
Around Classical and Intuitionistic Linear Logics
Olivier LAURENT

Université de Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP – UMR 5668, F-69342, LYON Cedex 07, France

Olivier.Laurent@ens-lyon.fr

Abstract
We revisit many aspects of the syntactic relations between (variants

of) classical linear logic (LL) and (variants of) intuitionistic linear

logic (ILL) in the propositional setting.

On the one hand, we study different (parametric) “negative”

translations from LL to ILL: their expressiveness, the relations with
extensions of LL and their use in the proof theory of LL (cut elimi-

nation and focusing). In particular, this bridges the intuitionistic

restriction on sequents (at most one conclusion) and the focus-

ing property of linear logic. On the other hand, we generalise the

known partial results about conservativity of LL over ILL, leading
for example to a conservativity proof for LL over tensor logic (TL).

CCS Concepts • Theory of computation → Proof theory;
Linear logic;

Keywords Linear logic, Intuitionistic linear logic, Tensor logic,

Negative translations, Double negation, Focusing, Conservativity

ACM Reference Format:
Olivier LAURENT. 2018. Around Classical and Intuitionistic Linear Logics.

In LICS ’18: 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
July 9–12, 2018, Oxford, United Kingdom.ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3209108.3209132

1 Introduction
Linear logic (LL) [9] has become a key element of the toolbox in

different areas of computer science in particular in the theory of pro-

gramming languages (type systems, denotational semantics, quan-

tum computing, concurrency theory, implicit complexity, higher-

order model checking, etc).

A key property of linear logic, stressed when it was introduced,

is the ability of conciliating an involutive negation (as in classical

logic) with constructivity (in terms of confluent normalization, or

more generally denotational semantics, but also through disjunc-

tion and existence properties). However soon after, an intuitionistic

variant ILLwas also presented [11]. It is defined in sequent calculus

as the restriction of LL under the intuitionistic constraint: “exactly
one formula on the right-hand side of sequents”. It relies on a re-

stricted subset of connectives (in particular the involutive negation

is lost) with a focus on linear implication⊸. ILL appears to be more

natural than its classical version in various contexts such as typing

systems and the analysis of the λ-calculus, categorical semantics,

or for game interpretations [1].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00

https://doi.org/10.1145/3209108.3209132

The goal of this paper is to revisit various ways of relating LL
and ILL to get a better understanding of the specificities of each

of these logics. The central question is then to understand what

makes these two systems different (or not).

Conservativity. In studying the relations between LL and ILL, a
first natural question is the conservativity property: since any ILL
formula can be seen as an LL formula (by unfolding A ⊸ B into

A⊥ M B), can we compare provability in ILL and provability in LL?
A first direction is easy since any ILL sequent can be turned into

an LL sequent (by translating Γ ⊢i A into ⊢ Γ⊥,A) and any ILL
associated proof into an LL proof. The key question is the converse:

can we find ILL formulas which are provable in LL but not in ILL?
Let us first mention that, if this question looks similar to the

more standard one of comparing provability in classical logic (in

the LK sequent calculus for example) and in intuitionistic logic (in

the LJ sequent calculus for example), it is rather different. Indeed,

even with implication as the only connective, conservativity of

LK over LJ fails, as shown by Peirce’s law ((A → B) → A) → A.
This is because the intuitionistic restriction (“at most one formula

on the right-hand side of sequents”) of LJ has a direct impact on

the use of structural rules (contraction and weakening). However

in a linear setting, these rules are already controlled: that is the

purpose of the exponential connectives ! and ?. This makes LL and

ILL much closer to each other than LK and LJ. The main (positive

and negative) results on conservativity of LL over ILL have been

obtained by H. Schellinx [22]:

• in the presence of both⊸ and 0, conservativity may fail as

shown by the counterexample (X ⊸ (0 ⊸ Y) ⊸ Y ′) ⊸
((X ⊸ X ′) ⊸ 0) ⊸ Y ′;
• for formulas without⊸ or without 0, conservativity holds;

• for formulas in the image of Girard’s translation of LJ into
LL (A→ B 7→ !A ⊸ B) [9], conservativity holds.

Parametric Negative Translation. While conservativity is about

understanding the trivial embedding of ILL into LL, one can also

study translations of LL into ILL.
Double-negation translations or negative translations or con-

tinuation-passing style (CPS) translations are well known tools

to map classical logic into intuitionistic logic which led to com-

putational understandings of classical logic [12, 20]. This logical

analysis of control operators has early been related with linear

logic [10]. Moreover it has been stressed that, while implication is

usually considered as the central connective of intuitionistic logic

(in relation with the λ-calculus in particular), in the context of intu-

itionistic logic used as a target of translations from classical logic,

the key connective is negation [14, 24].

These translations have inspired works on translating LL into

ILL [3, 8, 15, 18, 25] since they give ways to enforce the intuitionistic
constraint on sequents. Once such a translation is settled, one can

wonder what it says about the starting system, and what is its

expressiveness. This last point can be stated through faithfulness

analysis: are the sequents/formulas provable in the image of the

https://doi.org/10.1145/3209108.3209132
https://doi.org/10.1145/3209108.3209132

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Olivier LAURENT

translation, the images of provable sequents of the source system?

or can we express more through the translation than in the original

system? This question has shown to be very fruitful in the context

of CPS-translations leading to the introduction of delimited control

operators [7].

We follow Chang-Chaudhuri-Pfenning [3] which propose to use

a parametric negative translation of LL into ILL and to analyse,

for different values of the parameter, the extensions of linear logic

represented by the translation (i.e. for which provability is exactly

the provability in the image). While they use a specific extension

JILL of ILL, we work here with standard ILL. The translation (_)•

we use is close to the one of [4] (parametrized by an arbitrary

ILL formula R) with the idea that it uses the minimal number of

negations required to get a decoration of proofs of LL into proofs

of ILL: during the translation, each rule is macro-expanded into

a corresponding rule of ILL together with some negation rules

(but no introduction of fresh cut for example is required, and in

particular cut-free proofs are turned into cut-free proofs). We make

a detailed analysis of the relations between LL and ILL through the

translation (_)• (in particular regarding the expressiveness of the

image). The extension of LL with the equivalence R ⊣⊢ ⊥ happens

to play a key role.

Focusing. The negations used in the translation (_)• are those

required to get a decoration of LL proofs as ILL proofs. However

fewer negations are required if we just want to preserve provabil-

ity. This comes from a precise analysis of polarities of formulas as

defined by the theory of focusing [2]. Indeed the work on focusing

and polarization [2, 10] has put forward a partition of connectives

into two classes: positive and negative ones (a.k.a. synchronous

and asynchronous). Each class happens to group connectives which

share common proof-theoretical properties and which can cluster

into macro-connectives. Concretely it led to the definition of fo-

cused systems for LL which structurally impose that consecutive

connectives of a given polarity are used as a cluster. The focusing

property then states the completeness of these focused systems

with respect to LL provability: any LL proof can be turned into a

focused one with the same conclusion.

We present the optimised translation with tensor logic (TL) [18]
as target. Tensor logic is the fragment of intuitionistic linear logic

which focuses on positive connectives (⊗, ⊕ and !) together with

negation (as a restriction of⊸). The idea of tight links between po-

larization, focusing and double-negation translations is not new [10,

18, 19]. It has been developed in both classical and linear settings.

We prove the stronger result that the focusing property of linear

logic can be directly deduced from the optimised negative trans-

lation from LL to TL. This shows how the “at most one positive

formula in the focus” constraint of focused linear systems is a partic-

ular case of the “at most one formula on the right” of intuitionistic

ones.

CPS-transformations are used in particular in compiling because

of the strong structural properties they provide on the generated

terms [21]. Similarly focused proofs are providing structural con-

straints on proofs (important in their use in proof search for exam-

ple). We thus show these constraints (focusing and CPS) to be of

the same nature since focusing happens to be obtained from CPS.

Contributions. Starting from the definition of the parametric trans-

lation (_)• from LL to ILL, Section 2 studies the expressiveness of

(_)• while making the parameter vary. We introduce and discuss

the parametric logic RLL(R) (extending LL with R ⊣⊢ ⊥) which

provides an upper bound on the expressiveness of (_)•. We then

give a sufficient condition on the parameter for this bound to be

lower as well. Finally we consider some important possible values

for the parameter leading to equivalences between: provability in

the image of (_)•, provability in RLL, provability in LL with some

additional rules, and provability in LL of enriched sequents. A typi-

cal example being: Γ• ⊢i !Φ ⊸ Φ in ILL (Φ atomic) ⇐⇒ ⊢r
?1

Γ in

RLL(?1) ⇐⇒ ⊢0 Γ in LL with (mix0) ⇐⇒ ⊢ Γ, ?1 in LL. On the

way, we prove some proof-theoretical properties of LL and ILL: cut-
elimination of LL can be simply deduced from cut-elimination in

ILL (by using (_)•), and the connectives ⊥ and ? cannot be defined

in propositional ILL.
In Section 3, we generalise the work of H. Schellinx on con-

servativity of LL over ILL [22]. First we give a new counterexam-

ple which has implicative order 2 (the minimal possible value):

(((X ⊗ ⊤) & (Y ⊗ ⊤)) ⊸ 0) ⊸ ((X ⊸ X ′) ⊕ (Y ⊸ Y ′)). On the

positive side, we extend the conservativity result for the image of

Girard’s translation of intuitionistic logic: we prove that it comes

from the fact that⊸ is only used in the shape !_ ⊸ _, and we gen-

eralise this !_ pattern to a more general set of formulas. Concerning

the conservativity for formulas without ⊸ or 0, we extend it to

formulas without _ ⊸ 0 (up to linear equivalence). This gives us

the conservativity of LL over TL (with no restriction).

By choosing the parameter value for (_)• to be a fixed proposi-

tional variable, its target becomes tensor logic. In Section 4, we de-

fine the polarized optimisations (_)− and (_)+ of (_)•. By analysing
the image of an LL proof through the induced translation in TL, we
show the obtained proof is exactly a proof of the starting sequent

in the focused system LL
foc
, thus proving the focusing property for

linear logic.

Most of the presented results are formalised in the Coq proof

assistant with the help of the Yalla library [17]:

https://perso.ens-lyon.fr/olivier.laurent/yalla/acaill/

2 From LL to ILL
In this section, we study a parametric negation-based translation

from LL to ILL. Formulas of LL [9] are denoted F , G, H , etc:

F ::= X | X⊥ | 1 | ⊥ | F ⊗ F | F M F | 0 | ⊤ | F ⊕ F | F &F | !F | ?F .

Formulas of ILL [11] are denoted I , J , K , etc:

I ::= X | 1 | I ⊗ I | I ⊸ I | 0 | ⊤ | I ⊕ I | I & I | !I .

Sequents are denoted ⊢ Γ for LL and Γ ⊢i I for ILL. The logical
systems we consider come with exchange rules which allow us to

permute formulas in sequents. Tomake derivations shorter, we omit

exchange rules in proof trees. They are very easy to reconstruct if

needed.

2.1 Negative Translation
Let us fix an arbitrary formula R of ILL which will be used as a

parameter for translating LL into ILL. We use _ ⊸ R as a defined
negation connective in ILL denoted ¬R. The following two rules

are derivable:

Γ, I ⊢i R
¬RR

Γ ⊢i ¬RI

Γ ⊢i I
¬RL

Γ,¬RI ⊢
i R

Lemma 2.1. In ILL, for all formulas I , J , I ′ and J ′, we have:
(i) I ,¬RI

′ ⊢i R and J ,¬R J
′ ⊢i R implies I ⊗ J ,¬R (I

′ ⊗ J ′) ⊢i R

https://perso.ens-lyon.fr/olivier.laurent/yalla/acaill/

Around Classical and Intuitionistic Linear Logics LICS ’18, July 9–12, 2018, Oxford, United Kingdom

(ii) I ,¬RI
′ ⊢i R and J ,¬R J

′ ⊢i R implies I ⊕ J ,¬R (I
′ ⊕ J ′) ⊢i R

Definition 2.2 (Translation of Formulas). The translation F• of a
formula F of LL is a formula of ILL:

X • = ¬RX (X⊥)• = X
1
• = ¬R1 ⊥• = 1

0
• = ¬R0 ⊤• = 0

(F ⊗ G)• = ¬R (¬RF
• ⊗ ¬RG

•) (F M G)• = F• ⊗ G•

(F ⊕ G)• = ¬R (¬RF
• ⊕ ¬RG

•) (F &G)• = F• ⊕ G•

(!F)• = ¬R!¬RF
• (?F)• = !¬R¬RF

•

When the value of R needs to be explicitly mentioned, we use the

notation (_)•[R]. Almost the same translation is considered in [4, 18].

The main difference is in (?F)• (to be discussed later).

Lemma 2.3 (Translation and Dual).
For all F , ¬RF•,¬R (F⊥)• ⊢i R is derivable in ILL.

Proposition 2.4 (Translation of Proofs).
If ⊢ Γ is provable in LL then Γ• ⊢i R is provable in ILL.

The resulting proof is obtained by “decorating” (in the spirit

of [23]) the original one. This means that the structure of the proof

is preserved: each LL rule is macro-expanded into a corresponding

rule in ILL together with some additional (¬R) and (¬L) rules. Only
the case of the (cut) rule is more involved since a call to Lemma 2.3

is required as a medium between the two cut proofs (but still a cut

in the source induces a cut in the target). Concerning the additive

connectives, it is also possible to keep a decoration while decreasing

the number of negations by defining (F ⊕G)• = F• &G•. However
this would break a polarity policy which is central in Section 4 for

removing more negations. Concerning the exponentials, for any I
in ILL, we have !I ⊢i !¬R¬RI . As a consequence, one can optimise

(?F)• into (?F)• = !F• as it is defined in [4, 18]. This would preserve
the validity of Proposition 2.4 (since !F• ⊢i !¬R¬RF

•
), except that

we would have to eliminate cuts in LL before translating. Indeed

this optimisation breaks Lemma 2.3. Lemma 2.3 is also necessary

in the presence of quantifiers for Lemma 5.1 to hold.

Following Proposition 2.4, a natural question is then to under-

stand if more than LL can be encoded into ILL through this transla-

tion. We study this now while making the parameter R vary.

We start with a result about the (mixn) rules (n ≥ 0):

⊢ Γ1 · · · ⊢ Γn mixn
⊢ Γ1, · · · , Γn

(
in particular

mix0⊢

)
We use the notation ⊢n Γ for sequents in LL extended with (mixn)
(and ⊢02 Γ for LL with both (mix0) and (mix2)). If F is a formula,⊗

n F is defined by:

⊗
0
F = 1 and

⊗
n+1 F = F ⊗

⊗
n F .

Lemma 2.5. Let R be an intuitionistic linear formula, for all n ≥ 0,
if
⊗

n R ⊢
i R is provable in ILL then LL with (mixn) can be translated

by (_)• into ILL.

2.2 Response Linear Logic
We introduce an extension of linear logic which will happen to

be directly related with the image of the translation (_)•. Given a

formula R of LL, response linear logic RLL(R) is the extension of

LL incorporating the two axioms:

⊥R
⊢r
R
R⊥

1R
⊢r
R
R, 1

This corresponds to adding the equivalence R ⊣⊢ ⊥ to LL. Be aware
that, because of the introduction of non-trivial axioms in RLL(R),

cut elimination does not hold in general. Sequents of RLL(R) are
denoted ⊢r

R
Γ.

Lemma 2.6 (Substitution). If ⊢r
R
Γ is provable in RLL(R) then, for

all F and X , ⊢r
R[F /X]

Γ[F /X] is provable in RLL(R[F /X]).

2.2.1 Alternative Presentations
If the definition of RLL(R) above does not satisfy cut elimination,

it is possible to give alternative presentations with equivalent prov-

ability power but better proof-theoretical properties.

Lemma 2.7. ⊢r
R
Γ in RLL(R) if and only if ⊢ Γ, ?R, ?(R⊥ ⊗ ⊥) in

LL.

This presentation has the advantage of having an admissible cut

rule since cut is admissible in LL and we can build:

⊢ Γ,A, ?R, ?(R⊥ ⊗ ⊥) ⊢ ∆,A⊥, ?R, ?(R⊥ ⊗ ⊥)
cut

⊢ Γ,∆, ?R, ?R, ?(R⊥ ⊗ ⊥), ?(R⊥ ⊗ ⊥)
?c

⊢ Γ,∆, ?R, ?(R⊥ ⊗ ⊥)

We now consider some more specific values of R.

Lemma 2.8. ⊢r
?R

Γ in RLL(?R) if and only if ⊢ Γ, ?R in LL.

2.2.2 The Particular Case R = R

We denote by I the canonical embedding of the ILL formula I into
LL based on J ⊸ K = (J)⊥ M K . Given a formula R of ILL, it is
possible to relate RLL(R) and the image of the translation (_)•.

Lemma 2.9. Given a formula F of LL, ⊢rR F•, F is provable in
RLL(R).

Proposition 2.10. If Γ• ⊢i R is provable in ILL then ⊢rR Γ is provable
in RLL(R).

Proof. We have ⊢ (Γ•)⊥, R provable in LL thus in RLL(R). Then
if Γ = F1, . . . , Fk , we introduce a cut with ⊢

r
R R⊥ and k cuts with

proofs from Lemma 2.9. □

We have presented a general pattern:

⊢ Γ in LL =⇒ Γ• ⊢i R in ILL =⇒ ⊢rR Γ in RLL(R)

valid for any R. We thus have general lower and upper bounds on

the expressiveness of (_)•.

2.3 From RLL(R) to ILL

We have seen Γ• ⊢i R in ILL =⇒ ⊢rR Γ in RLL(R). We can try to

find values R such that the converse holds. In this case, the upper

bound on the expressiveness of (_)• will happen to be an exact

characterisation. In order to translate ⊢rR Γ into ILL with (_)•, we

have to extend Proposition 2.4 with the translations through (_)•

of the two additional axioms. This requires the provability of:

(R⊥)• ⊢i R and (R)•, R ⊢i R .

We do not currently know which are precisely the formulas R
making these two sequents provable, but here are some partial

positive and negative results.

On the negative side, one can see that counterexamples exist:

X ⊸ X , X ⊸ Y , X ⊸ 1, X & Y , (X & X ′) ⊸ Y or !X for example.

On the positive side, we introduce a notion of purely positive
affine formula (rejecting !,⊸ and &):

E ::= X | 1 | E ⊗ E | 0 | E ⊕ E | ⊤ .

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Olivier LAURENT

Note that E = E since it does not contain the connective⊸.

The properties (E⊥)•[E] ⊢i E and E•[E],E ⊢i E are rather badly

behaved for a proof by induction on E. This is why we are moving

to more general statements first.

Lemma 2.11. If E is a purely positive affine formula and R is an
intuitionistic linear formula, (E⊥)•[R] ⊢i E and E ⊢i ¬RE

•[R] are
provable in ILL.

Proposition 2.12. Let E be a purely positive affine formula, Γ•[E] ⊢i

E in ILL if and only if ⊢rE Γ in RLL(E).

Let us now consider some of the formulas E, and try to see

whether we can go further than Section 2.2.1 in understanding

RLL(E) and (_)•[E].

2.3.1 R = 1

We are going to use the (mix0) and (mix2) rules in LL to characterise
RLL(1) as suggested by Lemma 2.5.

Lemma 2.13. If ⊢02 Γ is provable in LL with (mix0) and (mix2)
then !R, Γ•[!R] ⊢i !R is provable in ILL for any R.

Proposition 2.14. The following statements are equivalent:
(i) ⊢02 Γ in LL with (mix0) and (mix2)
(ii) Γ•[1] ⊢i 1 in ILL
(iii) ⊢r

1
Γ in RLL(1)

Proof. We prove the following three implications:

• (i)⇒(ii): we apply Lemma 2.5 or we can use Lemma 2.13

with R = ⊤ (since 1 ⊣⊢ !⊤ in ILL).
• (ii)⇒(iii): this is Proposition 2.10.

• (iii)⇒(i): the two additional rules of RLL(1) are derivable in
LL extended with (mix0) and (mix2). □

Using linear equivalence with 1, we immediately get the same

results for R = !⊤, R = !1, R = 1 ⊸ 1, etc.

2.3.2 R = ⊤

RLL(⊤) is uninteresting since provability is trivial: any sequent

becomes provable.

⊥R
⊢r⊤ 0

⊤
⊢r⊤ ⊤, Γ cut

⊢r⊤ Γ

2.3.3 R = 0

Affine logic AL is LL extended with the rule:

⊢a Γ wk
⊢a Γ, F

.

Proposition 2.15. The following statements are equivalent:
(i) ⊢a Γ in AL
(ii) Γ•[0] ⊢i 0 in ILL
(iii) ⊢r

0
Γ in RLL(0)

Proof. We prove the following three implications:

• (i)⇒(ii): this is Proposition 2.4 with R = 0 for the standard

LL rules. We then have to consider:

IH

Γ•[0] ⊢i 0
0L

F•[0], 0 ⊢i 0
cut

Γ•[0], F•[0] ⊢i 0
• (ii)⇒(iii): this is Proposition 2.10.

• (iii)⇒(i): the two additional rules of RLL(0) are derivable in
LL extended with (wk). □

2.3.4 R = Φ

We consider Φ to be a(n intuitionistic) propositional variable.

Proposition 2.16. The following statements are equivalent:
(i) ⊢ Γ in LL
(ii) for all R, Γ•[R] ⊢i R in ILL
(iii) there exists Φ < Γ such that Γ•[Φ] ⊢i Φ in ILL
(iv) there exists Φ < Γ such that ⊢rΦ Γ in RLL(Φ)
(v) ⊢r⊥ Γ in RLL(⊥)

Proof. We prove the following five implications:

• (i)⇒(ii): this is Proposition 2.4.

• (ii)⇒(iii): let Φ be a propositional variable not free in Γ, we
simply instantiate R with Φ.
• (iii)⇒(iv): this is Proposition 2.10 with Φ = Φ.
• (iv)⇒(v): by Lemma 2.6, ⊢r⊥ Γ in RLL(⊥) since Φ < Γ.
• (v)⇒(i): the two additional rules of RLL(⊥) are derivable in
LL. □

Using linear equivalence, we immediately get the same results

for 1 ⊸ Φ, etc.
We can also apply this result to prove cut elimination in LL from

the corresponding result for ILL:

Corollary 2.17 (Cut Elimination). Cut elimination in ILL entails
cut elimination in LL.

Proof. If ⊢ Γ, F and ⊢ ∆, F⊥ are provable in LL, by Proposition 2.4,

we have Γ•, F• ⊢i R and ∆•, (F⊥)• ⊢i R and thus Γ•,∆• ⊢i R in ILL
by using Lemma 2.3. By cut elimination in ILL, one can build a cut-

free proof of Γ•,∆• ⊢i R, and thus a cut-free proof of ⊢ Γ•⊥,∆•⊥, R
in LL. We choose R to be a fresh propositional variable Φ and, by

substitution, we have ⊢ Γ•⊥[⊥/Φ],∆
•⊥

[
⊥/Φ],⊥.

We can check by induction on F that F•⊥[⊥/Φ] is obtained from
F by adding some _ M ⊥ and _ ⊗ 1 in it. We conclude by induction

on the proof of ⊢ Γ•⊥[⊥/Φ],∆
•⊥

[
⊥/Φ],⊥ that ⊢ Γ,∆ in LL. □

2.4 Relating RLL(R) and ILL

We have seen in Section 2.3.4 that, in the study of (_)•, not only
RLL(R) naturally appears, but also RLL(R) with R not an intuition-

istic formula (⊥ for example in Proposition 2.16). This really adds

something since, for example, ⊥ could not be replaced directly by

an intuitionistic formula: there is no R in ILL such that R ⊣⊢ ⊥
(Lemma 2.19).

Lemma 2.18. It is not possible to have both ⊢0 (I)⊥ and ⊢0 !F , I
provable in LL with (mix0), for any I of ILL and any F of LL.

Proof. By induction on I . The key cases are:

• If both ⊢0 !F , J ⊗ K and ⊢0 (J)⊥ M (K)⊥ are provable in

LL with (mix0) then ⊢0 (J)⊥, (K)⊥ as well. Moreover either

⊢0 !F , J and ⊢0 K , or ⊢0 !F ,K and ⊢0 J are provable. In the

first case for example, we can build:

⊢0 (J)⊥, (K)⊥ ⊢0 K
cut

⊢0 (J)⊥

and we apply the induction hypothesis on J .
• If both ⊢0 !F , (J)⊥ M K and ⊢0 J ⊗ (K)⊥ are provable in LL
with (mix0) then ⊢0 !F , (J)⊥,K , ⊢0 J , and ⊢0 (K)⊥ as well.

So that we can build:

Around Classical and Intuitionistic Linear Logics LICS ’18, July 9–12, 2018, Oxford, United Kingdom

⊢0 !F , (J)⊥,K ⊢0 J
cut

⊢0 !F ,K

and we apply the induction hypothesis on K . □

Lemma 2.19. It is not possible to have both ⊢ (I)⊥ and ⊢ 1, I
provable in LL, for any I of ILL.

As a consequence, there is also no formulaW in ILL such that for

any I ,W [
I /X] ⊣⊢ ?I in LL (otherwise one would haveW [

0/X] ⊣⊢

?0 ⊣⊢ ⊥ in LL): this means the connective ? is not definable in ILL.

Let us now consider other values of R which are also not purely

positive affine formulas, or even not equivalent to any ILL formula.

2.4.1 R = ?1 and R = !Φ ⊸ Φ

Aswe have seen for⊥, ?1 is also a formulawhich is “out of the scope”

of ILL: there is no R in ILL such that R ⊣⊢ ?1 in LL (Lemma 2.20).

Lemma 2.20. It is not possible to have both ⊢ (I)⊥, ?1 and ⊢ !⊥, I
provable in LL, for any I of ILL.

We can however relate (_)• and RLL(?1):

Proposition 2.21. The following statements are equivalent:
(i) ⊢0 Γ in LL with (mix0)
(ii) for all R provable in ILL, Γ•[R] ⊢i R in ILL
(iii) there exists Φ < Γ such that Γ•[!Φ⊸Φ] ⊢i !Φ ⊸ Φ in ILL
(iv) there exists Φ < Γ such that ⊢r

?Φ⊥MΦ
Γ in RLL(?Φ⊥ M Φ)

(v) ⊢r
?1

Γ in RLL(?1)
(vi) ⊢ Γ, ?1 in LL

2.4.2 R = !⊥ and R = !Φ

First note there is no R in ILL such that R ⊣⊢ !⊥ in LL (Lemma 2.23).

Lemma 2.22. It is not possible to have both ⊢ (Γ)⊥ provable in LL
and ⊢0 I provable in LL with (mix0) for each I ∈ Γ, for any Γ of ILL.

Proof. By induction on the proof of ⊢ (Γ)⊥ in LL, we look at the

last rule. The key case is the (⊗) rule. We have Γ = Γ′, Γ′′ with
⊢ (Γ′)⊥, J and ⊢ (Γ′′)⊥, (K)⊥, and ⊢0 (J)⊥,K , as well as ⊢0 I for

any I in Γ′, Γ′′ thus, using cuts, we can build a proof of ⊢0 J and

then a proof of ⊢0 K . We conclude with the induction hypothesis

applied to the proof of ⊢ (Γ′′)⊥, (K)⊥. □

Lemma 2.23. It is not possible to have both ⊢ (I)⊥, !⊥ and ⊢ ?1, I
provable in LL, for any I of ILL.

It is however possible to relate (_)• and RLL(!⊥), and to give

an alternative characterisation of RLL(!⊥). The system LL!⊥ is the

extension of LL obtained by adding to the LL rules, the following

one:

⊢!⊥ Γ ⊢02 ∆
mix!⊥

⊢!⊥ Γ,∆
.

Lemma 2.24. If ⊢!⊥ Γ is provable in LL!⊥ then ⊢02 Γ is provable in
LL with both (mix0) and (mix2).

LL!⊥ is thus intermediate between LL with (mix2) and LL with

both (mix0) and (mix2), since (mix2) is derivable but (mix0) is con-
strained to occur only above a (mix!⊥) rule. Indeed, we have:

⊢!⊥ Γ

⊢!⊥ ∆
Lemma 2.24

⊢02 ∆
mix!⊥

⊢!⊥ Γ,∆

but ⊢!⊥ is not provable in LL!⊥.

Proposition 2.25 (Cut elimination in LL!⊥).
LL!⊥ has the cut-elimination property.

Proposition 2.26. The following statements are equivalent:
(i) ⊢!⊥ Γ in LL!⊥

(ii) for all R, Γ•[!R] ⊢i !R in ILL
(iii) there exists Φ < Γ such that Γ•[!Φ] ⊢i !Φ in ILL
(iv) there exists Φ < Γ such that ⊢r

!Φ Γ in RLL(!Φ)
(v) ⊢r

!⊥
Γ in RLL(!⊥)

Proof. The main implications are:

• (i)⇒(ii): this is Proposition 2.4 for the standard LL rules. We

then have to consider:

IH

Γ•[!R] ⊢i !R

Lemma 2.13

!R,∆•[!R] ⊢i !R
cut

Γ•[!R],∆•[!R] ⊢i !R

• (v)⇒(i): the additional rules of RLL(!⊥) are derivable in LL!⊥:

1

⊢!⊥ 1

?d
⊢!⊥ ?1

1

⊢!⊥ 1

mix0
⊢02

⊥
⊢02 ⊥

!

⊢02 !⊥
mix!⊥

⊢!⊥ 1, !⊥
□

In the derivations just above, the fact that we allow not only

(mix0) but also (mix2) in the right premise of the (mix!⊥) rule does
not seem to be required. However it happens to be necessary for

the cut-elimination property to hold in LL!⊥ (Proposition 2.25).

In [3], the cases R = 1, R = ⊥, R = ⊤, R = 0, R = ?1 and

R = !⊥ are considered in the slightly different context of the logic

JILL. While the authors give the same characterisation as here for

RLL(R) in terms of extensions of LL in the first five cases, they left

open the case of RLL(!⊥).

2.4.3 R = ?

⊗
n ⊥ and R = !((

⊗
n Φ) ⊸ Φ) ⊸ Φ

We have already seen characterisations of LL extended with (mix0)
in Section 2.4.1 and of LL extended with both (mix0) and (mix2) in
Section 2.3.1. We turn our attention to LL extended with (mixn).

Proposition 2.27. For any n ≥ 0, the following statements are
equivalent:

(i) ⊢n Γ in LL with (mixn)
(ii) for all R such that

⊗
n R ⊢

i R is provable in ILL, Γ•[R] ⊢i R in
ILL

(iii) there exists Φ < Γ such that
Γ•[!((

⊗
n Φ)⊸Φ)⊸Φ] ⊢i !((

⊗
n Φ) ⊸ Φ) ⊸ Φ in ILL

(iv) there exists Φ < Γ such that ⊢r
?((
⊗

n Φ)⊗Φ⊥)MΦ
Γ is provable

in RLL(?((
⊗

n Φ) ⊗ Φ⊥) M Φ)
(v) ⊢r

?

⊗
n ⊥

Γ in RLL(?
⊗

n ⊥)

(vi) ⊢ Γ, ?
⊗

n ⊥ in LL

The key point is to use (?((
⊗

n Φ) ⊗ Φ⊥)MΦ)[⊥/Φ] ⊣⊢ ?
⊗

n ⊥

in (iv)⇒(v).
Let us consider a few particular cases. For n = 0, !(1 ⊸ Φ) ⊸

Φ ⊣⊢ !Φ ⊸ Φ and we find back the results of Section 2.4.1. For

n = 1, !((Φ ⊗ 1) ⊸ Φ) ⊸ Φ ⊣⊢ Φ and we find back the results of

Section 2.3.4. For n = 2, R = ?(⊥⊗⊥) and R = !((Φ⊗Φ) ⊸ Φ) ⊸ Φ

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Olivier LAURENT

give characterisations of LL with (mix2) alone (in contrast with

Section 2.3.1).

2.4.4 R = 1, and R = Φ ⊸ Φ or R = !Φ ⊸ 1 or
R = !((!Φ ⊸ Φ) ⊸ (!Φ ⊸ Φ) ⊸ Φ) ⊸ Φ

We can revisit Section 2.3.1 with some variations on R.

Proposition 2.28. The following statements are equivalent:

(i) ⊢02 Γ in LL with (mix0) and (mix2)
(ii) Γ•[Φ⊸Φ] ⊢i Φ ⊸ Φ in ILL with Φ < Γ
(iii) Γ•[!Φ⊸1] ⊢i !Φ ⊸ 1 in ILL with Φ < Γ
(iv) Γ•[!((!Φ⊸Φ)⊸(!Φ⊸Φ)⊸Φ)⊸Φ] ⊢i !((!Φ ⊸ Φ) ⊸ (!Φ ⊸ Φ) ⊸

Φ) ⊸ Φ in ILL with Φ < Γ
(v) ⊢ Γ, ?(?1 ⊗ ?1) in LL

3 Back to LL: Conservativity
Through the translation I 7→ I , ILL can be seen as a subsystem of

LL (simply replace each I ⊸ J by I⊥ M J). We often identify I and
I in the present section. Whether LL is a conservative extension of

ILL (i.e. formulas or sequents from ILL provable in LL are the same

as in ILL) has been studied in [22]. The property does not hold in

full generality as shown by H. Schellinx’s counterexample [22]:

(X ⊸ (0 ⊸ Y) ⊸ Y ′) ⊸ ((X ⊸ X ′) ⊸ 0) ⊸ Y ′ .

One can give more compact variants of this example by using ⊗

and ⊤: ((X ⊸ X ′) ⊸ 0) ⊸ (X ⊗ (0 ⊸ Y)) and ((X ⊸ X ′) ⊸
0) ⊸ (X ⊗ ⊤) [13] (possibly the shortest existing counterexample).

If one considers the implicative order of formulas (0 for formulas

without ⊸, and add 1 each time you go to the left of a ⊸ in the

formula tree), these formulas have order 3. One can also give a new

counterexample of order 2 (as we will see below, this is minimal

since there is no counterexample of order 1):

(((X ⊗ ⊤) & (Y ⊗ ⊤)) ⊸ 0) ⊸ ((X ⊸ X ′) ⊕ (Y ⊸ Y ′)) .

In [22], two constraints are given on formulas in order to ensure

conservativity. We are going to generalise both. Another result is

proposed in [25, Exercise 2 page 39]: for all Γ in ILL, ⊢ Γ⊥, 0 in LL
if and only if Γ ⊢i 0 in ILL. However if I is a formula such that ⊢ I
in LL and ̸⊢i I in ILL (such as H. Schellinx’s counterexample), then

I ⊸ 0 ⊢i 0 is not provable in ILL while ⊢ I ⊗ ⊤, 0 is provable in LL.

3.1 Looking to the Left of⊸
In [22], it is proved that conservativity holds for the image of Gi-

rard’s translation of intuitionistic logic into linear logic. That is for

formulas in the following grammar:

G ::= X | !G ⊸ G | 0 | G & G | !G ⊕ !G .

Proposition 3.1 ([22, Corollary 3.7]). A formula in the grammar
G is provable in LL if and only if it is provable in ILL.

We are going to show that the key point here is the constraint

induced on the left-hand side of ⊸. Moreover we generalise the

shape !_ ⊸ _ intoO ⊸ _ whereO is what we call a !-like formula :

O ::= X | 1 | O ⊗ O | 0 | O ⊕ O | O & I | I &O | !I .

Lemma 3.2. If ⊢ Γ⊥,Ω, I is provable in LL (where Ω contains !-like
formulas only, and all sub-formulas of Γ and I of the shape J ⊸ K
are such that J is !-like), then Γ ⊢i I is provable in ILL, and if Ω is not
empty then Γ, Σ ⊢i I in ILL for any Σ.

Proof. By induction on a cut-free proof of ⊢ Γ⊥,Ω, I with atomic

axioms. The key cases are:

• (M) rule:
– If I = F MG , then I = J ⊸ K with J = F⊥ and K = G . We

have:

IH

Γ, J , (Σ) ⊢i K
⊸ R

Γ, (Σ) ⊢i J ⊸ K

– If Γ⊥ contains F M G then Γ = Γ′, J ⊗ K with J = F⊥ and

K = G⊥. We have:

IH

Γ′, J ,K , (Σ) ⊢i I
⊗L

Γ′, J ⊗ K , (Σ) ⊢i I

– Finally, by definition of !-like, Ω cannot contain a formula

of the shape F M G.
• (⊗) rule:

– If I = F ⊗G , then I = J ⊗ K with J = F and K = G . In the

contexts of the premises, Γ is split into ∆′ and ∆′′ and Ω
is split into Ω′ and Ω′′. We have:

IH

∆′ ⊢i J

IH

∆′′ ⊢i K
⊗R

∆′,∆′′ ⊢i J ⊗ K

If Ω is not empty, then at least one of Ω′ and Ω′′ as well.
If, for example, Ω′ , ∅ then we have, for all Σ:

IH

∆′, Σ ⊢i J

IH

∆′′ ⊢i K
⊗R

∆′,∆′′, Σ ⊢i J ⊗ K

– If Γ⊥ contains F ⊗ G then Γ = Γ′, J ⊸ K with J = F and

K = G⊥. If I belongs to the same premise as F , we have

Γ = ∆′,∆′′, J ⊸ K with ⊢ ∆′⊥, J , I and, since J is !-like,
for all Σ:

IH

∆′,∆′′, J ⊸ K , Σ ⊢i I

If I belongs to the same premise as G, we have
Γ = ∆′,∆′′, J ⊸ K and:

IH

∆′ ⊢i J

IH

∆′′,K ⊢i I
⊸ L

∆′,∆′′, J ⊸ K ⊢i I

If Ω is not empty and splits into Ω′ and Ω′′ in the premises,

then at least one of Ω′ and Ω′′ is not empty. If, for example,

Ω′ , ∅ then we have, for all Σ:

IH

∆′, Σ ⊢i J

IH

∆′′,K ⊢i I
⊸ L

∆′,∆′′, J ⊸ K , Σ ⊢i I

– If Ω contains F ⊗ G then Ω = Ω′, J ⊗ K with J = F and

K = G. In the contexts of the premises, Γ is split into ∆′

and ∆′′ and I must be in the same premise as F or G and

we have, for all Σ:

IH

∆′,∆′′, Σ ⊢i I
□

Theorem 3.3 (!-Like Conservativity). If I is a formula of ILL such
that any formula on the left-hand side of a⊸ in I is !-like, then ⊢ I
is provable in LL if and only if ⊢i I is provable in ILL.

Around Classical and Intuitionistic Linear Logics LICS ’18, July 9–12, 2018, Oxford, United Kingdom

As a consequence, we get the conservativity of LL over ILL for

the fragment corresponding to formulas obtained by Girard’s trans-

lation from intuitionistic logic into LL (as already shown in [22]) but
also for the image of the so-called call-by-value Girard’s translation
(A → B 7→ !(A ⊸ B)) [9], and for other variants as soon as they

only use the connective⊸ in theO ⊸ _ shape. As a corollary, this

gives us the faithfulness of these translations: provability of the

image implies provability of the source (move from LL to ILL by

conservativity, and then to intuitionistic logic using the notion of

skeleton [6]).

3.2 Looking to the Right of⊸
The other conservativity result from [22] relies on the study of the

interaction between⊸ and 0:

Proposition 3.4 ([22, Proposition 3.8]). If I is a formula of ILL
which does not contain⊸ or does not contain 0, then ⊢ I is provable
in LL if and only if ⊢i I is provable in ILL.

We are interested in refining this result since, for example, the

translation (_)• uses both 0 and⊸, thus Proposition 3.4 does not

allow us to get a conservativity result for the image of this transla-

tion.

Definition 3.5 (Almost Zero). A formula of ILL is almost 0 if it

belongs to the following grammar:

Z ::= 0 | Z ⊗ I | I ⊗ Z | Z & I | I & Z | Z ⊕ Z | !Z .

Lemma 3.6. Let Z be an almost 0 formula, we have Z ⊣⊢ 0 in ILL.

Definition 3.7 (Zero Clean). A formula of ILL is 0-clean if it does

not contain any subformula of the shape _ ⊸ Z with Z an almost

0 formula.

Lemma 3.8. If Γ contains 0-clean formulas only, and if ⊢ Γ⊥ is
provable in LL, then Γ contains an almost 0 formula.

Proof. By induction on a cut-free proof with atomic axioms. The key

case is the (⊗) rule: if I⊥ = F ⊗ G then I = J ⊸ K with J = F and

K = G⊥. By induction hypothesis applied to the premise ⊢ ∆⊥,K⊥,
we have an almost 0 formula in ∆ ⊆ Γ since I is 0-clean. □

Theorem 3.9 (Zero-Clean Conservativity). Let I be a 0-clean for-
mula, ⊢ I is provable in LL if and only if ⊢i I is provable in ILL.

Proof. The interesting direction is the left-to-right one. We prove

by induction on a cut-free proof that, if ⊢ Γ⊥, I containing 0-clean

formulas only is provable in LL, then Γ ⊢i I is provable in ILL. The
key case is the (⊗) rule.

If I = F ⊗G , then I = J ⊗K with J = F and K = G . The contexts

of the premises are ∆⊥ and Σ⊥ with Γ = ∆, Σ. We have:

IH

∆ ⊢i J

IH

Σ ⊢i K
⊗R

∆, Σ ⊢i J ⊗ K

If Γ⊥ contains F ⊗G then Γ = Γ′, J ⊸ K with J = F andK = G⊥.
If I belongs to the same premise as F , the other premise is of the

shape ⊢ Σ⊥,G with 0-clean formulas only. By Lemma 3.8, Σ,K
contains an almost 0 formula Z . We cannot have K = Z otherwise

J ⊸ K is not 0-clean, thus Z belongs to Σ = Σ′,Z . We have

Γ = ∆, Σ′,Z , J ⊸ K and:

Lemma 3.6

Z ⊢i 0
0L

0,∆, Σ′, J ⊸ K ⊢i I
cut

Z ,∆, Σ′, J ⊸ K ⊢i I

If I belongs to the same premise as G, we have Γ = ∆, Σ, J ⊸ K
and:

IH

Σ ⊢i J

IH

∆,K ⊢i I
⊸ L

∆, Σ, J ⊸ K ⊢i I

□

Lemma 3.10. If ⊢ Γ⊥,∆ is provable in LL, with ∆ containing at
least two formulas, then Γ⊥,∆ contains ⊤.

By looking at the key case of Theorem 3.9 (and similarly for

Lemma 3.8):

⊢ ∆⊥, J , I ⊢ Σ⊥,K⊥

⊗
⊢ ∆⊥, Σ⊥, J ⊗ K⊥, I

we can see that we can refine these results: conservativity can only

fail if _ ⊸ Z appears in negative position (an odd number of times

on the left of a⊸ connective in the formula tree), and if the formula

contains (outside this Z) a ⊤ in positive position or a 0 in negative

position (thanks to Lemma 3.10 applied to the premise ⊢ ∆⊥, J , I).
Similarly, Lemma 3.2 and Theorem 3.3 can be strengthened by

only constraining⊸ to be of the shape O ⊸ _ when it occurs in

negative position.

To sum up Sections 3.1 and 3.2, a counterexample to the conser-

vativity of LL over ILL must contain:

• a negative sub-formula I ⊸ J with I not !-like (which implies

that the implicative order of the global formula is at least 2);

• a negative sub-formula I ⊸ Z (this also entails implicative

order at least 2);

• a positive sub-formula⊤ or a negative sub-formula 0 outside

this Z .

Moreover, for each such counterexample, thanks to Lemma 3.6, one

can obtain a possibly shorter one by replacing Z with 0. One can

check these three constraints are true for the formulas mentioned

in the beginning of Section 3.

3.3 Tensor Logic
Tensor logic (TL) [18] is a variant of ILL based on a primitive negation
connective. Tensor formulas are generated by:

U ::= X | 1 | U ⊗ U | 0 | U ⊕ U | !U | ¬U .

Sequents are Γ ⊢t Π where Π is either empty or a single formulaU .

Rules are given on Figure 1.

Since if we add a primitive negation ¬ to ILL, it is possible to
prove that ¬ and ¬Φ are linearly equivalent (for a propositional

variable Φ), and since the rules of TL for the other connectives are

the same as in ILL, we can work with TL as being the fragment of

ILL restricted to tensor formulas (with¬ interpreted as¬Φ and Γ ⊢t

as Γ ⊢i Φ). Theorem 3.9 is strong enough to prove a conservativity

result of LL over TL.

Theorem 3.11 (Conservativity of LL over TL). LetU be a formula
of TL, ⊢ U is provable in LL if and only if ⊢t U is provable in TL.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Olivier LAURENT

ax
U ⊢t U

Γ ⊢t U ∆,U ⊢t Π
cut

Γ,∆ ⊢t Π

Γ ⊢t U
¬L

Γ,¬U ⊢t
Γ,U ⊢t

¬R
Γ ⊢t ¬U

Γ,U ,V ⊢t Π
⊗L

Γ,U ⊗ V ⊢t Π

Γ ⊢t U ∆ ⊢t V
⊗R

Γ,∆ ⊢t U ⊗ V

Γ ⊢t Π
1L

Γ, 1 ⊢t Π
1R

⊢t 1

Γ,U ⊢t Π Γ,V ⊢t Π
⊕L

Γ,U ⊕ V ⊢t Π
0L

Γ, 0 ⊢t Π

Γ ⊢t U
⊕1R

Γ ⊢t U ⊕ V

Γ ⊢t V
⊕2R

Γ ⊢t U ⊕ V

Γ,U ⊢t Π
!L

Γ, !U ⊢t Π

!Γ ⊢t U
!R

!Γ ⊢t !U

Γ ⊢t Π
!wL

Γ, !U ⊢t Π

Γ, !U , !U ⊢t Π
!cL

Γ, !U ⊢t Π

Figure 1. Tensor logic (TL)

Proof. This relies on the fact that the only use of the⊸ connective

in TL seen as a fragment of ILL, is of the shape _ ⊸ Φ with Φ a

propositional variable. This means that, inside ILL, tensor formulas

are 0-clean and we can apply Theorem 3.9. □

This shows that TL can be seen as a fragment of LL (a subsystem
defined by restricting the set of formulas) and, as a consequence, it

can be studied inside LL.

4 Focusing
By using ¬ instead of ¬R, the image of (_)• belongs to TL and one

can see that Proposition 2.4 still holds: if ⊢ Γ is provable in LL,
then Γ• ⊢t in TL. We are now going to optimise this translation by

trying to minimise the use of the ¬ connective.

4.1 Polarized Translation
First we partition linear formulas into two classes: synchronous and
asynchronous formulas [2].

S ::= X | 1 | F ⊗ F | 0 | F ⊕ F | !F
A ::= X⊥ | ⊥ | F M F | ⊤ | F & F | ?F .

We consider two mutually defined translations (_)+ and (_)−

from LL formulas to TL formulas:

X+ = X (X⊥)− = X
1
+ = 1 ⊥− = 1

(F ⊗ G)+ = F+ ⊗ G+ (F M G)− = F− ⊗ G−

0
+ = 0 ⊤− = 0

(F ⊕ G)+ = F+ ⊕ G+ (F &G)− = F− ⊕ G−

(!F)+ = !¬F− (?F)− = !¬F+

A+ = ¬A− S− = ¬S+

This is similar to the focalized translation of [18], but (!S)+ =
!¬¬S+ is crucial here (as also remarked in [5]). The case of (?A)−

can be discussed (see below).

Lemma 4.1. For all F , (F⊥)+ = F− and (F⊥)− = F+.

Lemma 4.2. For all F , F− ⊢t F• in TL.

Proof. We first prove that for any F , F− ⊢t F• implies ¬F+,¬F• ⊢t .
We consider the two cases, F synchronous and F asynchronous:

S− ⊢t S•
¬L

¬S+,¬S• ⊢t

A− ⊢t A•
¬L

A−,¬A• ⊢t
¬R

¬A• ⊢t A+
¬L

¬A+,¬A• ⊢t

We now prove the statement by induction on the formula F .
Here are the main cases:

• (F ⊗ G)− = ¬(F ⊗ G)+ = ¬(F+ ⊗ G+) and (F ⊗ G)• =
¬(¬F• ⊗ ¬G•), and we have:

IH

F− ⊢t F•

¬F+,¬F• ⊢t

IH

G− ⊢t G•

¬G+,¬G• ⊢t
Lemma 2.1 (i)

¬(F+ ⊗ G+),¬F• ⊗ ¬G• ⊢t
¬R

¬(F+ ⊗ G+) ⊢t ¬(¬F• ⊗ ¬G•)

• (!F)− = ¬(!F)+ = ¬!¬F− and (!F)• = ¬!¬F•, and we have:

IH

F− ⊢t F•
¬L

F−,¬F• ⊢t
¬R

¬F• ⊢t ¬F−
!L

!¬F• ⊢t ¬F−
!R

!¬F• ⊢t !¬F−
¬L

¬!¬F−, !¬F• ⊢t
¬R

¬!¬F− ⊢t ¬!¬F•

• (?F)− = !¬F+ and (?F)• = !¬¬F•, and we have:

IH

F− ⊢t F•

¬F+,¬F• ⊢t
¬R

¬F+ ⊢t ¬¬F•
!L

!¬F+ ⊢t ¬¬F•
!R

!¬F+ ⊢t !¬¬F•
□

Theorem 4.3 (Polarized Translation). If ⊢ Γ is provable in LL then
Γ− ⊢t is provable in TL.

Proof. By Proposition 2.4, we have Γ• ⊢t in TL. We then use cuts

with the proofs from Lemma 4.2 to turn every F• into F−. □

While it is not possible to have (!S)+ = !S+ (it would break

Theorem 4.3), for similar reasons as in Section 2.1, one can optimise

(?A)− = !A− while preserving Lemma 4.2 and Theorem 4.3, but we

would loose symmetry (in particular it would lead to (F⊥)− , F+

and thus the correspondence of Theorem 4.5 would not work so

nicely for axioms and cuts). Moreover the additional use of ¬ we

impose here in (?A)− is necessary for the focusing analysis to

come (it is responsible for the constraint of an empty focus in the

asynchronous (?d) rule).
The construction of the translations (_)−/(_)+ by first defining

(_)• and then using Lemma 4.2 is directly inspired by the focusing

proof of S. Zimmerman for differential linear logic [26] which uses

a similar decomposition in two steps.

Around Classical and Intuitionistic Linear Logics LICS ’18, July 9–12, 2018, Oxford, United Kingdom

ax
⊢f S⊥ | S

⊢f Γ | S
foc

⊢f Γ, S |

⊢f Γ | F ⊢f ∆, F⊥ | Π
cut

⊢f Γ,∆ | Π

⊢f Γ, F ,G | Π
M

⊢f Γ, F M G | Π

⊢f Γ | F ⊢f ∆ | G
⊗

⊢f Γ,∆ | F ⊗ G

⊢f Γ | Π
⊥

⊢f Γ,⊥ | Π

1

⊢f | 1

⊢f Γ, F | Π ⊢f Γ,G | Π
&

⊢f Γ, F &G | Π

⊤
⊢f Γ,⊤ | Π

⊢f Γ | F
⊕1

⊢f Γ | F ⊕ G

⊢f Γ | G
⊕2

⊢f Γ | F ⊕ G

⊢f ?Γ, F |
!

⊢f ?Γ | !F

⊢f Γ | F
?d

⊢f Γ, ?F |

⊢f Γ | Π
?w

⊢f Γ, ?F | Π

⊢f Γ, ?F , ?F | Π
?c

⊢f Γ, ?F | Π

Figure 2. The LL
foc
system

4.2 From TL to LL
foc

Weakly focused linear logic (LL
foc
) [16] is a focused system for LL

inspired from [10] and [2]. It relies on the distinction between syn-
chronous and asynchronous formulas. Sequents are ⊢f Γ | Π where

Π is either empty or a single synchronous formula S (called the fo-
cus). This means in particular that ⊢f Γ | AwithA asynchronous is

not a sequent of the system. However it is useful to define ⊢f Γ | A

as a notation for ⊢f Γ,A | , so that we can use the notation:

⊢f Γ | F =

⊢f Γ | F if F is synchronous

⊢f Γ, F | if F is asynchronous

for an arbitrary linear formula F . Rules are given on Figure 2.

Let us consider a proof of Γ− ⊢t Π+ in TL. We can rely on the

fact that all the ! connectives come with a ¬, to constrain slightly

the structure of proofs. The system TL′ is obtained from TL by

replacing the rules (!L) and (!R) by:

Γ ⊢t U
!L′

Γ, !¬U ⊢t
!Γ,U ⊢t

!R′
!Γ ⊢t !¬U

Lemma 4.4. If Γ− ⊢t Π+ is provable in TL, then it is provable in TL′

as well.

Proof. We start from a proof of Γ− ⊢t Π+ in TL with atomic axioms.

A (!L) rule must be of the shape:

Γ−,¬F+ ⊢t Π+
!L

Γ−, !¬F+ ⊢t Π+

We can see that such an occurrence of rule can be commuted up

with all rules until we reach the point where the ¬ of ¬F+ has been
introduced, so that we can turn it into a (!L′) rule.

Let us now look at a (!R) rule. It must be of the shape:

π

!¬Γ+ ⊢t ¬F−
!R

!¬Γ+ ⊢t !¬F−

Since π has atomic axioms, we can find in π the rules (¬R) intro-
ducing the negation ¬ of ¬F−. They can be commuted down until

we reach the (!R) rule (this corresponds to the reversibility of the

(¬R) rule). We then turn the sequence (¬R)–(!R) into (!R′). □

The transformations of proofs of TL into proofs of TL′ described
in the proof of Lemma 4.4 can also be obtained by introducing cuts

and by eliminating them appropriately in TL:

ax
F+ ⊢t F+

¬L
¬F+, F+ ⊢t

!L
!¬F+, F+ ⊢t

¬R
!¬F+ ⊢t ¬F+

!R
!¬F+ ⊢t !¬F+

Γ−,¬F+ ⊢t Π+
!L

Γ−, !¬F+ ⊢t Π+
cut

Γ−, !¬F+ ⊢t Π+

and

!¬Γ+ ⊢t ¬F−
!R

!¬Γ+ ⊢t !¬F−

ax
F− ⊢t F−

¬L
¬F−, F− ⊢t

!L
!¬F−, F− ⊢t

¬R
!¬F− ⊢t ¬F−

!R
!¬F− ⊢t !¬F− cut

!¬Γ+ ⊢t !¬F−

Theorem 4.5. Γ− ⊢t Π+ is provable in TL′ if and only if ⊢f Γ | Π
is provable in LL

foc
.

Proof. There is a one-to-one correspondence for almost all rules.

We focus on the most tricky cases:

• The (ax) rule S+ ⊢t S+ exactly corresponds to ⊢f S⊥ | S
since (S⊥)− = S+.
• The (¬R) rule of TL′:

Γ−,A− ⊢t
¬R

Γ− ⊢t ¬A−

is the identity in LL
foc
since it corresponds to the notation

⊢f Γ | A = ⊢f Γ,A | by ¬A− = A+.
• The (¬L) rule of TL′:

Γ− ⊢t S+
¬L

Γ−,¬S+ ⊢t

corresponds to the (foc) rule of LL
foc
since ¬S+ = S−.

• The (!L′) rule of TL′:

Γ− ⊢t F+
!L′

Γ−, !¬F+ ⊢t

corresponds to the (?d) rule of LL
foc
.

• The (!R′) rule of TL′:

(?Γ)−, F− ⊢t
!R′

(?Γ)− ⊢t !¬F−

corresponds to the (!) rule of LL
foc
since (?Γ)− = !¬Γ+. □

Once restricted to ! connectives only used in association with ¬:

!¬_, TL (optimised into TL′) can thus be seen as a focused system

for LL and the “at most one active synchronous formula” constraint

of focused sequents occurs as a particular case of the “at most one

formula on the right” constraint of intuitionistic sequents.

Corollary 4.6 (Weak Focusing). If ⊢ Γ is provable in LL then
⊢f Γ | is provable in LL

foc
.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Olivier LAURENT

For more discussions about various notions of focusing and how

to deduce traditional focusing from this weak focusing property,

see [16]. However weak focusing is the key step in focusing.

5 Conclusion
We can sum up the main results in the following picture:

Classical

Systems

Intuitionistic

Systems

LL
foc

LL TLILL

LL + ⊥ ⊣⊢ R

(_)•

[
⊥/R]

Section 2

TL′

Section 3

Section 4

(_)+/(_)−

We use for (almost) identity-on-formulas translations and

for conservative such embeddings.

We have focused on propositional systems, but the results we

have presented can be extended to first-order and second-order

quantifiers (except Section 3 which breaks for second-order). The

key ingredients to add, in second-order for example, are:

(∃X .F)• = ¬R∃X .¬RF
• (∀X .F)• = ∃X .F•

(∃X .F)+ = ∃X .F+ (∀X .F)− = ∃X .F−

with the following lemmawhich allows us to extend Proposition 2.4:

Lemma 5.1. For all F, G and X,
if R[¬RG

•

/X] = R then F•[¬RG
•

/X],¬R (F [
G/X])

• ⊢i R in ILL.

In polarization and focusing, the status of the exponential con-

nectives has always been more difficult to understand than for the

other connectives. The negations we are forced to introduce in

translating the connective ! of LL into ILL or TL, can be justified by

associating to ! the polarity − 7→ + (meaning that it turns a negative

(asynchronous) formula into a positive (synchronous) formula) in

LL, but the polarity + 7→ + in TL. The ! of LL is then decomposed

into the two operations ! and ¬ of TL (which is coherent with a

polarity ¬ : − 7→ +). Moreover when ! is applied to a synchronous

formula, another negation has to be added. Such a decomposition

of the ! of LL is suggested in [5]. This could also be described in

systems using shift operators (´ and ˆ, see for example [18]).

As a final remark, let us mention that reintroducing the param-

eter R in negations, so that !_ in LL is mapped to !(_ M R) is what
G. Munch proposed for working with delimited continuations [19].

Acknowledgments
We would like to thank the reviewers for their useful comments.

This work was supported by the LABEX MILYON (ANR-10-

LABX-0070) of Université de Lyon, within the program “Investisse-

ments d’Avenir” (ANR-11-IDEX-0007), and by the project Elica

(ANR-14-CE25-0005) (both operated by the French National Re-

search Agency (ANR)). This work was also supported by GDRI

Linear Logic.

References
[1] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. 2000. Full Ab-

straction for PCF. Information and Computation 163, 2 (2000), 409–470.

[2] Jean-Marc Andreoli. 1992. Logic Programming with Focusing Proofs in Linear

Logic. Journal of Logic and Computation 2, 3 (1992), 297–347.

[3] Boy-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. 2003. A
judgmental analysis of linear logic. Technical Report CMU-CS-03-131R. De-

partment of Computer Science, Carnegie Mellon University. Available at

http://chaudhuri.info/papers/tr03jill.pdf .
[4] Boy-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. 2003. A

judgmental analysis of linear logic. Technical Report CMU-CS-03-131. De-

partment of Computer Science, Carnegie Mellon University. Available at

http://reports-archive.adm.cs.cmu.edu/anon/2003/CMU-CS-03-131.pdf .
[5] Pierre-Louis Curien, Marcelo Fiore, and Guillaume Munch-Maccagnoni. 2016.

A theory of effects and resources: adjunction models and polarised calculi. In

Proceedings of Principles of Programming Languages, R. Bodík and R. Majumdar

(Eds.). ACM, 44–56.

[6] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. 1995. On the linear

decoration of intuitionistic derivations. Archive for Mathematical Logic 33, 6
(1995), 387–412.

[7] Olivier Danvy and Andrzej Filinski. 1990. Abstracting Control. In Proceedings of
LISP and Functional Programming. ACM, 151–160.

[8] Kosta Dosen. 1992. Nonmodal Classical Linear Predicate Logic is a Fragment of

Intuitionistic Linear Logic. Theoretical Computer Science 102, 1 (1992), 207–214.
[9] Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50 (1987),

1–102.

[10] Jean-Yves Girard. 1991. A new constructive logic: classical logic. Mathematical
Structures in Computer Science 1, 3 (1991), 255–296.

[11] Jean-Yves Girard and Yves Lafont. 1987. Linear Logic and Lazy Computation.

In Proceedings of Theory and Practice of Software Development (LNCS), H. Ehrig,
R. Kowalski, G. Levi, and U. Montanari (Eds.), Vol. 250. Springer, 52–66.

[12] Timothy Griffin. 1990. A Formulae-as-Types notion of control. In Proceedings of
Principles of Programming Languages. ACM, 47–58.

[13] Yves Lafont. 1999. The Linear Logic Pages. (1999). Available at http://iml.
univ-mrs.fr/~lafont/pub/llpages.pdf .

[14] Yves Lafont, Bernhard Reus, and Thomas Streicher. 1993. Continuation Seman-
tics or Expressing Implication by Negation. Technical Report 93-21. Ludwig-

Maximilians-Universität, München. Available at http://iml.univ-mrs.fr/~lafont/
pub/continuation.ps .

[15] François Lamarche. 1995. Games Semantics for Full Propositional Linear Logic.

In Proceedings of Logic In Computer Science. IEEE, 464–473.
[16] Olivier Laurent. 2004–2017. A Proof of the Focusing Property of Linear Logic.

(2004–2017). Available at https://perso.ens-lyon.fr/olivier.laurent/llfoc2.pdf .
[17] Olivier Laurent. 2017. Yalla: Yet Another deep embedding of Linear Logic in Coq.

Coq library. (2017). Available at https://perso.ens-lyon.fr/olivier.laurent/yalla/ .
[18] Paul-André Melliès and Nicolas Tabareau. 2010. Resource modalities in tensor

logic. Annals of Pure and Applied Logic 161, 5 (2010), 632–653.
[19] Guillaume Munch-Maccagnoni. 2011. From delimited CPS to polarisation. (2011).

Available at https://hal.inria.fr/inria-00587597/ .
[20] Chetan Murthy. 1992. Classical proofs as programs: How, what and why. In

Constructivity in Computer Science, P. Myers and M. O’Donnell (Eds.). Springer,

71–88.

[21] Amr Sabry and Matthias Felleisen. 1993. Reasoning about programs in continua-

tion-passing style. LISP and Symbolic Computation 6, 3 (1993), 289–360.

[22] Harold Schellinx. 1991. Some Syntactical Observations on Linear Logic. Journal
of Logic and Computation 1, 4 (1991), 537–559.

[23] Harold Schellinx. 1994. The noble art of linear decorating. ILLC Dissertation series.

Universiteit van Amsterdam.

[24] Hayo Thielecke. 1997. Continuation semantics and self-adjointness. Electronic
Notes in Theoretical Computer Science 6 (1997), 348–364.

[25] Anne Troelstra. 1992. Lectures in Linear Logic. CSLI Lecture Notes, Vol. 29.

University of Chicago Press.

[26] Stéphane Zimmermann. 2013. Vers une ludique différentielle. Thèse de Doctorat.
Université Paris VII.

http://chaudhuri.info/papers/tr03jill.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2003/CMU-CS-03-131.pdf
http://iml.univ-mrs.fr/~lafont/pub/llpages.pdf
http://iml.univ-mrs.fr/~lafont/pub/llpages.pdf
http://iml.univ-mrs.fr/~lafont/pub/continuation.ps
http://iml.univ-mrs.fr/~lafont/pub/continuation.ps
https://perso.ens-lyon.fr/olivier.laurent/llfoc2.pdf
https://perso.ens-lyon.fr/olivier.laurent/yalla/
https://hal.inria.fr/inria-00587597/

	Abstract
	1 Introduction
	2 From LL to ILL
	2.1 Negative Translation
	2.2 Response Linear Logic
	2.3 From RLL(R) to ILL
	2.4 Relating RLL(R) and ILL

	3 Back to LL: Conservativity
	3.1 Looking to the Left of
	3.2 Looking to the Right of
	3.3 Tensor Logic

	4 Focusing
	4.1 Polarized Translation
	4.2 From TL to LLfoc

	5 Conclusion
	Acknowledgments
	References

