
Weighted model counting beyond two-variable logic
Antti Kuusisto

University of Bremen
Germany

Carsten Lutz
University of Bremen

Germany

Abstract
It was recently shown by van den Broeck at al. that the symmet-
ric weighted first-order model counting problem (WFOMC) for
sentences of two-variable logic FO2 is in polynomial time, while
it is #P1-complete for some FO3-sentences. We extend the result
for FO2 in two independent directions: to sentences of the form
φ∧∀x∃=1yψ (x ,y) withφ andψ formulated in FO2 and to sentences
of the uniform one-dimensional fragment U1 of FO, a recently intro-
duced extension of two-variable logic with the capacity to deal with
relation symbols of all arities. We note that the former generalizes
the extension of FO2 with a functional relation symbol. We also
identify a complete classification of first-order prefix classes accord-
ing to whether WFOMC is in polynomial time or #P1-complete.

Keywords weighted model counting, tractability, two-variable
logic, enumerative combinatorics

1 Introduction
The first-order model counting problem asks, given a sentence φ
and a number n, how many models of φ of size n exist. (The domain
of the models is taken to be {0, . . . ,n − 1}.) The weighted variant of
this problem adds weights to atomic facts RM (u1, . . . ,uk) of models
M, the total weight ofM being the product of the atomic weights.
The question is then what the sum of the weights of all models of φ
of size n is. Following [12], we also admit weights of negative facts
‘not RM (u1, . . . ,uk)’.

We investigate the symmetric weighted model counting problem
of systems extending the two-variable fragment FO2 of first-order
logic FO. The word ‘symmetric’ indicates that each weight is deter-
mined by the relation symbol of the (positive or negative) fact and
thus the weights can be specified by weight functionsw and w̄ that
assign weights to each relation symbol occurring positively (w) or
negatively (w̄). We let WFOMC refer to the symmetric weighted
first-order model counting problem, with WFOMC(φ,n,w, w̄) de-
noting the sum of the weights of modelsM |= φ of size n accord-
ing to the weight functions w and w̄ . We focus on studying the
data complexity of WFOMC, that is, the complexity of determining
WFOMC(φ,n,w, w̄) where n is the only input, given in unary, and
with φ,w, w̄ fixed.

The recent article [4] established the by now well-known result
that the data complexity of WFOMC is in polynomial time for
formulae of FO2, while [3] demonstrated that the three-variable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00
https://doi.org/10.1145/3209108.3209168

fragment FO3 contains formulae for which the problem is #P1-
complete. We note that the non-symmetric variant of the problem
is known to be #P-complete for some FO2-sentences [3].

Weighted model counting problems have a range of well-known
applications. For example, as pointed out in [3], WFOMC problems
occur in a natural way in knowledge bases with soft constraints and
are especially prominent in the area ofMarkov logic [6]. For a recent
comprehensive survey on these matters, see [5]. From the mathe-
matical perspective, WFOMC offers a neat and general approach
to elementary enumerative combinatorics. To give a simple illustra-
tion of this, consider WFOMC(φ,n,w, w̄) for the two-variable logic
sentence φ = ∀x∀y (Rxy → (Ryx ∧ x , y)) withw (R) = w̄ (R) = 1.
The sentence states that R encodes a simple undirected graph and
thus WFOMC(φ,n,w, w̄) = 2(

n
2) , the number of graphs of order n

(with the set n of vertices). Thus WFOMC provides a logic-based
way of classifying combinatorial problems. For instance, the result
for FO2-properties from [4] shows that all these properties can be
associated with tractable enumeration functions. For discussions of
the links between weighted model counting, the spectrum problem
and 0-1 laws, see [3].

In the current paper, we extend the result of [4] for FO2 in two
independent directions. We first consider FO2 with a functionality
axiom, that is, sentences of type φ ∧ ∀x∃=1yψ (x ,y) with φ andψ
in FO2. This extension is motivated, inter alia, by certain descrip-
tion logics with functional roles [1]. The connection of WFOMC
to enumerative combinatorics also provides an important part of
the motivation. Indeed, while FO2 is a reasonable formalism for
specifying properties of relations, adding functionality axioms al-
lows us to also express properties of functions, possibly combined
with relations. For example, applying WFOMC to the sentence
∀x¬Rxx ∧ ∀x∃=1yRxy gives the number of functions that do not
have a fixed point. While the extension of FO2 with a functionality
axiommight appear simple at first sight, showing that the data com-
plexity of WFOMC remains in PTIME requires a rather different
and much more involved approach than that for FO2. Our proofs
provide concrete and insightful aritmetic expressions for analysing
the related weighted model counts. We note that the article [9]
considers weighted model counting of an orthogonal extension of
FO2 which can express that some relations are functions.

We also show that the data complexity of WFOMC remains in
PTIME for sentences of the uniform one-dimensional fragment U1.
This is a recently introduced [8, 10] extension of FO2 that pre-
serves NEXPTIME-completeness of the satisfiability problem while
admitting more than two variables and thus being able to speak
about relations of all arities in a meaningful way. The fragment
U1 is obtained from FO by restricting quantification to blocks of
existential (universal) quantifiers that leave at most one variable
free, a restriction referred to as the one-dimensionality condition.
Additionally, a uniformity condition is imposed: if k,n ≥ 2, then a
Boolean combination of atoms Rx1 . . . xk and Sy1 . . .yn is allowed
only if the sets {x1, . . . ,xk } and {y1, . . . ,yn } of variables are equal.
Boolean combinations of formulae with at most one free variable

1

https://doi.org/10.1145/3209108.3209168

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Antti Kuusisto and Carsten Lutz

can be formed freely, and the use of equality is unrestricted. It is
shown in [8] that lifting either of these conditions—in a minimal
way—leads to undecidability. For a survey of the basic properties
of U1 and its relation to modal and description logics, see [14].

What makes weighted model counting for U1 attractive in re-
lation to applications is the ability of U1 to express interesting
properties of relations of all arities, thereby banishing one of the
main weaknesses of FO2. This is especially well justified from the
points of view of database theory and of knowledge representation
with formalisms such as Markov logic, which are among the main
application areas of WFOMC. We note that U1 is significantly more
expressive than FO2 already in restriction to models with at most
binary relations [14].

We also identify a complete classification of first-order prefix
classes according to whether the sentences of the particular class
have polynomial time WFOMC or whether some sentence of the
class has a #P1-complete WFOMC. This classification, whose proof
makes significant use of the results and techniques from [3, 4], is re-
markably simple: #P1-hardness arises precisely for the classes with
more than two quantifiers, independently of the quantifier pattern.

2 Preliminaries
The natural numbers are denoted by N and positive integers by Z+.
As usual, we often identify n ∈ N with the set { k ∈ N | k < n}. We
define [n] := {1, . . . ,n} for each n ∈ Z+ and [0] := ∅. The domain
of a function f is denoted by dom(f). The function f is involutive if
f (f (x)) = x for all x ∈ dom(f) and anti-involutive if f (f (x)) , x
for all x ∈ dom(f). Two functions f and д are nowhere inverses if
f (д(x)) , x and д(f (y)) , y for all x ∈ dom(д), y ∈ dom(f). We
use the standard notation

(n
n1, ...,nm

)
for multinomial coefficients.

We study (fragments of) first-order logic FO over relational vo-
cabularies; constant and function symbols are not allowed. The
identity symbol ‘=’ and the Boolean constants ⊥,⊤ are not consid-
ered relation symbols; they are a logical symbols included in FO.
We allow nullary relation symbols in FO with the usual syntax and
semantics. The vocabulary of a formula φ is denoted by voc(φ).

We let VAR := {v0,v1, . . . } denote a fixed, countably infinite set
of variable symbols. We mainly use meta-variables x ,y, z, etc., in
order to refer to symbols in VAR. Note that for example x and y
may denote the same variable, while vi and vj are different if i , j .

The domain of a model M is denoted by dom(M). In the case
A ⊆ (dom(M))k , we let (M,A) denote the expansion ofM obtained
by adding the k-ary relationA toM. We mostly do not differentiate
between relations and relation symbols explicitly when the distinc-
tion is clear from the context. Relational models decompose into
facts and negative facts in the usual way: if R is a k-ary relation sym-
bol of a modelM and Ru1 . . .uk holds for some elementsu1, . . . ,uk
ofM, then Ru1 . . .uk is a positive fact ofM, and if Ru1 . . .uk does
not hold inM, then Ru1 . . .uk is a negative fact ofM. We denote
the positive (respectively, negative) facts ofM by F+ (M) (respec-
tively, F− (M)). The span of a fact Ru1, . . . ,uk , whether positive or
negative, is {u1, . . . ,uk } and the size of the span is |{u1, . . . ,uk }|.

The first-order model counting problem asks, when given a posi-
tive integer n in unary and an FO-sentence φ, how many models
φ has over the domain n = {0, . . . ,n − 1}; the vocabulary of the
models is taken to be voc(φ), and different but isomorphic models
contribute separately to the output. The weighted first-order model
counting problem adds two functions to the input, w and w̄ , that

both map the set of all possible facts over n and voc(φ) into a set
of weights. In the symmetric weighted model counting problem
studied in this paper, w and w̄ are functions w : voc(φ) → Q and
w̄ : voc(φ) → Q. The output WFOMC(φ,n,w, w̄) is then the sum
of the weightsW (M,w, w̄) of all modelsM |= φ with domain n and
vocabulary voc(φ),

W (M,w, w̄) :=
∏

Ru1 ...uk ∈ F + (M)

w (R) ·
∏

Ru1 ...uk ∈ F − (M)

w̄ (R). (1)

This setting gives rise to several computational problems, depend-
ing on which inputs are fixed. In this article, we exclusively study
data complexity, i.e., the problem of computing WFOMC(φ,n,w, w̄)
with the sole input n ∈ Z+ given in unary; φ, w and w̄ are fixed
and thus not part of the input. Algorithms for more general inputs
can easily be extracted from our proofs, but we only study data
complexity explicitly for the lack of space.

While weights are rational numbers, it will be easy to see that
reals with a tame enough representation could also be included
without sacrificing our results. We ignore this for the sake of sim-
plicity and stick to rational weights. (See also [12].)

We now define, for technical purposes, some restricted versions
of WFOMC and the operator W. First, ifM is a class of models,
we define WFOMC(φ,n,w, w̄) ↾ M to be the sum of the weights
W(M,w, w̄) of models M ∈ M with domain n and vocabulary
voc(φ) such that M |= φ. For k ∈ Z+, we let F+k (M) and F−k (M)

denote the restrictions of F+ (M) and F− (M) to facts with span
of size k . We defineWk (M,w, w̄) exactly asW (M,w, w̄) but with
F+ (M) and F− (M) replaced by F+k (M) and F−k (M). When φ,n,w
and w̄ are clear from the context, the weight of a classM of models
refers to WFOMC(φ,n,w, w̄) ↾M.

The quantifier-free part of a prenex normal form formula of FO
is called a matrix. A prenex normal form sentence of type χ :=
∀x1 . . .∀xkψ , where ψ is the matrix, is an ∀∗-sentence, and the
number k of quantifiers in χ is the width of χ . An ∃∗-sentence is
defined analogously.

Below we will investigate standard two-variable logic FO2 en-
hanced with a functionality axiom. Formulae in this language are
conjunctions of type φ ∧ ∀x∃=1yψ (x ,y), where φ and ψ are FO2-
formulae, ψ with the free variables x ,y and φ a sentence. When
studying this variant of FO, we exclusively use the variables x ,y,
with x denoting v1 and y denoting v2.

Let Y = {y1, . . . ,yk } be a set of distinct variables, and let R be
an n-ary relation symbol for some n ≥ k . An atom Ryi1 . . .yin is
a Y -atom if {yi1 , . . . ,yin } = Y . For example, if x ,y, z,v are distinct
variable symbols, then Txyzx and Sxzy are {x ,y, z}-atoms, while
Uxyzv and Vxy are not. Furthermore, Vxz is an {x , z}-atom while
x = z is not, as identity is not a relation symbol. A Y -literal is a
Y -atom Ryi1 . . .yin or a negated Y -atom ¬Ryi1 . . .yin . A Y -literal
is anm-ary literal if |Y | =m, so for example Sxx and ¬Px are unary
literals; Sxx is even a unary atom while ¬Px is not. A higher arity
literal is a literal of arity at least two. We let diff (x1, . . . ,xk) denote
the conjunction of inequalities xi , x j for all distinct i, j ∈ [k].

The set of formulae of the uniform one-dimensional fragment U1
of FO is the smallest set F such that the following conditions hold.

1. Unary and nullary atoms are in F .
2. All identity atoms x = y are in F .
3. If φ,ψ ∈ F , then ¬φ ∈ F and (φ ∧ψ) ∈ F .

2

Weighted model counting beyond two-variable logic LICS ’18, July 9–12, 2018, Oxford, United Kingdom

4. Let X = {x0, . . . ,xk } and Y ⊆ X . Let φ be a Boolean combi-
nation of Y -atoms and formulae in F whose free variables
(if any) are in X . Then
a. ∃x1 . . . ∃xk φ ∈ F ,
b. ∃x0 . . . ∃xk φ ∈ F .

For example ∃y∃z ((¬Rxyz∨Tzyxx)∧Qy) is a U1-formula while
∃x∃y (Sxy ∧ Sxz) is not, as {x ,y} , {x , z}. This latter formula is
said to violate the uniformity condition of U1. Also ∃z∀y∀x (Txyz∧
∃uSxu) is a U1-formula while ∃x∃y∃z (Txyz ∧ ∃uTxyu) is not, as
∃uTxyu leaves two variables free and thereby violates the one-
dimensionality condition of U1. The clause 4 above does not require
that Y -atoms must be included, so also ∃x∃y∃zdiff (x ,y, z) is a U1-
formula.We thus see that U1 has some counting capacities. Amatrix
of a U1-formula will below be called a U1-matrix.

The article [14] contains a survey of U1 with background about
its expressive power and connections to extended modal logics.
The article [11] provides an Ehrenfeucht-Fraïssé game character-
ization of U1. It is worth noting that the so-called fully uniform
one-dimensional fragment FU1 has exactly the same expressive
power as FO2 when restricting to vocabularies with at most binary
relations [14]. The logic FU1 is obtained by dropping clause 2 from
the above definition of U1 and instead regarding the identity sym-
bol as an ordinary binary relation in clause 4; see [14]. Thus U1 is
the extension of FU1 with unrestricted use of identity.

The formula ∃x∃y∃zdiff (x ,y, z) is an obvious example of a U1-
formula that is not expressible in FO2. Another formula worth
mentioning here that separates the expressive powers of U1 and
FO2 is ∃x∀y∀z (Ryz → (x = y ∨ x = z)) which states that some
node is part of every edge of R. The separation was shown in [14],
and the proof is easy; simply consider the two-pebble game (defined
in, e.g., [7]) on the complete graphs K2 and K3. The U1-formula
∃x∃y∃z¬Sxyz is one of the simplest formulae separating U1 from
both FO2 and the guarded negation fragment [2], as shown in [14].

For technical purposes, we also introduce the strongly restricted
fragment of U1, denoted SU1, which was originally introduced and
studied in [11]. The logic SU1 imposes the additional condition
on the above clause 4 that the set Y must contain exactly all of
the variables x0, . . . ,xk . For example ∃x∃y∃u (Rxyu ∧ x , u) is an
SU1-formula while ∃x∃y (Sxy ∧ x , z) is not, despite being a U1-
formula, as z < {x ,y}. Despite the syntactic restriction imposed by
SU1 being simple, it has some significant consequences: it is shown
in [11] that the satisfiability problem of SU1 in the presence of a
single built-in equivalence relation is only NEXPTIME-complete,
while it is 2NEXPTIME-complete for U1. We note that even the
restriction SU1 of U1 contains FO2 as a syntactic fragment.

A U1-sentence φ is in generalized Scott normal form, if
φ =

∧
1≤i≤m∀

∀x1 . . .∀xℓi φ
∀
i (x1, . . . ,xℓi)

∧
∧

1≤i≤m∃
∀x∃y1 . . . ∃ykiφ

∃
i (x ,y1, . . . ,yki),

where φ∃i and φ∀i are quantifier-free. A sentence of FO2 is in (stan-
dard) Scott normal form if it is of type

∀x∀y φ (x ,y) ∧
∧

1≤i≤m∃ ∀x∃yψi (x ,y)

with φ and eachψi quantifier-free. There exists a standard proce-
dure (see, e.g., [7, 10]) that converts any given formula φ of FO2

(respectively, U1) in polynomial time into a formula Sc(φ) in stan-
dard (respectively, generalized) Scott normal form such that φ is
equivalent to ∃P1 . . . ∃PnSc(φ), where P1, . . . , Pn are fresh unary

and nullary predicates. The procedure is well-known and used in
most papers on FO2 and U1. Thus we only describe it briefly. For
more details, see Appendix A.1 of the full version [15] of the current
paper. The main idea is to replace, starting from the atomic level and
working upwards from there, any subformulaψ (x) = Qx1 . . .Qxk χ ,
where Q ∈ {∀,∃} and χ is quantifier-free, with an atomic formula
Pψ (x), where Pψ is a fresh relation symbol. This atom Pψ (x) is then
separately axiomatized to be equivalent toψ (x).

If φ is a sentence of U1 (respectively SU1, FO2), then Sc(φ) is like-
wise a sentence of U1 (respectively SU1, FO2); see Appendix A.1 of
[15]. Each novel predicate (Pψ in the above example) is axiomatized
to be equivalent to the subformula (ψ (x) in the above example)
whose quantifiers are to be eliminated, so the interpretation of the
predicate is fully determined by the subformula in every model
of the ultimate Scott normal form sentence. Thus, recalling that
φ ≡ ∃P1 . . . ∃Pk Sc(φ), where P1, . . . Pk are the fresh predicates, we
get the following (see Appendix A.1 of [15] and cf. [4]).
Lemma 2.1. WFOMC(φ,n,w, w̄) = WFOMC(Sc(φ),n,w ′, w̄ ′),
wherew ′ and w̄ ′ map the fresh symbols to 1.

2.1 Types and tables
Let η be a finite relational vocabulary. A 1-type (over η) is a maxi-
mally consistent set of η-atoms and negated η-atoms in the single
variable v1; no nullary atoms are included. The number of 1-types
over η is clearly finite. We often identify a 1-type α with the con-
junction of its elements, whence α (v1) is a formula in the single
variablev1. While the official variable with which α is defined isv1,
we frequently consider 1-types α (x),α (y), etc., with v1 replaced
by other variables. To see some examples, consider the case where
η = {R, P } with R binary and P unary. Then the 1-types over η in
the variable x are Rxx∧Px , ¬Rxx∧Px , Rxx∧¬Px and ¬Rxx∧¬Px .

Let M be an η-model and α a 1-type over η. An element u ∈
dom(M) realizes the 1-type α if M |= α (u). Note that every element
ofM realizes exactly one 1-type over η.

Let k ≥ 2 be an integer. A k-table over η is a maximally con-
sistent set of {v1, ... ,vk }-atoms and negated {v1, ... ,vk }-atoms
over η. We define that 2-tables do not contain identity atoms or
negated identity atoms. For example, using x ,y instead of v1,v2,
the set {Rxxy,Rxyx ,¬Ryxx ,Ryyx ,¬Ryxy,Rxyy, Sxy,¬Syx } is a 2-
table over {R, S }, where R is a ternary and S a binary symbol. We
often identify a k-table β with a conjunction of its elements. We
also often consider formulae such as β (x1, . . . ,xk), thereby writing
k-tables in terms of variables other than v1, . . . ,vk .

For investigations on two-variable logic, we also need the notion
of a 2-type. Recalling that we let x and y denote, respectively, v1
and v2 in two-variable contexts, we define that a 2-type over η
is a conjunction β (x ,y) ∧ α1 (x) ∧ α2 (y) ∧ x , y, where β is a
2-table while α1 and α2 are 1-types over η. Such a 2-type can be
conveniently denoted by α1βα2.

Let γ be either a 1-type or a k-table over η. Let L+ and L− be the
sets of positive and negative literals in γ . Given weight functions
w : η → Q and w̄ : η → Q, the weight of γ , denoted by ⟨w, w̄⟩(γ),
is the product ∏

Rv ∈ L+
w (R) ·

∏
¬Rv ∈ L−

w̄ (R), where v denotes

the different possible tuples of variables in the literals of γ .

2.2 A Skolemization procedure
We now define a formula transformation procedure designed for the
purposes of model counting. The procedure, which was originally

3

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Antti Kuusisto and Carsten Lutz

introduced in [4], resembles Skolemization but does not in general
produce an equisatisfiable formula. Here we present a slightly mod-
ified variant of the procedure from [4] suitable for our purposes.

If Q ∈ {∃,∀} is a quantifier, we let Q ′ denote the dual quantifier
of Q , i.e., Q ′ ∈ {∃,∀} \ {Q }. Let

φ := ∀x1 . . .∀xk∃y1 . . . ∃ymQ1z1 . . .Qnzn ψ

be a first-order prenex normal form sentence whereψ is quantifier-
free and Qi ∈ {∃,∀} for all i . We eliminate the block ∃y1 . . . ∃ym
of existential quantifiers of φ in two steps. First we replace φ by

∀x1 . . .∀xk (Ax1 . . . xk ∨ ¬∃y1 . . . ∃ymQ1z1 . . .Qnzn ψ),

where A is a fresh k-ary predicate. Then the negation is pushed
inwards past the quantifier block ∃y1 . . . ∃ymQ1z1 . . .Qnzn and
the resulting dual block ∀y1 . . .∀ymQ ′1z1 . . .Q ′nzn is pulled out so
that we end up with the prenex normal form sentence

∀x1 . . .∀xk∀y1 . . .∀ymQ ′1z1 . . .Q ′nzn (Ax1 . . . xk ∨ ¬ψ).

Let Sk0 (φ) denote the sentence obtained by changing the max-
imally long outermost block of existential quantifiers (the block
∃y1 . . . ∃ym if Q1 = ∀ above) to a block of universal quantifiers us-
ing the above two steps, and let Sk(φ) be the ∀∗-sentence obtained
by repeatedly applying Sk0. For any conjunction χ := ψ1∧· · ·∧ψn of
prenex normal form sentences, we let Sk(χ) := Sk(ψ1)∧· · ·∧Sk(ψn).

The next lemma is proved similarly as the corresponding result
in [4]. (Appendix A.2 of [15] also gives a proof.)

Lemma 2.2 (cf. [4]). Let χ and φ be sentences, φ a conjunction of
prenex normal form sentences. Letw and w̄ be weight functions. Then

WFOMC(φ ∧ χ ,n,w, w̄) =WFOMC(Sk(φ) ∧ χ ,n,w ′, w̄ ′),
wherew ′ and w̄ ′ are obtained fromw and w̄ by mapping the fresh
symbols in Sk(φ) to 1 in the case of w ′ and to −1 in the case of
w̄ ′. If φ is a sentence of FO2, then so is Sk(φ). If φ is a sentence of
L ∈ {U1, SU1} in generalized Scott normal form, then Sk(φ) ∈ L.

2.3 Further syntactic assumptions
Let φ be a sentence of U1. Due to Lemmas 2.1 and 2.2, we have
WFOMC(φ,n,w, w̄) =WFOMC(Sk(Sc(φ)),n,w ′, w̄ ′), wherew ′ and
w̄ ′ treat the fresh symbols as discussed when defining Sc and Sk.
Call χ := Sk(Sc(φ)) and assume, w.l.o.g., that χ = ∀x1χ1 ∧ · · · ∧
∀x1 . . .∀xk χk for some matrices χi . For technical convenience,
when working with SU1, we assume that there is at most one ∀∗-
conjunct of any particular width; if not, sentences ∀x1 . . .∀xp χ ′

and∀x1 . . .∀xp χ ′′ can always be combined to∀x1 . . .∀xp (χ ′∧χ ′′).
Now, χ may contain nullary predicates. Let S be the set of nullary

predicates of χ and let f : S → {⊤,⊥} be a function. Let χ f be
the formula obtained from χ by replacing each nullary predicate P
by f (P). It is easy to compute WFOMC(χ ,n,v, v̄) from the values
WFOMC(χ f ,n,v, v̄) for all functions f : S → {⊤,⊥}. Thus, when
studying WFOCM for U1 and SU1, we begin with a formula∀x1χ1∧
· · · ∧ ∀x1 . . .∀xk χk assumed to be free of nullary predicates. We
also assume, w.l.o.g., that the greatest width k is at least 2 and equal
to the greatest arity of relation symbols occurring in the formula.
(We can always add dummy ∀∗-conjuncts of higher width, and we
can add a dummy k-ary symbol R to a conjunct ∀x1 . . .∀xk χk by
replacing χk by Rx1 . . . xk ∧ χk and settingw (R) = w̄ (R) = 1.)

We then turn to two-variable logic with a functionality axiom.
Consider a sentence φ ′ := φ ∧ ∀x∃=1yψ (x ,y), where φ andψ (x ,y)
are FO2-formulae. By applying the Scott normal form procedure for
eliminating quantified subformulae and using the Skolemization
operator Sk, it is easy to obtain (see Appendix A.3 of [15]) a sentence

φ ′′ := ∀x∀yχ ∧∀x∃=1yχ ′(x ,y) with χ and χ ′(x ,y) quantifier-free
so that WFOMC(φ ′,n,w, w̄) = WFOMC(φ ′′,n,w ′, w̄ ′), where w ′
and w̄ ′ extendw and w̄ . If φ ′′ has nullary predicates, we eliminate
them in the way discussed above. Thus, when studying WFOMC for
FO2 with a functionality axiom below, we begin with a sentence of
the form ∀x∀yφ1 ∧∀x∃=1yφ2 (x ,y) where φ1 and φ2 are quantifier-
free. We also assume, w.l.o.g., that the sentence contains at least
one binary relation symbol and no symbols of arity greater than
two. (These assumptions are justified in Appendix A.4 of [15].)

3 Counting for FO2 with functionality
We now show that the symmetric weighted model counting prob-
lem for FO2-sentences with a functionality axiom is in PTIME. As
discussed in the preliminaries, it suffices to consider a formula

Φ0 := ∀x∀y φ∀0 (x ,y) ∧ ∀x∃
=1y φ∃0 (x ,y)

where φ∀0 (x ,y) and φ
∃
0 (x ,y) are quantifier-free and do not contain

nullary relation symbols. Further assumptions justified in the pre-
liminaries are that Φ0 contains at least one binary relation symbol
and no relation symbols of arity greater than two. From now on,
we thus consider a fixed formula Φ0 of the above form as well as
fixed weight functionsw and w̄ .

To simplify the constructions below, it would help if the subfor-
mula φ∃0 (x ,y) of Φ0 was of the form x , y ∧ ψ so that a witness
for the existential quantifier would always be different from the
point it is a witness to. However, there seems to be no obvious
way to convert Φ0 into the desired form while preserving weighted
model counts. We thus use a conversion that does not preserve
these counts and then show how to rectify this. Let

Φ := ∀x∀y
(
φ∀0 (x ,y) ∧ ¬(x , y ∧ φ

∃
0 (x ,x) ∧ φ

∃
0 (x ,y))

)
∧ ∀x∃=1y

(
x , y ∧

(
(φ∃0 (x ,x) ∧ Sy)

∨ (φ∃0 (x ,x) ∧ Sx ∧Ty)
∨ (¬φ∃0 (x ,x) ∧ φ

∃
0 (x ,y))

))
where S and T are fresh unary predicates. LetM be the class of
models (over voc(Φ)) where S and T are interpreted to be distinct
singletons. Slightly abusing notation, assume further that bothw
and w̄ assign to both S and T the value 1.

The remainder of this section is devoted to showing how to
compute WFOMC(Φ,n,w, w̄) ↾M. We note that the class

M1 := {M ∈ M | dom(M) = n }

of models relevant to WFOMC(Φ,n,w, w̄) ↾ M can be obtained
from the classM0 of models relevant to WFOMC(Φ0,n,w, w̄) by
interpreting S and T as distinct singletons in all possible ways, so
everymodel inM0 gives rise ton(n−1)models inM1. It is thus easy
to see that we get WFOMC(Φ0,n,w, w̄) from WFOMC(Φ,n,w, w̄) ↾
M by dividing by n(n− 1). (The case n = 1 is computed separately.)

We note that there seems to be no obvious way to modify Φ to
additionally enforce S and T to be distinct singletons. While this
property is expressible by a sentence of FO2, adding such a sentence
would destroy the intended syntactic structure of Φ. Note here that
Lemma 2.2 does not in general produce an equivalent formula, so
using it for modifying the required FO2-sentence would not help.

3.1 Partitioning models
For simplicity, letΦ = ∀x∀y φ∀(x ,y) ∧∀x∃=1y φ∃ (x ,y), soφ∀(x ,y)
and φ∃ (x ,y) denote, respectively, the quantifier-free parts of the

4

Weighted model counting beyond two-variable logic LICS ’18, July 9–12, 2018, Oxford, United Kingdom

∀∀-conjunct and ∀∃=1-conjunct of Φ. In the rest of Section 3, types
and tables mean types and tables with respect to voc(Φ).

Now, recall from the preliminaries that a 2-type τ (x ,y) is a con-
junction α (x) ∧ β (x ,y) ∧ α ′(y) ∧ x , y where β is a 2-table and
α ,α ′ are 1-types. We denote such a 2-type by αβα ′. We call α the
first 1-type and α ′ the second 1-type of τ (x ,y) and denote these
1-types by τ (1) and τ (2). The 2-type τ (x ,y) is coherent if

τ (x ,y) |= φ∀(x ,y) ∧ φ∀(y,x) ∧ φ∀(x ,x) ∧ φ∀(y,y).

A 1-type α (x) is coherent if α (x) |= φ∀(x ,x). The inverse of a 2-type
τ (x ,y) is the 2-type τ ′(x ,y) ≡ τ (y,x). A 2-type is symmetric if it is
equal to its inverse.

The witness of an element u in a model M of Φ is the unique
element v such thatM |= φ∃ (u,v). A 2-type τ (x ,y) is witnessing
if τ (x ,y) is coherent and we have τ (x ,y) |= φ∃ (x ,y). The 2-type
τ (x ,y) is both ways witnessing if both it and its inverse are witness-
ing; note that a both ways witnessing 2-type can be symmetric but
does not have to. The set of all witnessing 2-types is denoted by Λ.

We next define the notions of a block and a cell. These are an
essential part of the subsequent constructions. One central idea
of our model counting strategy is to partition the domain of a
modelM of Φ into blocks which are further partitioned into cells.
A block type is simply a witnessing 2-type. The block type of an
element u ofM |= Φ is the unique witnessing 2-type τ (x ,y) such
that M |= τ (u,v), where v is the witness of u. The domain M of
M is partitioned by the family (BMτ)τ where each set BMτ ⊆ M
contains precisely the elements ofM with block type τ . Some of
the sets BMτ can of course be empty. We call the sets BMτ the blocks
ofM and refer to BMτ as the block of type τ . We fix a linear order <
over all block types and denote its reflexive variant by ≤.

Each block further partitions into cells. A cell type is a pair (σ ,τ)
of witnessing 2-types. For brevity, we denote cell types by στ in-
stead of (σ ,τ). The cell type of an element u in a modelM |= Φ is
the unique pair στ such that u ∈ BMσ and v ∈ BMτ , v the witness of
u. Each block BMσ is partitioned by the family (CMστ)τ where each
set CMστ ⊆ BMσ contains precisely the elements ofM that are of cell
type στ . Again, some of the setsCMστ can be empty. We call the sets
CMστ the cells of BMσ and refer to CMστ as the cell of type στ .

3.2 The counting strategy
We now describe our strategy for computing WFOMC(Φ0,n,w, w̄)
informally. A formal treatment will be given later on. We first
explain how to compute WFOMC(Φ,n,w, w̄) and then discuss how
to get WFOMC(Φ,n,w, w̄) ↾M and WFOMC(Φ0,n,w, w̄).

The strategy for computing WFOMC(Φ,n,w, w̄) is based on
blocks and cells. We are interested in models of a given size n
and with domain n = {0, . . . ,n − 1}, so we letMΦ

n denote the set
of all voc(Φ)-modelsM with domain n that satisfy Φ.

A cell configuration is a partition (Cστ)στ of the setnwhere some
sets can be empty. The cell configuration of a model M ∈ MΦ

n is the
family (CMστ)στ as defined in Section 3.1. For a cell configuration
Γ, we useMΦ

n,Γ to denote the class of all models inMΦ
n that have

cell configuration Γ. It is clear that the family (MΦ
n,Γ)Γ , where Γ

ranges over all cell configurations, partitionsMΦ
n (though some

setsMΦ
n,Γ can be empty). It would be convenient to iterate over

cell configurations Γ and independently compute the weight of
all models in eachMΦ

n,Γ , eventually summing up the computed
weights. However, this option is ruled out since the number of cell

configurations is exponential in n. Fortunately, it suffices to only
know the sizes of cells rather than their concrete extensions.

Let σ1, . . . ,σk enumerate all block types. Then the sequence
σ1σ1,σ1σ2, . . . ,σkσk enumerates all cell types. A multiplicity con-
figuration is a vector (nσ1σ1 ,nσ1σ2 , . . . ,nσkσk) where each nσiσj is
a number in {0, . . . ,n} and nσ1σ1 + · · · + nσkσk = n. The multiplicity
configuration of a model M ∈ MΦ

n is obtained by letting each nστ
be the size ofCMστ . For a multiplicity configuration ∆, we useMΦ

n,∆
to denote the class of all models fromMΦ

n that have multiplicity
configuration ∆. Clearly, the number of multiplicity configurations
is polynomial in n, so we can iterate over them and—as we shall
see—independently compute the weight of all models in eachMΦ

n,∆
in polynomial time.

Each cell configuration gives rise to a unique multiplicity con-
figuration. Conversely, for every multiplicity configuration ∆ =

(nσ1σ1 ,nσ1σ2 , . . . ,nσkσk), there are ℓ =
(n
nσ1σ1,nσ1σ2, ...,nσk σk

)
cell

configurations giving rise to ∆. For any two such cell configurations
Γ, Γ′, the weight ofMΦ

n,Γ (i.e., the sum of the weights of the models
inMΦ

n,Γ) is identical to the weight ofMΦ
n,Γ′ . To obtain the weight

ofMΦ
n,∆, it thus suffices to consider a single cell configuration Γ

giving rise to ∆, compute the weight ofMΦ
n,Γ and multiply by ℓ.

We now briefly describe how to compute the number of models
inMΦ

n,Γ , ignoring weights. With easy modifications, the approach
will ultimately also give the weight ofMΦ

n,Γ . Although our algo-
rithm is not going to explicitly construct the models inMΦ

n,Γ , to
describe how the number of those models is counted, we simulta-
neously consider how we could construct all of them.

Let (Bσ)σ be the block configuration that corresponds to the cell
configuration Γ = (Cστ)στ , that is, Bσ =

⋃
τ Cστ for each block

type σ . As the domain is fixed to be n, we consider all possible
ways to assign 1-types to the elements of n and 2-tables to pairs
of distinct elements such that we realize the cell configuration Γ.
There is no freedom for the 1-types: if u ∈ Bσ , then we must assign
the 1-type σ (1) to u. To assign 2-tables, we consider each pair of
blocks (Bσ ,Bτ)withσ ≤ τ independently, identifying each possible
way to simultaneously assign 2-tables to pairs in Bσ × Bτ . (When
σ = τ , we must be careful to (1) consider only pairs (u,v) of distinct
elements and (2) to assign a 2-table to only one of (u,v), (v,u).) It is
important to understand that in Bσ , there is exactly one cell, namely
Cστ , whose elements require a witness from Bτ . Similarly, in Bτ ,
it is precisely the elements of Cτ σ that require a witness in Bσ .
Since witnesses are unique, we start by identifying the ways to
simultaneously define functions f : Cστ → Bτ and д : Cτ σ → Bσ
that determine the witnesses. It then remains to count the number
of ways to assign 2-types to the remaining edges that are witnessing
in neither direction. This is easy—as long as we know the number
N of these remaining edges—since each edge realizes the 1-type
σ (1) at the one end and τ (2) at the other. We use a look-up table
to find the number of 2-tables that are ‘compatible’ with this. The
number N depends on how many pairs in Bσ × Bτ and Bτ × Bσ
belong to the functions that determine the witnesses, but N will
nevertheless be easy to determine, as we shall see.

The precise arithmetic formulae for counting the number of
ways to assign 2-tables to all elements from Bσ × Bτ are given in
Section 3.3. There are several cases that need to be distinguished.
We now briefly look at the most important cases informally.

5

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Antti Kuusisto and Carsten Lutz

We start with the case σ = τ , that is, the two blocks Bσ ,Bτ are
in fact the same single block, and we aim to assign 2-tables within
that block. Then exactly the elements from the cell Cσσ require
a witness in Bσ itself. If σ is not both ways witnessing, then Cσσ
will be the domain of an anti-involutive function Cσσ → Bσ that
determines a witness in Bσ for each element in Cσσ . If σ is both
ways witnessing and its own inverse, this function is involutive.
The case where σ is both ways witnessing but not its own inverse is
pathological in the sense that there are then no valid ways to assign
2-tables unlessCσσ is empty. To sum up, in each case, the core task
in designing the desired arithmetic formula is thus to count the
number of suitable anti-involutive or involutive functions.

Now consider the case where σ , τ and thus Bσ and Bτ are
different blocks. Here again several subcases arise based on whether
σ and τ are both ways witnessing. The most interesting case is
where neither σ nor τ is both ways witnessing. We then need
to count the ways of finding two functions f : Cστ → Bτ and
д : Cτ σ → Bσ that are nowhere inverses of each other. In the case
where σ and τ are both ways witnessing and inverses of each other,
we need to count the number of perfect matchings between the
setsCστ andCτ σ . The case where at least one of the witness types,
say σ , is both ways witnessing, but σ and τ are not inverses of each
other, is again pathological.

Implementing the above ideas, we will show how to obtain,
for any pair of blocks Bσ ,Bτ , where we have σ ≤ τ , a function
Mστ (nσ ,nστ ,nτ ,nτ σ) that counts the ‘weighted number of ways’
to connect the blocks Bσ and Bτ with 2-tables, when given the sizes
nσ and nτ of the blocks as well as the sizes nστ and nτ σ of the cells
Cστ ⊆ Bσ andCτ σ ⊆ Bτ ; we note that while this fixes the intuitive
interpretation ofMστ (nσ ,nστ ,nτ ,nτ σ), the functionMστ will be-
come formally defined in terms of arithmetic operations in Section
3.4. (Furthermore, for extra clarity, we provide in Appendix B.1 of
[15] a more detailed description of what the weighted number of
ways to connect Bσ and Bτ with 2-tables means.)

Recall that Λ is the set of all block types and note that nσ =∑
σ ′ ∈Λ

nσσ ′ and likewise for nτ , so nσ and nτ are determined by the

sizes of all cells in the blocks Bσ and Bτ . With the aim of achieving
notational uniformity, we can thus replaceMστ by a function

Nστ (nσ1σ1 ,nσ1σ2 , . . . ,nσkσk) (2)

that outputsMστ (nσ ,nστ ,nτ ,nτ σ) but has a full multiplicity type
as an input. Noting that the weight functionsw and w̄ give rise to
the weightwα := ⟨w, w̄⟩(α) of each 1-type α , we now observe that
we can compute WFOMC(Φ,n,w, w̄) by the function

U (n) :=
∑

nσ1σ1+nσ1σ2+· · ·+nσk σk =n

((
n

nσ1σ1 ,nσ1σ2 , . . . ,nσkσk

)
·
(∏
σ ∈ Λ

(wσ (1))
nσ

) ∏
σ , τ ∈ Λ

Nστ (nσ1σ1 ,nσ1σ2 , . . . ,nσkσk)
)
. (3)

Recall, however, that we aim to compute WFOMC(Φ,n,w, w̄) ↾
M rather than WFOMC(Φ,n,w, w̄). And eventually we want to
compute WFOMC(Φ0,n,w, w̄), which can be obtained simply by
dividing WFOMC(Φ,n,w, w̄) ↾ M by n(n − 1). In order to get
from WFOMC(Φ,n,w, w̄) to WFOMC(Φ,n,w, w̄) ↾M, we need to
discard weights contributed by models where S andT are not inter-
preted as non-overlapping singletons. This is easy: we only need to
discard multiplicity configurations (nσ1σ1 ,nσ1σ2 , . . . ,nσkσk) that

do not make S and T distinct singletons. Let ⟨n⟩ be the set of multi-
plicity configurations with the undesired ones excluded. Summing
up, WFOMC(Φ0,n,w, w̄) can thus be computed by the function

W (n) =
1

n(n − 1)

·
∑

(nσ1σ1,nσ1σ2, ...,nσk σk) ∈ ⟨n⟩

((
n

nσ1σ1 ,nσ1σ2 , . . . ,nσkσk

)

·
(∏
σ ∈ Λ

(wσ (1))
nσ

) ∏
σ , τ ∈ Λ

Nστ (nσ1σ1 ,nσ1σ2 , . . . ,nσkσk)
)
. (4)

In the next Section 3.3 we deal with the combinatorics for defin-
ing the functions Nστ . The actual functions Nστ are then specified
in Section 3.4 where we conclude our argument.

3.3 The relevant combinatorics
Let k ∈ N. The following equation is well known.

i=k∑
i=0

(−1)i
(
k

i

)
=



0 if k , 0
1 if k = 0.

(5)

On the intuitive level, the alternating sum on the left hand side of
the equation relates directly to the inclusion-exclusion principle. We
shall make frequent use of this equation in the constructions below.

The first result of this section, Proposition 3.1 below, will ulti-
mately help us in counting the number of ways to connect a block
to itself with 2-tables. However, the result is interesting in its own
right and thus we formulate it abstractly, like most results in this
section, without reference to 2-types or other logic-related notions.

Recall that a unary function is anti-involutive if f (f (x)) , x for
all x ∈ dom(f). Note that this implies f (x) , x for all x ∈ dom(f),
i.e., f is fixed point free.

Proposition 3.1. Let n and m ≤ n be nonnegative integers. The
number of anti-involutive functionsm → n is

I (m,n) :=
i= ⌊m/2⌋∑

i=0
(−1)i (n − 1)m−2i

(
m

2i

)
(2i)!
2i (i!)

. (6)

Proof. We first note that for a nonnegative integer i , there are(2i
2, ...,2

) 1
i ! ways to partition 2i elements into doubletons, where

2 is written i times in the bottom row. Writing the multinomial
coefficient

(2i
2, ...,2

)
open, we see that

(2i
2, ...,2

) 1
i ! =

(2i)!
2i (i !) .

Now, for a fixed point free function f , if f (f (x)) = x for some
x , then we call the doubleton {x , f (x)} a symmetric pair of f . A
fixed point free function f : m → n with i labelled symmetric pairs
is a pair (f ,L) where f : m → n is a fixed point free function and
L is a set of exactly i symmetric pairs of f . Note that f may have
other symmetric pairs outside L, so L only distinguishes i specially
labelled symmetric pairs.

It is easy to see that the number of fixed point free functions
m → n with i labelled symmetric pairs is given by

(n − 1)m−2i
(
m

2i

)
(2i)!
2i (i!)

. (7)

Therefore Equation 6 has the following intuitive interpretation. The
equation first counts—when i is zero—all fixed point free functions
m → n without any labelled symmetric pairs; unlabelled symmetric
pairs are allowed. Then, when i = 1, the equation subtracts the
number of fixed point free functions m → n with one labelled

6

Weighted model counting beyond two-variable logic LICS ’18, July 9–12, 2018, Oxford, United Kingdom

symmetric pair. Then, with i = 2 the equation adds the the number
of fixed point free functionsm → n with two labelled symmetric
pairs, and so on, all the way to i = ⌊m/2⌋.

Now, fix a single fixed point free function f : m → n with exactly
j symmetric pairs. Labelling k ≤ j of the j symmetric pairs can
be done in

(j
k

)
ways. Thus f gets counted in Equation 6 precisely

S (j) :=
(j
0
)
−

(j
1
)
+

(j
2
)
− · · · ∗

(j
j

)
times, where ∗ is + if j is even and

− if j is odd. By Equation 5, S (j) is 0 when j , 0 and 1 when j = 0.
Thus f gets counted zero times if j , 0 and once if j = 0. □

Proposition 3.1 will be used for counting functions that find a
witness for each element of a cell C of sizem from a block B ⊇ C
of size n. However, we also need to count the ways of assigning
non-witnessing 2-tables to the remaining edges inside B. The next
two results, Lemma 3.2 and Proposition 3.3, will help in this.

Let G be an undirected graph with the set V of vertices and E
of edges. A labelling of G with k symmetric colours and ℓ directed
colours is a pair of functions (s,d) such that

1. s maps some setU ⊆ E into [k], not necessarily surjectively,
2. d maps the complement E \U of U into [ℓ] × V such that

each edge e ∈ E \U gets mapped to a pair (i,u) where u ∈ e .
Intuitively, d picks a colour in [ℓ] and an orientation for e . It
is not required that each i ∈ [ℓ] gets assigned to some edge.

The colour j ∈ [ℓ] is said to define a function if the relation
{ (u,v) | {u,v} ∈ E \U , d ({u,v}) = (j,v) } is a function.

Rather than counting labellings of graphs, we need to count
weighted labellings: a weighted labelling of a graph G with k sym-
metric and ℓ directed colours is a triple

W = ((s,d), (w1, . . . ,wk), (x1, . . . xℓ))

such that (s,d) is a labelling ofG andw1, . . . ,wk are weights of the
symmetric colours 1, . . . ,k and x1, . . . ,xℓ weights of the directed
colours 1, . . . , ℓ. (Here for example 1 is called both a directed and
symmetric colour. This will pose no problem.) The total weight
tW of the weighted labellingW is the product of the weights as-
signed to the edges of G. The weighted number of labellings of G
with k symmetric and ℓ directed colours with weightsw1, . . . ,wk
and x1, . . . ,xℓ is the sum of the total weights tW of all weighted
labellingsW = ((s,d), (w1, . . . ,wk), (x1, . . . xℓ)) of G.

The following is easy to prove (see Appendix B.2 of [15]).

Lemma 3.2. The function

Lk, ℓ (N ,w1, . . . ,wk ,x1, . . . ,xℓ) :=∑
i1+· · ·+ik+j1+· · ·+jℓ =N

((
N

i1, . . . , ik , j1, . . . jℓ

)
· 2j1+· · ·+jℓ

(∏
p ∈ [k]

(wp)
ip

) (∏
q ∈ [ℓ]

(xq)
jq

))
(8)

gives the weighted number of labellings of an arbitrary N -edge graph
with k symmetric and ℓ directed colours with weightsw1, . . . ,wk and
x1, . . . ,xℓ . At least one of k, ℓ is assumed nonzero here. The first (resp.
second) product on the bottom row outputs 1 if k = 0 (resp. ℓ = 0).

We also define L0,0 (N) := 0 for N > 0 and L0,0 (0) := 1, and
also Lk, ℓ (m,w1, . . . ,wk ,x1, . . . ,xℓ) := 0 for all negative integers
m. The following is easy to prove (see Appendix B.3 of [15]).

Proposition 3.3. Let n andm ≤ n be nonnegative integers, and let
w1, . . . ,wk and x1, . . . ,xℓ ,y be weights for k symmetric and ℓ + 1

directed colours. The function

Jk, ℓ+1 (m,n,w1, . . . ,wk ,x1, . . . ,xl ,y) :=

I (m,n) · ym · Lk, ℓ
((n

2

)
−m, w1, . . . ,wk ,x1, . . . ,xℓ

)
(9)

gives the weighted number of labellings of the complete n-element
graph with k symmetric and ℓ + 1 directed colours with the above
weights such that the edges of colour ℓ + 1 define an anti-involutive
functionm → n.

The following result will ultimately help us in counting the ways
of connecting two different blocks to each other with 2-tables.

Proposition 3.4. LetA , ∅ andB , ∅ be disjoint finite sets, |A| = M
and |B | = N . Let Am ⊆ A and Bn ⊆ B be sets of sizes m and n,
respectively. There exist

K (m,M,n,N) :=
i =min(m,n)∑

i=0
(−1)i

(
m

i

) (
n

i

) (
i! ·M (n−i) · N (m−i)

)
(10)

ways to define two functions f : Am → B and д : Bn → A that are
nowhere inverses of each other.

Proof. Fix some i ≤ min(m,n), and fix two sets Ai ⊆ Am and
Bi ⊆ Bn , both of size i . There exist

(
i! ·M (n−i) · N (m−i)

)
ways to

define a pair of functions f : Am → B and д : Bn → A such that
f ↾ Ai and д ↾ Bi are bijections and inverses of each other; here i! is
the number of ways the two functions can be defined in restriction
to Ai and Bi so that they become inverses of each other over Ai
and Bi . (Note that f and д can be inverses elsewhere too.) Thus(

m

i

) (
n

i

) (
i! ·M (n−i) · N (m−i)

)
gives the number of tuples (f ,д,A′,B′) such that f : Am → B and
д : Bn → A are functions and A′ ⊆ Am and B′ ⊆ Bn sets of size i
such that f ↾ A′ and д ↾ B′ are inverses of each other.

Now, fix two sets Aj ⊆ Am and Bj ⊆ Bn of size j both. Fix
two functions f : Am → B and д : Bn → A that are inverses
of each other on Aj and Bj and nowhere else. Thus the pair f ,д
is counted in the alternating sum of Equation 10 exactly S (j) :=(j

0
)
−

(j
1
)
+

(j
2
)
− · · · ∗

(j
j

)
times, where ∗ is + if j is even and −

otherwise. By Equation 5, S (j) is zero when j , 0 and one when
j = 0. Thus the pair f ,д gets counted zero times if j , 0 and
otherwise once. □

We also define K (m,M,n,N) := 0 for any m ≤ M and n ≤
N with M = 0 , n or N = 0 , m. Furthermore, we define
K (0, 0, 0,N) = K (0,M, 0, 0) = 1 for allM,N ∈ N.

The next result, Proposition 3.5, extends Proposition 3.4 so that
also the non-witnessing edges will be taken into account. To for-
mulate the result, we define that for disjoint finite sets A and B, the
complete bipartite graph on A × B is the undirected bipartite graph
with the set { {a,b} | a ∈ A, b ∈ B } of edges.

Proposition 3.5. Let A and B be finite disjoint sets, |A| = M and
|B | = N . LetAm ⊆ A and Bn ⊆ B be sets of sizesm andn, respectively.
Letw1, . . . ,wk and x1, . . . ,xℓ ,y, z be weights. The function

Pk, ℓ+2 (m,M,n,N ,w1, . . . ,wk ,x1, . . . ,xℓ ,y, z) :=
K (m,M,n,N) · ymzn · Lk, ℓ (MN −m − n, w1, . . . ,wk ,x1, . . . ,xℓ) (11)

7

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Antti Kuusisto and Carsten Lutz

gives the weighted number of labellings of the complete bipartite
graph on A × B with k symmetric and ℓ + 2 directed colours with
weightsw1, . . . ,wk and x1, . . . ,xℓ ,y, z such that the directed colours
ℓ + 1 and ℓ + 2 define, respectively, functions f : Am → B and
д : Bn → A that are nowhere inverses of each other.

Proof. The relatively easy proof is given in Appendix B.4 of [15]. □

The results so far in this section provide us with ways of counting
in cases where witnesses are found via 2-types that are not both
ways witnessing. We now deal with the remaining cases.

Recall that n!! denotes the standard double factorial operation
defined such that for example 7!! = 7 · 5 · 3 · 1 and 8!! = 8 · 6 · 4 · 2.
We define the function F : N → N such that F (0) = 1 and for
allm ∈ Z+, we have F (m) = (m − 1)!! ifm is even and F (m) = 0
otherwise. It is well known and easy to show that F (m) is the
number of perfect matchings of the complete graph G with the set
m of vertices, i.e., the number of 1-factors of a complete graph of
orderm (and with the setm of vertices). A perfect matching of the
setm means a perfect matching of the complete graph with vertex
setm. The following is easy to prove (see Appendix B.5 of [15]).

Proposition 3.6. Let n andm ≤ n be nonnegative integers, and let
w1, . . . ,wk ,y and x1, . . . ,xℓ be weights. The function

Sk+1, ℓ (m,n,w1, . . . ,wk ,y,x1, . . . ,xℓ) :=

F (m) · ym/2 · Lk, ℓ
((n

2

)
− ⌊m/2⌋, w1, . . . ,wk ,x1, . . . ,xℓ

)
(12)

gives the weighted number of labellings of the complete graph with
the set n of vertices with k + 1 symmetric and ℓ directed colours
with weightsw1, . . . ,wk ,y and x1, . . . ,xℓ such that the edges of the
symmetric colour k + 1 define a perfect matching of the setm ⊆ n.

Let F ′ : N × N → N be the function such that F ′(n,m) = n! if
n = m and F ′(n,m) = 0 otherwise. A perfect matching between
two disjoint sets S andT means a perfect matching of the complete
bipartite graph on S ×T . The following is immediate.

Proposition 3.7. Let A and B be finite disjoint finite sets, |A| = M
and |B | = N . Let Am ⊆ A and Bn ⊆ B be sets of sizes m and n,
respectively. The function

Tk+1, ℓ (m,M,n,N ,w1, . . . ,wk ,y,x1, . . . ,xℓ) :=
F ′(n,m) · yn · Lk, ℓ (MN − n, w1, . . . ,wk ,x1, . . . ,xℓ) (13)

gives the weighted number of labellings of the complete bipartite
graph on A × B with k + 1 symmetric and ℓ directed colours with
weightsw1, . . . ,wk ,y and x1, . . . ,xℓ such that the symmetric colour
k + 1 defines a perfect matching between Am and Bn .

3.4 Defining the functions Nστ
We now discuss how the functions Nστ are defined for all pairs στ
of block types, thereby completing the definition of Equation 4.

Fix a pair στ of block types. Let y and z, respectively, be the
weights of the 2-tables of the 2-types σ and τ . Letw1, . . . ,wk (re-
spectively, x1, . . . ,xℓ) enumerate the weights of the symmetric
(resp., unsymmetric) 2-tables β that can connect the block Bσ to
the block Bτ so that neither the resulting 2-type σ (1)βτ (1) nor
its inverse is witnessing, and furthermore, σ (1)βτ (1) is coherent.
If σ = τ , these are the weights of the coherent 2-tables that can
connect a point in block Bσ to another point in the same block so
that the resulting 2-type is not witnessing in either direction.

We next consider different cases depending on howσ and τ relate
to each other. We let n denote the input tuple to Nστ , so n contains
the multiplicities nσ ′σ ′′ of all cell types σ ′σ ′′. For a witness 2-type
σ ′, we let nσ ′ abbreviate the sum

∑
σ ′′ ∈Λ nσ ′σ ′′ (recall Λ is the

set of all block types). The witness 2-type σ ′ is compatible with a
witness 2-type σ ′′ if σ ′(2) = σ ′′(1).

Case 1. We assume that 1.a) σ , τ ; 1.b) σ and τ are compatible
with each other; 1.c) neither σ nor τ is a both ways witnessing
2-type. By Proposition 3.5, the weight contributed by all the edges
from Bσ to Bτ is thus given by

Nστ (n) := Pk, ℓ+2 (nστ ,nσ ,nτ σ ,nτ ,w1, ...,wk ,x1, ...,xℓ ,y, z).

which defines Nστ under these particular assumptions.
The remaining cases are similar but use different functions de-

fined in the previous section. For example, when σ = τ and σ is not
two-ways witnessing, we use the function Jℓ,k+1 from Equation 9
in Proposition 3.3; see the Appendix B.6 of [15] (Case 4). All the
remaining cases are also discussed in that appendix. By inspecting
the operations of Equation 4, we conclude the following.

Theorem 3.8. The weighted model counting problem of each two-
variable logic sentence with a functionality axiom is in PTIME.

4 Weighted model counting for U1
In this section we prove thatWFOMC is in PTIME for each sentence
of U1. To that end, we first establish the same result for SU1, stated
as Lemma 4.5 below. We follow a proof strategy that makes explicit
how the syntactic restrictions of SU1 naturally lead to polynomial
time model counting. We then provide a reduction from U1 to SU1.

4.1 Weighted model counting for SU1
Let ψ (x1, . . . ,xk) be a quantifier-free first-order formula, and let
ℓ ≤ k be a positive integer. Let F denote the set of all surjections
[k] → [ℓ]. The conjunction ∧

{ψ (xf (1) , . . . ,xf (k)) | f ∈ F } is
called the ℓ-surjective image ofψ .

Definition 4.1. Let φ be a conjunction of ∀∗-sentences of FO
(These need not be sentences of U1 or SU1.) We now define the
surjective completion sur (φ) of φ by modifying φ as follows.

1.) Let k be the maximumwidth of the∀∗-conjuncts ofφ. Wemodify
φ so that for all i ∈ [k], there exists a conjunct of width i . This can
be ensured by adding dummy conjuncts, if necessary. We let φ ′
denote the resulting sentence.
2.)We merge the conjuncts of φ ′ with the same width, so that for
example ∀x∀yψ (x ,y) ∧∀x∀yχ (x ,y) would become ∀x∀y (ψ (x ,y) ∧
χ (x ,y)). Thus the resulting formula φ ′′ is a conjunction of ∀∗-
sentences so that no two conjuncts have the same width.
3.) Define φ ′′k := φ ′′ where k is the maximum width of the ∀∗-
sentences of φ ′′. Inductively, let 1 ≤ ℓ < k and assume we have
defined a sentence φ ′′

ℓ+1 = χ1 ∧ · · · ∧ χk where each χi is an
∀∗-sentence of width i . Letψℓ+1 andψℓ be the matrices of χℓ+1 and
χℓ , so we have

χℓ+1 = ∀x1 . . .∀xℓ+1ψℓ+1 (x1, . . . ,xℓ+1),
χℓ = ∀x1 . . .∀xℓ ψℓ (x1, . . . ,xℓ).

Letψ ′
ℓ
denote the ℓ-surjective image ofψℓ+1. Replace the conjunct

χℓ of φ ′′ℓ+1 by ∀x1 . . .∀xℓ (ψℓ ∧ψ
′
ℓ
). Define φ ′′

ℓ
to be the resulting

modification of φ ′′
ℓ+1. Define sur (φ) to be the formula φ ′′1 .

8

Weighted model counting beyond two-variable logic LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Let φ := ∀x1 . . .∀xkψ be an ∀∗-sentence. We let diff (φ) denote
the sentence ∀x1 . . .∀xk (diff (x1, . . . ,xk) → ψ), letting diff (x1) :=
⊤. For a conjunction φ ′ := φ1 ∧ · · · ∧φk of ∀∗-sentences, we define
diff (φ ′) := diff (φ1) ∧ · · · ∧ diff (φk).

Lemma 4.2. We have φ ≡ diff (sur (φ)) for any conjunction φ of
first-order ∀∗-sentences.

Proof. Clearly φ ≡ sur (φ). Also sur (φ) ≡ diff (sur (φ)), as sur is
based on steps where the surjective image of a matrix is pushed to
be part of the matrix of a formula with one variable less. □

As discussed in the preliminaries, to prove that the weighted
model counting problem of SU1-sentences is in PTIME, it suffices
to show this for conjunctions of ∀∗-sentences of SU1 of the type
φ ′ = ∀x1ψ ′1 ∧ · · · ∧ ∀x1 . . .∀xp ψ ′p where eachψ ′i is quantifier-
free. Other assumptions justified in the preliminaries are that φ ′
contains no nullary atoms; p is equal to the greatest arity of the
symbols in voc(φ ′); and p ≥ 2. By Lemma 4.2, φ ′ is equivalent to
φ ′′ := diff (sur (φ ′)). We remove the conjunct of width 1 from φ ′′

and integrate it to the conjunct of width 2, so if
φ ′′ = ∀x1 χ1 (x1) ∧ ∀x1∀x2

(
diff (x1,x2) → χ2 (x1,x2)

)
∧ Φ,

we replace φ ′′ by
φ := ∀x1∀x2

(
diff (x1,x2) → (χ1 (x1) ∧ χ2 (x1,x2))

)
∧ Φ.

(We ignore the case with a one-element domain as we can simply
store and return the answer in that case.) For the remainder of
Section 4.1, we fix the obtained sentence φ and weight functionsw
and w̄ that assign weights to each symbol R in the vocabulary η of
φ; our aim is to compute WFOMC(φ,n,w, w̄). We let

φ = ∀x1∀x2ψ2 ∧ · · · ∧ ∀x1 . . .∀xp ψp , (14)

so the individual matrices are denoted byψi . We denote each con-
junct ∀x1 . . .∀xk ψk by φk . The next two lemmas are crucial for
computing WFOMC(φ,n,w, w̄) in polynomial time.

Lemma 4.3. M |= φ iff for all k ∈ {2, . . . ,p}, we haveMk |= φk for
every k-element submodelMk of M.

Proof. The first implication is immediate since universal sentences
are preserved under taking submodels. For the converse implication,
assume that for all k ∈ {2, . . . ,p},Mk |= φk for all submodelsMk
ofM of size k . Assume thatM ̸ |= φ. ThusM ̸ |= φk for some k . The
matrixψk of φk is of the type diff (x1, . . . xk) → ψ , so there exists
some k-element submodelMk ofM with domain {u1, . . . ,uk } such
thatMk ̸ |= ψk (u1, . . . ,uk). This is a contradiction, soM |= φ. □

LetM andM′ be η-models such thatM′ is obtained by changing
exactly one fact of span size k from positive to negative or vice
versa. Let S be the k-element set spanned by that fact. ThenM and
M′ are S-variants of each other.

Lemma 4.4. LetM andM′ be S-variants of each other, |S | > 1. Let
U , S be a set of elements of M such that |U | =m > 1. LetMU and
M′U be the submodels of M andM′ induced by U . ThenMU |= φm
iff M′U |= φm .

Proof. Firstly, if the formula φm = ∀x1 . . .∀xm ψm contains atoms
of arity two or more, then, by the syntactic restrictions of SU1,
each of those atoms mentions exactly all of the variables x1, . . . xm .
Secondly,ψm is of the form diff (x1, . . . ,xm) → ψ . □

Lemma 4.5. The weighted model counting problem for each SU1-
sentence is in PTIME.

Proof. As discussed above, we prove the claim for the sentence φ
we have fixed. Let T be the set of 1-types over the vocabulary η of
φ. Fix an ordering ofT and let α1, . . . ,αℓ enumerateT in that order.
For a positive integer k = {0, . . . ,k − 1}, a function f : k → T is
a type assignment over k . Two type assignments f : k → T and
д : k → T are said to have the same multiplicity, if for each α ∈ T ,
the functions f and д map the same number of elements in k to α .

For a type assignment f : k → T , letMf ,k be the set of all
η-modelsM such that the following conditions hold.

1. The domain ofM is k = {0, . . . ,k − 1}, and the size of the
span of each positive fact Ru1 . . .um of M is either 1 or k ,
i.e., each positive fact either spans a single domain element
or all of the domain elements ofM.

2. For eachm ∈ {0, . . . ,k − 1}, we haveM |= αf (m) (m).
3. M |= φk .
Recalling the relativised weight function Wk from the prelimi-

naries, we define the local weight lw (φk , f) of φk with respect to a
type assignment f : k → T so that

lw (φk , f) :=
∑

M ∈ Mf ,k

Wk (M,w, w̄).

Thus lw (φk , f) could be characterized as giving the weighted num-
ber of models of φk with domain k and with 1-types distributed
according to f so that only those positive and negative facts are
counted that have span k . Clearly lw (φ, f) = lw (φ,д) for any
д : k → T that has the same multiplicity as f , so only the number of
realizations of the 1-types matters rather than the concrete realiza-
tions. Therefore we define, for any nonnegative integers k1, . . . ,kℓ
such that k1 + · · · + kℓ = k , that lw (φk , (k1, . . . ,kℓ)) := lw (φk ,h),
where h : k → T is a type assignment that maps, for each i ∈ [ℓ],
precisely ki elements of k to αi . Note that there exist only finitely
many numbers lw (φk , (k1, . . . ,kℓ)) such that k ∈ {2, . . . ,p} and
k1 + · · · + kℓ = k . We can thus compile a look-up table of these
finitely many local weights.

For each tuple (n1, . . . ,nℓ) of nonnegative integers such that
n1 + · · · + nℓ = n, fix a unique type assignment h : n → T that
maps exactly ni elements of n to αi for each i ∈ [ℓ]. Then, using
h, defineM(n1, ...,nℓ) to be the class of η-models with domain n
where exactly the elements i such that h(i) = αi , realize αi . Clearly
WFOMC(φ,n,w, w̄) is now given by∑
n1+· · ·+nℓ =n

(
n

n1, . . . ,nℓ

)
WFOMC(φ,n,w, w̄) ↾M(n1, ...,nℓ) . (15)

Therefore, to conclude the proof, we need to find a suitable formula
for WFOMC(φ,n,w, w̄) ↾M(n1, ...,nℓ) . We shall do that next.

For each αi ∈ T , let wαi be the weight of the type αi . Let
k1, . . . ,kℓ be nonnegative integers that sum to k ≤ n. A k-element
set with ki realizations of αi for each i ∈ [ℓ] can be chosen in(n1
k1

)
· . . . ·

(nℓ

kℓ

)
ways from the set n with ni realizations of αi fixed

for each i ∈ [ℓ]. By Lemmas 4.3 and 4.4, we thus see that

WFOMC(φ,n,w, w̄) ↾M(n1, ...,nℓ) =
(∏
i ≤ ℓ

(wαi)
ni

)
·

∏
2 ≤ k ≤ p

∏
k1+· · ·+kℓ =k

lw (φk , (k1, . . . ,kℓ))
(n1
k1
) · ... ·(nℓkℓ) . (16)

9

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Antti Kuusisto and Carsten Lutz

Therefore the function in Line (15) can clearly be computed in
PTIME in n (which is given in unary). □

4.2 Weighted model counting for U1
As discussed in the preliminaries, the weighted model counting
problem of U1-sentences can be reduced to the corresponding prob-
lem for conjunctions of ∀∗-sentences of U1. A natural next step
would be to follow the strategy of Section 4.1. However, that ap-
proach would fail due to Lemma 4.4 which depends crucially on
the exact syntactic properties of SU1. Thus we need a different ap-
proach. We now show how to reduce the weighted model counting
problem for U1 to the corresponding problem for SU1.

We begin with the Lemma 4.6 below. Restricting attention to
∀∗-sentences in the lemma is crucial, since SU1 is in general strictly
less expressive than U1, as shown in [11].

Lemma 4.6. Every ∀∗-sentence of U1 translates to an equivalent
Boolean combination ∀∗-sentences of SU1.

Proof. We sketch the proof; see Appendix B.7 of [15] for further
details. It is easy to show that every ∃∗-sentence of U1 is equivalent
to a disjunction of ∃∗-sentences of the form
∃x1 . . . ∃xℓ

(
α1 (x1) ∧ · · · ∧ αℓ (xℓ) ∧ β (x1, . . . ,xk) ∧ diff (x1, . . . ,xℓ)

)
,

where αi are 1-types and β is a k-table. For this to be an SU1-
sentence, k would need to be equal to ℓ. However, this sentence can
be seen equivalent to the following conjunction of SU1-sentences:
∃x1 . . . ∃xk

(
α1 (x1) ∧ · · · ∧ αk (xk) ∧ β (x1, . . . ,xk) ∧ diff (x1, . . . ,xk)

)
∧ ∃x1 . . . ∃xℓ

(
α1 (x1) ∧ · · · ∧ αℓ (xℓ) ∧ diff (x1, . . . ,xℓ)

)
. □

Theorem 4.7. The weighted model counting problem is in PTIME
for each sentence of U1.

Proof. As discussed in the preliminaries, it suffices to prove the
theorem for a conjunction χ of ∀∗-sentences of U1. We apply
Lemma 4.6 to χ , obtaining a sentence ψ ≡ χ which is a Boolean
combination of ∀∗-sentences of SU1. By Lemmas 2.1 and 2.2, we
have WFOMC(ψ ,n,w, w̄) =WFOMC(Sk(Sc(ψ)),n,w ′, w̄ ′), where
w ′ and w̄ ′ are obtained fromw and w̄ by mapping the new symbols
as specified in the lemmas. Sk(Sc(ψ)) is an ∀∗-sentence of SU1. □

5 Counting and prefix classes
First-order prefix classes admit the following neat classification:

Proposition 5.1. Consider a prefix class Cw of first-order logic de-
fined by a quantifier-prefixw ∈ {∃,∀}∗.

1. If |w | ≥ 3, then Cw contains a formula with a #P1-complete
symmetric weighted model counting problem.

2. If |w | < 3, then the symmetric weighted model counting prob-
lem of each formula in Cw is in PTIME.

We note that the proof of the proposition makes use of the results
and techniques of [3, 4] in various ways, and thus much of the credit
goes there. We only sketch the proof here; see Appendix C of [15]
for more details.

Firstly, [3] shows that there is an FO3-sentence φ with a #P1-
complete model counting problem. We turn φ into a conjunction
of prenex form sentences by eliminating quantified subformulae
in a way resembling the Scott normal form procedure. We then
apply the Skolemization operator Sk (see Section 2.2). Combining

the obtained ∀∗-conjuncts, we get a sentence χ := ∀x∀y∀zψ with
the same model counting problem as φ; hereψ is quantifier-free.

We then start modifying the ∀∀∀-sentence χ in order to obtain,
for each prefix class C with three quantifiers, a sentence in C with
the same model counting problem as χ . The required modifications
can be easily done by using operations that slightly generalize the
Skolemization operation from Section 2.2. These operations are
defined as follows. Let χ ′ := ∀x1 . . .∀xkQ1xk+1 . . .Qmxm χ ′′ be a
prenex form sentence with χ ′′ quantifier-free and withQi ∈ {∃,∀}.
We turn χ ′ into ∀x1 . . .∀xkQ

′
1xk+1 . . .Q

′
mxm (Ax1 . . . xk ∨ ¬χ

′′),
where A is a fresh k-ary predicate and each Q ′i is the dual of Qi .
The difference with the Skolemization operation of Section 2.2 is
simply that Q1 is not required to be ∃. This new sentence has the
same model counting problem as χ ′ when the fresh symbol A is
given weights exactly as in Lemma 2.2. The proof of this claim is
similar to the proof of Lemma 2.2.

The second claim of Proposition 5.1 holds by the result for FO2.

6 Conclusions
It can be shown that WFOMC for formulae of two-variable logic
with counting C2 can be reduced to WFOMC for FO2 with an un-
bounded number of functionality axioms. Proving tractability in that
setting remains an interesting open problem. One difficulty here is
that the interaction patterns of different functional relations cause
effects that could intuitively be described as ‘non-local’ and seem
to require significantly more general combinatorial arguments than
those in Section 3. The tools of [13] could prove useful here.

Acknowledgments
The authors were supported by the ERC grant 647289 ‘CODA.’ We
thank the reviewers for their valuable feedback.

References
[1] Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. 2017. An Introduction

to Description Logic. Cambridge University Press.
[2] Vince Bárány, Balder ten Cate, and Luc Segoufin. 2015. Guarded Negation. J.

ACM 62, 3 (2015), 22:1–22:26.
[3] Paul Beame, Guy Van den Broeck, Eric Gribkoff, and Dan Suciu. 2015. Symmetric

Weighted First-Order Model Counting. In 34th ACM Symposium on Principles of
Database Systems (PODS). 313–328.

[4] Guy Van den Broeck, Wannes Meert, and Adnan Darwiche. 2014. Skolemization
for Weighted First-Order Model Counting. In Principles of Knowledge Representa-
tion and Reasoning (KR).

[5] Guy Van den Broeck and Dan Suciu. 2017. Query Processing on Probabilistic
Data: A Survey. Foundations and Trends in Databases 7, 3-4 (2017), 197–341.

[6] Pedro M. Domingos and Daniel Lowd. 2009. Markov Logic: An Interface Layer for
Artificial Intelligence. Morgan & Claypool Publishers.

[7] Heinz-Dieter Ebbinghaus and Jörg Flum. 1995. Finite model theory. Springer.
[8] Lauri Hella and Antti Kuusisto. 2014. One-Dimensional Fragment of First-order

Logic. In Advances in Modal Logic 10. 274–293.
[9] Seyed Mehran Kazemi, Angelika Kimmig, Guy Van den Broeck, and David Poole.

2016. New Liftable Classes for First-Order Probabilistic Inference. In Annual
Conference on Neural Information Processing Systems (NIPS). 3117–3125.

[10] Emanuel Kieronski and Antti Kuusisto. 2014. Complexity and Expressivity of
Uniform One-Dimensional Fragment with Equality. InMathematical Foundations
of Computer Science (MFCS) Part I. 365–376.

[11] Emanuel Kieronski and Antti Kuusisto. 2015. Uniform One-Dimensional Frag-
ments with One Equivalence Relation. In Annual Conference on Computer Science
Logic (CSL). 597–615.

[12] Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. 2017. Algebraic Model
Counting. J. Applied Logic 22 (2017), 46–62.

[13] Eryk Kopczynski and Tony Tan. 2015. Regular Graphs and the Spectra of Two-
Variable Logic with Counting. SIAM J. Comput. 44, 3 (2015), 786–818.

[14] Antti Kuusisto. 2016. On the Uniform One-Dimensional Fragment. In Interna-
tional Workshop on Description Logics (DL).

[15] Antti Kuusisto and Carsten Lutz. 2018. Weighted Model Counting Beyond Two-
Variable Logic. CoRR abs/1804.10185 (2018). http://arxiv.org/abs/1804.10185

10

http://arxiv.org/abs/1804.10185

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Types and tables
	2.2 A Skolemization procedure
	2.3 Further syntactic assumptions

	3 Counting for FO2 with functionality
	3.1 Partitioning models
	3.2 The counting strategy
	3.3 The relevant combinatorics
	3.4 Defining the functions N

	4 Weighted model counting for U1
	4.1 Weighted model counting for SU1
	4.2 Weighted model counting for U1

	5 Counting and prefix classes
	6 Conclusions
	Acknowledgments
	References

