees q infinitely often. This strategy is winning
and defensive, since it resets the highest ranking register infinitely

often when it contains q, and never when it contains an odd priority.
G therefore has defensive register-index at most r − 1, rather than

r , a contradiction.
Therefore km ≥ r − 1. If km = r , we consider the strictly smaller

subgame Gm instead of G and show that it too has two subgames

of defensive register-index r − 1.

If only one subgame Gi has defensive register-index km = ki =
r − 1, we show that Even has a defensive winning strategy in the

r−1 register game onG , a contradiction. Her strategy begins by first
resetting all registers that initially contain odd priorities (this might

take several turns), regardless of the progress in the parity game.

Note that if the register of rank r − 1 initially contains q or a higher

even priority, this register does not get reset. After this initial series

of resets, her strategy is as follows. She resets the register r − 1

whenever she sees q. Note that since q is the maximal priority and

r − 1 > 1, immediately after this reset, the register of maximal rank
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still contains q or a higher even priority. In subgames G j where

j , i , she simulates a winning strategy in R
kj
e (G j ) without using

the register of rank r − 1. When she entersGi she plays a defensive

winning strategy, this time using all r − 1 registers.

This strategy is winning: finite plays are trivially winning for

Even; a play that eventually stays in a subgame agrees with a

winning strategy within that subgame; a play that either leaves

subgames infinitely often or eventually does not enter a subgame

must see q infinitely often, and always between two visits to Gi ,

and therefore output 2(r − 1) but not 2(r − 1) + 1 infinitely often.

If the initial register-configuration contains q or a higher even pri-

ority in the register of rank r − 1, then this strategy never enters

Gi without q or a higher even priority in the register of rank r − 1,

and therefore never outputs 2(r − 1) + 1. Hence it is defensive. The

defensive register-index ofG is therefore r − 1, a contradiction. We

conclude that a game of defensive register-index r > 1 has at least

two distinct subgames of defensive register-index r − 1.

Then, as the same argument applies to all subgames of G, a
game of defensive register-index r has 2

r−1
distinct subgames of

defensive register-index 1. This bounds the defensive register-index

of a parity game with 1 + logn where n is the size of the parity

game. The same bound applies to the register-index, which must

be lower than the defensive register-index.

□

5 Algorithmic complexity
The algorithmic consequence of Theorem 4.7 is that one can always

solve R
1+log |G |
e (G) instead of G, which gives an alternative quasi-

polynomial time algorithm for solving parity games:

Corollary 5.1 (Also from [9, 23]). Parity games are solvable in
quasi-polynomial time.

Proof. Let n be the number of vertices in a parity game G with

register-index k , with p distinct priorities, andm edges. The parity

game Rk
e (G) has O(npk ) positions, 2k + 1 priorities and O((m +

kn)pk ) edges. Since Rk
e (G) has its priorities on its edges, for the

complexity analysis we take the size of Rk
e (G) to be O(kndk ), to

account for an additional vertex for each of the O(kndk ) edges of
significant priority – that is, those in Er for some r ∈ [k].

The register-index of a parity game of size n is at most 1 + logn.

Therefore solving parity games G reduces to solving Rk
e (G) where

k = 1+logn. TheRk
e (G) game can then be solved with an algorithm

exponential in the number of priorities of one’s choice, say the small

progress measure algorithm [22], to obtain a quasi-polynomial

algorithm. □

For a tighter complexity analysis, one can use Jurdiński and

Lazic’s quasi-polynomial succinct progress measure algorithm [23]

which runs in O(mη2.38) if the number of priorities is less than

logη, where η is the number of positions of odd priority. This is

the case for Rk
e (G), which has over npk positions of odd priority

and 2k + 1 priorities (as long as p ≥ 4). With size O(knpk ) where

k = 1 + logn, this yields a O(n4.48+3.38 logn (logn)2.38) algorithm.

The space complexity remains quasi-polynomial.

Although this algorithm does not improve over the runtime of

existing quasi-polynomial time algorithms, its parameterised ver-

sions, consisting of solving Rk
e (G) instead of G for a parameter

k , provide polynomial algorithms for the rich classes of games of

bounded register-index. Even the class of games of register-index

1 contains games which are otherwise of arbitrary complexity. In

particular, the families of parity games which exhibit worst-case

behaviour for strategy improvement, divide-and-conquer, and one

of the existing quasi-polynomial algorithms [2, 12–14] all have

constant register-index 1. In the former two cases, this is simply

because although the games have complex features, the winner has

a simple winning strategy, according to which all plays eventually

only see one priority. The latter case is not as trivial, but every odd

priority is still immediately followed by a larger even priority, so

Even still has an easy 1-register game strategy consisting of reset-

ting the unique register whenever an even priority occurs. However,

the class of parity games of register-index 1 is not restricted to such

simple games, as illustrated by Figure 3. Larger register-indices

only occur if the winning strategy induces a connected region with

the particular structure described in Lemma 3.2 and Theorem 4.7.

Solving k-register games is therefore a complementary approach

to existing parity game solving strategies. It seems plausible that

solving Rk
e (G) and Rk

o (G) for a k as low as 2, or 3, and falling back

onto a different algorithm if these don’t have the same winner could

be an effective approach to solving parity games in practice.

Beyond its potential for practical solving, this algorithm gives a

descriptive complexity account of the quasi-polynomial solvability

of parity games, as we will see in the next section.

6 Register-index and Lµ
The complexity of solving parity games is closely related to com-

plexity in Lµ : The priorities in the model-checking parity games of

an Lµ -formula reflect the complexity of the formula, as measured

by the complexity of its fixpoint structure, known as its alternation

depth [26]. Conversely, solving parity games is equivalent to model-

checking a particular Lµ formula [18, Section 3.3.6], of which the

alternation depth depends on the priorities in the parity game. In

this section we argue that not only can we model-check this for-

mula in quasi-polynomial time, but the formula itself can be chosen

to be of logarithmic alternation depth and quasi-polynomial size.

We state the polynomial solvability of parity games of bounded

register-index in terms of descriptive complexity: the winning re-

gions of the k-register games on parity game arenas with a bounded

number p of priorities can be described by a Lµ -formula of size

O(kpk ), and alternation-depth k .
After establishing the Lµ expressivity of register-games in Sec-

tion 6.2 we consider some of its consequences:

• Register-index is bisimulation invariant (Corollary 6.6).

• The winning regions of parity games of bounded size are triv-

ially described by a Lµ formula without fixpoints, however,

this formula is exponential in the size bound. The logarith-

mic bound on the register-index with respect to the size of

games means that the winning regions of parity games with

p priorities of size up to 2
k−1

are described by a Lµ formula

of size O(kpk ) with alternation depth k (Corollary 6.7)

• Finally, we extend the definition of register-index to Lµ -
formulas and show that the register-index of a Lµ formula is

a computable upper bound on its semantic alternation depth:



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Karoliina Lehtinen

formulas of register-index k are equivalent to formulas of

alternation depth k .

6.1 Lµ

For ease of representation we will use Lµ equational systems. Fix

countably infinite sets Prop = {P ,Q, ...} of propositional variables,
and Var = {X ,Y , ...} of fixpoint variables.

Definition 6.1. (Lµ ) The syntax of unimodal basic formulas is
given by:

ϕ := P | X | ¬P | ϕ ∧ ϕ | ϕ ∨ ϕ | ^ϕ | □ϕ | ⊥ | ⊤

Conjunctions take precedence over disjunctions. The scope of

modalities extends as little as possible to the right.

A Lµ sentence (S,Xι ,Ω) is a finite set of S equations of the form

Xi = ψi where the left-hand sides are distinct fixpoint variables,

of which one is the designated entry point Xι , coupled with a

priority assignment Ω : Var → I where I is a finite prefix of the

non-negative integers.

The semantics of Lµ and its equational notation are standard –

see for example [8]. In the context of this paper, the semantics are

best described in terms of the model-checking parity games.

Definition 6.2. Given S = (S,Xι ,Ω) a Lµ sentence and M =

(VM ,EM ⊆ V ×V , sι ∈ VM ,QM
: Prop → P(VM )) a structure

we define the model-checking parity gameG(M, S) as the structure
(V ,E,Ve ⊆ V , P0, ..., Pq ) where q is the maximal priority in the co-

domain I of Ω, and:

• Positions in V consist of pairs (s,ϕ) where s ∈ VM
and ϕ is

a subformula of a basic formula in S;

• There in an edge from (s,ϕ ∧ ϕ ′) to (s,ϕ) and (s,ϕ ′);
from (s,ϕ ∨ ϕ ′) to (s,ϕ) and (s,ϕ ′);

from (s,□ϕ) to (s ′,ϕ) for each successor s ′ of s in EM ;

from (s,^ϕ) to (s ′,ϕ) for each successor s ′ of s in EM ;

from (s,X ) to (s,ϕX ) where (X = ϕX ) ∈ S ;
• Positions (s,ϕ ∨ ϕ ′) and (s,^Φ) satisfy Ve ;

• Positions (s, P) satisfy Ve if s < QM (P);

• Positions (s,¬P) satisfy Ve if s ∈ QM (P);
• Position (s,X ) satisfies PΩ(X ) while other positions satisfy

P0.

• (sι ,Xι ) is the initial position.

Definition 6.3. A structuresM is said to satisfy a sentence S of Lµ ,
writtenM |= S if Even has a winning strategy in the parity game

represented by G(M, S) when Ve represents positions belong to

Even,V \Ve represents positions belonging to Odd and Pi represents
positions of priority i .

Definition 6.4. The alternation depth of anLµ system of equations

consists of the number of even priorities in the co-domain I of Ω.

This presentation and the choice to only count even priorities is

meant to emphasize the correspondence between alternation-depth,

priorities in parity games and their register-index. A thorough

discussion on how to define alternation depth, and comparison

of definitions used in the literature can be found in Bradfield and

Stirling 2007 [8].

6.2 Descriptive complexity
Theorem6.5. There is a formulaWin

k
I of Lµ with alternation-depth

k that describes the class of parity games G of priority domain I for
which Even has a winning strategy in Rk

e (G).

Proof. Let Ei stand for Ve ∧ Pi and Oi for ¬Ve ∧ Pi ; let Mi (X ) =

(Ei ∧ ^X ) ∨ (Oi ∧ □X ). This subformula describes the owner of

the current position (of priority i) taking a step in the parity game.

Then, the formula for Y ¯d,o describes the existence of a winning

strategy from a register configuration x̄ , while o indicates the last
output value:

Yx̄,o =
∨
j ∈I

Mj (Yx̄ ′,1) ∨
∨

j ∈I,r ≤k

Pj ∧Mj (Ynext(x̄ ′,r, j),out(x ′
r ,r ))

Where x ′i = max(xi , j) and next(x̄ ′, r , j) is the new register

contents after Even resets the register of rank r . That is to say

next(x̄ ′, r , j)i = x ′i for i > r , but xi−1 for 1 < i ≤ r , and 0 for i = 1.

Furthermore, out(p, r ) is 2r + 1 for odd p and 2r otherwise.

Then, the formula Win
k
I is given by the system of equations

consisting of Yx̄,p where x̄ ∈ Ik and o ∈ [1..2k + 1], paired with

Ω(Ym, x̄,o ) = o and the entry point Y
0̄,1.

In the formula Yx̄,o , the outermost disjunction gives Even the

choice to proceed in the underlying parity game by playing to

Mj (Yx̄ ′,1) where j is the current priority, or to reset a register. In

either case, x̄ is updated. Ω guarantees that when a register is reset,

a priority of the appropriate magnitude and parity is produced, as

computed by out(). Hence by design, the model-checking parity

game of Win
k
I on any structure G representing a parity game with

priority domain I is functionally equivalent to the parity game

Rk
e (G). □

Win
k
I has alternation depth k and size O(kdk ): the descriptive

complexity of parity games of bounded register-index collapses,

just like their algorithmic complexity.

Corollary 6.6. Register-index is bisimulation invariant.

Proof. Win
k
I holds in a parity gameG with priority domain I when-

ever Even wins Rk
e (G). Dually, we can define OWin

k
I which holds

in parity games G of priority domain I whenever Odd wins Rk
o

(note that this is not just the negation of Win
k
I ). Recall that a parity

game has register-index at most k if Rk
o and Rk

e have the same

winner.

Then, parity games with priority domain I and of register-index

atmostk are exactly those that satisfy (¬OWin
k
I ∧Win

k
I )∨(OWin

k
I ∧

¬Win
k
I ). Since Lµ is bisimulation invariant, so is register-index. □

Corollary 6.7. The winning regions of parity games of size up to
2
k with p priorities are described by an Lµ formula of size O(kpk )
and alternation-depth k .

Note that the winning regions of parity games of bounded size n
are also described by a formula without any fixpoints. However, that

formula, obtained is by unfolding all the fixpoints of the standard

parity game formula n times. For parity games with p priorities,

this is a formula of size O(2pn ).

We extend the definition of register-index to Lµ -formulas:
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Definition 6.8 (Register-index of a formula). A formula ψ of Lµ
has register-index k if for all structures M, the register-index of

the model checking parity game forM andψ is bounded by k .

Using the Lµ description of the winner of k-register games, we

then argue that a formula of register-index k is equivalent to a

formula of alternation depth k . In other words, the alternation

hierarchy is finite for the fragments of Lµ of bounded register-

index. This is a simple consequence of the following theorem which

relates the descriptive complexity of the model-checking games of

a formula to the formula’s semantic complexity.

Theorem 6.9. [24] Given a formulaψ of Lµ , if for all structuresM
it is the case that M |= ψ if and only if G(M,ψ ) |= ϕ, then there
exists a formula of the alternation depth of ϕ, constructed fromψ and
ϕ that is equivalent toψ .

Corollary 6.10. Ifψ is an Lµ -formula of register-index k , thenψ is
equivalent to a formula of alternation depth k .

Proof. By definition of register-index for all structuresM, the for-

mula ψ holds in M exactly when Even wins Rk
e (G(M,ψ )). From

Lemma 6.5, it is therefore the case that M |= ψ if and only if

G(M,ψ ) |=Win
k
I where I is the priority domain ofG(M,ψ )which

depends only onψ . Then, from Theorem 6.9,ψ is equivalent to a

formula of alternation depth k , built fromψ and Win
k
I . □

Register-index is therefore a decidable upper bound on the se-

mantic complexity of a formula. While the register-index can be

as high as the syntactic alternation depth of a formula, it is less

affected by syntactic inefficiencies: for example, if ϕ is unsatisfiable,

but of high syntactic complexity, a formulaψ (ϕ) with subformula

ϕ will have syntactic complexity at least as high as ϕ. However,
since to win in the model-checking parity game ofψ (ϕ) a winning
strategy for Even never needs to visit the subgame induced by ϕ,
the register-index will only depend onψ (⊥).

Note that the entanglement of the model-checking games of a

formula is unbounded even for simple formulas so entanglement

does not lend itself to a similar analysis.

7 Discussion
A. Measuring the complexity of parity games

We introduced register-index, a measure of complexity of parity

games that captures the complexity of the priority assignment. It is

logarithmically bounded with respect to the size of a parity game.

Existing measures of complexity for parity games seem to be

in one way or another agnostic to vertex ownership. Entangle-

ment and register-index are measured on the one-player subgame

induced by a winning strategy while the Rabin index and purely

structural measures are completely independent of node-ownership.

While register-index takes into account two sources of complexity –

structure and priority assignment – it leaves the complexity arising

from alternations between the two players untouched. However,

since one-player games are known to be solvable in polynomial

time, it seems plausible that node ownership could be incorporated

into a more refined measure which would measure how cycles,

priorities and alternations interact.

B. Solving parity games in practice
The algorithm induced by the logarithmic bound on the register-

index of parity games uses different techniques from previous algo-

rithms [9, 23] to prove yet again that parity games are solvable in

quasi-polynomial time. It does not improve on the running time of

state-of-the-art algorithms; however, in addition to its rich theory,

it enjoys a family of parameterised versions, each of which solves

parity games for a class of games of bounded register-index. The

class of parity games of register-index as low as 1 already contains

parity games of otherwise arbitrary complexity, including families

of games which trigger the worst-case performace of recursive

algorithms [14], strategy improvement algorithms [13], and one of

the existing quasi-polynomial algorithms [12]. Conversely, single-

player games with high register-index are trivial for algorithms like

strategy-improvement which recognise a winning strategy quickly.

Hence k-register games are a complementary solving method to

state-of-the-art algorithms. Families of high register-index require

a particularly intricate structure, as demonstrated in Lemma 4.7;

how often such games are encountered in the wild is left as an open

question. However, it seems likely that i) solving k-register games

for small k could be a practical approach to solving parity games,

and ii) existing solvers could potentially benefit from taking into

account the register-index of games.

C. Parity games algorithms and Lµ
The final part of this paper discussed how register-index and

the new quasi-polynomial algorithm relate to complexity in Lµ .
This discussion connects two long-standing open problems: the

decidability of the Lµ alternation hierarchy – that is, deciding,

given a formula, whether it is equivalent to a formula of lower

alternation depth – and the complexity of model-checking Lµ –

that is, the complexity of solving parity games. There are trade-offs

between formula size and alternation depth that echo the trade-

offs between solving a smaller parity game with many priorities,

and a larger game with fewer priorities. It remains open whether

the other quasi-polynomial algorithms can also be understood in

logical terms. Bojańczyk and Czerwński present the original quasi-

polynomial algorithm in terms of reachabillity automata [7], which

is a step in this direction.
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