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Abstract
We present the conditional value-at-risk (CVaR) in the context of
Markov chains and Markov decision processes with reachability
and mean-payoff objectives. CVaR quantifies risk by means of the
expectation of the worst p-quantile. As such it can be used to design
risk-averse systems. We consider not only CVaR constraints, but
also introduce their conjunction with expectation constraints and
quantile constraints (value-at-risk, VaR). We derive lower and upper
bounds on the computational complexity of the respective decision
problems and characterize the structure of the strategies in terms
of memory and randomization.
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1 Introduction
Markov decision processes (MDP) are a standard formalism for
modelling stochastic systems featuring non-determinism. The fun-
damental problem is to design a strategy resolving the non-determi-
nistic choices so that the systems’ behaviour is optimized with re-
spect to a given objective function, or, in the case of multi-objective
optimization, to obtain the desired trade-off. The objective function
(in the optimization phrasing) or the query (in the decision-problem
phrasing) consists of two parts. First, a payoff is a measurable func-
tion assigning an outcome to each run of the system. It can be
real-valued, such as the long-run average reward (also called mean
payoff ), or a two-valued predicate, such as reachability. Second, the
payoffs for single runs are combined into an overall outcome of the
strategy, typically in terms of expectation. The resulting objective
function is then for instance the expected long-run average reward,
or the probability to reach a given target state.

Risk-averse control aims to overcome one of the main disadvan-
tages of the expectation operator, namely its ignorance towards the
incurred risks, intuitively phrased as a question “How bad are the
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Figure 1. Illustration of VaR and CVaR for some random variables.

bad cases?” While the standard deviation (or variance) quantifies
the spread of the distribution, it does not focus on the bad cases
and thus fails to capture the risk. There are a number of quantities
used to deal with this issue:

• Theworst-case analysis (in the financial context known as dis-
counted maximum loss) looks at the payoff of the worst pos-
sible run. While this makes sense in a fully non-deterministic
environment and lies at the heart of verification, in the proba-
bilistic setting it is typically unreasonably pessimistic, taking
into account events happening with probability 0, e.g., never
tossing head on a fair coin.
• The value-at-risk (VaR) denotes the worst p-quantile for
some p ∈ [0, 1]. For instance, the value at the 0.5-quantile is
the median, the 0.05-quantile (the vigintile or ventile) is the
value of the best run among the 5%worst ones. As such it cap-
tures the “reasonably possible” worst-case. See Fig. 1 for an
example of VaR for two given probability density functions.
There has been an extensive effort spent recently on the anal-
ysis of MDP with respect to VaR and the re-formulated no-
tions of quantiles, percentiles, thresholds, satisfaction view
etc., see below. Although VaR is more realistic, it tends to
ignore outliers too much, as seen in Fig. 1 on the right. VaR
has been characterized as “seductive, but dangerous” and “not
sufficient to control risk” [8].
• The conditional value-at-risk (average value-at-risk, expected
shortfall, expected tail loss) answers the question “What to
expect in the bad cases?” It is defined as the expectation over
all events worse than the value-at-risk, see Fig. 1. As such it
describes the lossy tail, taking outliers into account, weighted
respectively. In the degenerate cases, CVaR for p = 1 is the
expectation and for p = 0 the (probabilistic) worst case. It
is an established risk metric in finance, optimization and
operations research, e.g. [1, 33], and “is considered to be a
more consistent measure of risk” [33]. Recently, it started
permeating to areas closer to verification, e.g. robotics [13].

Our contribution In this paper, we investigate optimization of
MDP with respect to CVaR as well as the respective trade-offs with
expectation and VaR. We study the VaR and CVaR operators for the
first time with the payoff functions of weighted reachability and
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mean payoff, which are fundamental in verification. Moreover, we
cover both the single-dimensional and the multi-dimensional case.

Particularly, we define CVaR for MDP and show the peculiarities
of the concept. Then we study the computational complexity and
the strategy complexity for various settings, proving the following:

• The single dimensional case can be solved in polynomial
time through linear programming, see Section 5.
• The multi-dimensional case is NP-hard, even for CVaR-only
constraints. Weighted reachability is NP-complete and we
give PSPACE and EXPSPACE upper bounds for mean payoff
with CVaR and expectation constraints, and with additional
VaR constraints, respectively, see Section 6. (Note that al-
ready for the sole VaR constraints only an exponential algo-
rithm is known; the complexity is an open question and not
even NP-hardness is known [15, 32].)
• We characterize the strategy requirements, both in terms of
memory, ranging from memoryless, over constant-size to
infinite memory, and the required degree of randomization,
ranging from fully deterministic strategies to randomizing
strategies with stochastic memory update.

While dealing with the CVaR operator, we encountered surpris-
ing behaviour, preventing us to trivially adapt the solutions to the
expectation and VaR problems:

• Compared to, e.g., expectation and VaR, CVaR does not be-
have linearly w.r.t. stochastic combination of strategies.
• A conjunction of CVaR constraints already is NP-hard, since
it can force a strategy to play deterministically.

1.1 Related work
Worst case Risk-averse approaches optimizing the worst case to-
gether with expectation have been considered in beyond-worst-case
and beyond-almost-sure analysis investigated in both the single-
dimensional [11] and in the multi-dimensional [17] setup.

Quantiles The decision problem related to VaR has been phrased
in probabilistic verificationmostly in the form “Is the probability that
the payoff is higher than a given value threshold more than a given
probability threshold?” The total reward gained attention both in the
verification community [6, 24, 35] and recently in the AI commu-
nity [23, 29]. Multi-dimensional percentile queries are considered
for various objectives, such as mean-payoff, limsup, liminf, shortest
path in [32]; for the specifics of two-dimensional case and their in-
terplay, see [3]. Quantile queries for more complex constraints have
also been considered, namely their conjunctions [9, 20], conjunc-
tions with expectations [15] or generally Boolean expressions [25].
Some of these approaches have already been practically applied
and found useful by domain experts [4, 5].

CVaR There is a body of work that optimizes CVaR in MDP. How-
ever, to the best of our knowledge, all the approaches (1) focus on
the single-dimensional case, (2) disregard the expectation, and (3)
treat neither reachability nor mean payoff. They focus on the dis-
counted [7], total [13], or immediate [27] reward, as well as extend
the results to continuous-time models [26, 30]. This work comes
from the area of optimization and operations research, with the
notable exception of [13], which focuses on the total reward. Since
the total reward generalizes weighted reachability, [13] is related
to our work the most. However, it provides only an approximation

solution for the one-dimensional case, neglecting expectation and
the respective trade-offs.

Further, CVaR is a topic of high interest in finance, e.g., [8, 33].
The central difference is that there variations of portfolios (i.e. the
objective functions) are considered while leaving the underlying
random process (the market) unchanged. This is dual to our prob-
lem, since we fix the objective function and now search for an
optimal random process (or the respective strategy).

Multi-objective expectation In the last decade, MDP have been
extensively studied generally in the setting of multiple objectives,
which provides some of the necessary tools for our trade-off analy-
sis. Multiple objectives have been considered for both qualitative
payoffs, such as reachability and LTL [19], as well as quantitative
payoffs, such as mean payoff [9], discounted sum [14], or total re-
ward [22]. Variance has been introduced to the landscape in [10].

2 Preliminaries
Due to space constraints, some proofs and explanations are short-
ened or omitted when clear and can be found in [28].

2.1 Basic definitions
We mostly follow the definitions of [9, 15]. N,Q,R are used to
denote the sets of positive integers, rational and real numbers,
respectively. For n ∈ N, let [n] = {1, . . . ,n}. Further, kj refers to
k · ej , where ej is the unit vector in dimension j.

We assume familiarity with basic notions of probability theory,
e.g., probability space (Ω,F , µ ), random variable F , or expected value
E. The set of all distributions over a countable set C is denoted by
D (C ). Further, d ∈ D (C ) is Dirac if d (c ) = 1 for some c ∈ C . To
ease notation, for functions yielding a distribution over some setC ,
we may write f (·, c ) instead of f (·) (c ) for c ∈ C .

Markov chains A Markov chain (MC) is a tuple M = (S,δ , µ0),
where S is a countable set of states1, δ : S → D (S ) is a probabilistic
transition function, and µ0 ∈ D (S ) is the initial probability dis-
tribution. The SCCs and BSCCs of a MC are denoted by SCC and
BSCC, respectively [31].

A run inM is an infinite sequence ρ = s1s2 · · · of states, we write
ρi to refer to the i-th state si . A path ϱ in M is a finite prefix of a
run ρ. Each path ϱ inM determines the set Cone(ϱ) consisting of
all runs that start with ϱ. To M, we associate the usual probability
space (Ω,F ,P), where Ω is the set of all runs in M, F is the σ -
field generated by all Cone(ϱ), and P is the unique probability
measure such that P(Cone(s1 · · · sk )) = µ0 (s1) ·

∏k−1
i=1 δ (si , si+1).

Furthermore, ♢B (♢□B) denotes the set of runs which eventually
reach (eventually remain in) the set B ⊆ S , i.e. all runs where ρi ∈ B
for some i (there exists an i0 such that ρi ∈ B for all i ≥ i0).

Markov decision processes A Markov decision process (MDP) is
a tuple M = (S,A,Av,∆, s0) where S is a finite set of states, A
is a finite set of actions, Av : S → 2A \ {∅} assigns to each state
s the set Av(s ) of actions enabled in s so that {Av(s ) | s ∈ S } is
a partitioning of A2, ∆ : A → D (S ) is a probabilistic transition
function that given an action a yields a probability distribution
over the successor states, and s0 is the initial state of the system.

1We allow the state set to be countable for the formal definition of strategies on MDP.
When dealing with Markov Chains in queries, we only consider finite state sets.
2In other words, each action is associated with exactly one state.
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A run ρ ofM is an infinite alternating sequence of states and
actions ρ = s1a1s2a2 · · · such that for all i ≥ 1, we have ai ∈ Av(si )
and ∆(ai , si+1) > 0. Again, ρi refers to the i-th state visited by
this particular run. A path of length k inM is a finite prefix ϱ =
s1a1 · · ·ak−1sk of a run in G.

Strategies and plays. Intuitively, a strategy in an MDPM is a
“recipe” to choose actions based on the observed events. Usually, a
strategy is defined as a function σ : (SA)∗S → D (A) that given a
finite path ϱ, representing the history of a play, gives a probability
distribution over the actions enabled in the last state. We adopt the
slightly different, though equivalent [9, Sec. 6] definition from [15],
which is more convenient for our setting.

LetM be a countable set ofmemory elements. A strategy is a triple
σ = (σu ,σn ,α ), where σu : A × S ×M→ D (M) and σn : S ×M→
D (A) are memory update and next move functions, respectively,
and α ∈ D (M) is the initial memory distribution. We require that,
for all (s,m) ∈ S × M, the distribution σn (s,m) assigns positive
values only to actions available at s , i.e. suppσn (s,m) ⊆ Av(s ).

A play ofM determined by a strategyσ is a Markov chainMσ =

(Sσ ,δσ , µσ0 ), where the set of states is S
σ = S×M×A, the initial dis-

tribution µ0 is zero except for µσ0 (s0,m,a) = α (m) ·σn (s0,m,a), and
the transition probability from sσ = (s,m,a) to s ′σ = (s ′,m′,a′) is
δσ (sσ , s ′σ ) = ∆(a, s ′) · σu (a, s

′,m,m′) · σn (s
′,m′,a′). Hence,Mσ

starts in a location chosen randomly according to α and σn . In state
(s,m,a) the next action to be performed is a, hence the probability
of entering s ′ is ∆(a, s ′). The probability of updating the memory
tom′ is σu (a, s ′,m,m′), and the probability of selecting a′ as the
next action is σn (s ′,m′,a′). Since these choices are independent,
and thus we obtain the product above.

Technically,Mσ induces a probability measure Pσ on Sσ . Since
we mostly work with the corresponding runs in the original MDP,
we overload Pσ to also refer to the probability measure obtained by
projecting onto S . Further, “almost surely” etc. refers to happening
with probability 1 according to Pσ . The expected value of a random
variable X : Ω → R is Eσ [X ] =

∫
Ω X dPσ .

A convex combinations of two strategies σ1 and σ2, written as
σλ = λσ1 + (1 − λ)σ2, can be obtained by defining the memory as
Mλ = {1} × M1 ∪ {2} × M2, randomly choosing one of the two
strategies via the initial memory distribution αλ and then following
the chosen strategy. Clearly, we have that Pσλ = λPσ1 + (1− λ)Pσ2 .

Strategy types. A strategy σ may use infinite memoryM, and both
σu and σn may randomize. The strategy σ is
• deterministic-update, if α is Dirac and the memory update
function σu gives a Dirac distribution for every argument;
• deterministic, if it is deterministic-update and the next move
function σn gives a Dirac distribution for every argument.

A stochastic-update strategy is a strategy that is not necessarily
deterministic-update and randomized strategy is a strategy that
is not necessarily deterministic. We also classify the strategies
according to the size of memory they use. Important subclasses
are memoryless strategies, in which M is a singleton, n-memory
strategies, in whichM has exactly n elements, and finite-memory
strategies, in whichM is finite.

End components. A tuple (T ,B) where ∅ , T ⊆ S and ∅ , B ⊆⋃
t ∈T Av(t ) is an end component of the MDPM if (i) for all actions

a ∈ B, ∆(a, s ′) > 0 implies s ′ ∈ T ; and (ii) for all states s, t ∈ T

there is a path ϱ = s1a1 · · ·ak−1sk ∈ (TB)k−1T with s1 = s , sk = t .

An end component (T ,B) is a maximal end component (MEC) if T
and B are maximal with respect to subset ordering. Given an MDP,
the set of MECs is denoted by MEC. By abuse of notation, s ∈ M
refers to all states of a MECM , while a ∈ M refers to the actions.

Remark 1. Computing the maximal end component (MEC) decom-
position of an MDP, i.e. the computation ofMEC, is in P [18].

Remark 2. For any MDPM and strategy σ , a run almost surely
eventually stays in one MEC, i.e. Pσ [

⋃
Mi ∈MEC ♢□Mi ] = 1 [31].

2.2 Random variables on Runs
We introduce two standard random variables, assigning a value to
each run of a Markov Chain or Markov Decision Process.

Weighted reachability. Let T ⊆ S be a set of target states and
r : T 7→ Q be a reward function. Define the random variable Rr as
Rr (ρ) = r(mini {ρi | ρi ∈ T }), if such an i exists, and 0 otherwise.
Informally, Rr assigns to each run the value of the first visited target
state, or 0 if none. Rr is measurable and discrete, as S is finite [31].
Whenever we are dealing with weighted reachability, we assume
w.l.o.g. that all target states are absorbing, i.e. for any s ∈ T we
have δ (s, s ) = 1 for MC and ∆(a, s ) = 1 for all a ∈ Av(s ) for MDP.

Mean payoff (also known as long-run average reward, and limit
average reward). Again, let r : S 7→ Q be a reward function. The
mean payoff of a run ρ is the average reward obtained per step, i.e.
Rm (ρ) = lim infn→∞ 1

n
∑n
i=1 r(ρi ). The lim inf is necessary, since

lim may not be defined in general. Further, Rm is measurable [31].

Remark 3. There are several distinct definitions of “weighted reach-
ability”. The one chosen here primarily serves as foundation for the
more general mean payoff.

3 Introducing the Conditional Value-at-risk
In order to define our problem, we first introduce the general con-
cept of conditional value-at-risk (CVaR), also known as average
value-at-risk, expected shortfall, and expected tail loss. As already
hinted, the CVaR of some real-valued random variable X and prob-
ability p ∈ [0, 1] intuitively is the expectation below the worst
p-quantile of X .

Let X : Ω → R be a random variable over the probability space
(Ω,F ,P). The associated cumulative density function (CDF) FX :
R→ [0, 1] of X yields the probability of X being less than or equal
to the given value r , i.e. FX (r ) = P({X (ω) ≤ r }). F is non-decreasing
and right continuous with left limits (càdlàg).

The value-at-risk VaRp is the worst p-quantile, i.e. a value v s.t.
the probability of X attaining a value less than or equal to v is p:3

VaRp (X ) := sup{r ∈ R | FX (r ) ≤ p} (VaR1 (X ) = ∞)

Then, with v = VaRp (X ), CVaR can be defined as [33]

CVaRp (X ) := E[X | X ≤ v] =
1
p

∫
(−∞,v]

x dFX ,

with the corner cases CVaR0 := VaR0 and CVaR1 = E.
Unfortunately, this definition only works as intended for contin-

uous X , as shown by the following example.

3An often used, mostly equivalent definition is inf {r ∈ R | FX (r ) ≥ p }. Unfortu-
nately, this would lead to some complications later on. See [28, Sec. A.1] for details.
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Figure 2. Distribution showing peculiarities of CVaR

Example 3.1. Consider a random variable X with a distribution
as outlined in Fig. 2. For p < 1

2 , we certainly have VaRp = 2p. On
the other hand, for any p ∈ ( 12 , 1), we get VaRp = 2. Consequently,
the integral remains constant and CVaRp would actually decrease
for increasing p, not matching the intuition. △

General definition. As seen in Ex. 3.1, the previous definition
breaks down when FX is not continuous at the p-quantile and
consequently FX (VaRp (X )) > p. Thus, we handle the values at the
threshold separately, similar to [34].

Definition 3.2. Let X be some random variable and p ∈ [0, 1].
With v = VaRp (X ), the CVaR of X is defined as

CVaRp (X ) :=
1
p

(∫
(−∞,v )

x dFX + (p − P[X < v]) · v
)
,

which can be rewritten as

CVaRp (X ) = 1
p

(
P[X < v] · E[X | X < v] + (p − P[X < v]) · v

)
.

The corner cases again are CVaR0 := VaR0, and CVaR1 = E.

Since the degenerate cases of p = 0 and p = 1 reduce to already
known problems, we exclude them in the following.

We demonstrate this definition on the previous example.

Example 3.3. Again, consider the random variable X from Ex. 3.1.
For 1

2 < p < 1 we have that P[X < VaRp (X )] = P[X < 2] = 1
2 . The

right hand side of the definition (p − P[X < VaRp (X )]) = p − 1
2

captures the remaining discrete probability mass which we have
to handle separately. Together with

∫
(−∞,2) x dFX =

1
4 we get

CVaRp (X ) = 1
p (

1
4 + (p − 1

2 ) · 2) = 2 − 3
4p . For example, with p = 3

4 ,
this yields the expected result CVaRp (X ) = 1. △

Remark 4. Recall that P[X < r ] can be expressed as the left limit of
FX , namely P[X < r ] = limr ′→−r FX (r ′). Hence, CVaRp (X ) solely
depends on the CDF of X and thus random variables with the same
CDF also have the same CVaR.

We say that F1 stochastically dominates F2 for two CDF F1 and
F2, if F1 (r ) ≤ F2 (r ) for all r . Intuitively, this means that a sample
drawn from F2 is likely to be larger or equal to a sample from F1.
All three investigated operators (E, CVaR, and VaR) are monotone
w.r.t. stochastic dominance [28, Sec. A.1].

4 CVaR in MC and MDP: Problem statement
Now, we are ready to define our problem framework. First, we
explain the types of building blocks for our queries, namely lower
bounds on expectation, CVaR, and VaR. Formally, we consider the
following types of constraints.

e ≤ E(X ) c ≤ CVaRp (X ) v ≤ VaRq (X )

X is some real-valued random variable, assigning a payoff to each
run. With these constraints, the classes of queries are denoted by

MDPcritobj,dim

• crit ⊆ {E,CVaR,VaR} are the types of constraints,
• obj ∈ {r,m} is the type of the objective function, either
weighted reachability r or mean payoff m, and
• dim ∈ {single,multi} is the dimensionality of the query.

We use d to denote the dimensions of the problem, d = 1 iff dim =
single. As usual, we assume that all quantities of the input, e.g.,
probabilities of distributions, are rational.

An instance of these queries is specified by an MDPM, a d-
dimensional reward function r : S → Qd , and constraints from
crit, given by vectors e, c, v ∈ (Q ∪ {⊥})d and p, q ∈ (0, 1)d . This
implies that in each dimension there is at most one constraint per
type. The presented methods can easily be extended to the more
general setting of multiple constraints of a particular type in one
dimension. The decision problem is to determine whether there
exists a strategy σ such that all constraints are met.

Technically, this is defined as follows. LetX be thed-dimensional
random variable induced by the objective obj and reward function
r, operating on the probability space ofMσ . The strategy σ is a
witness to the query iff for each dimension j ∈ [d] we have that
E[X j ] ≥ ej , CVaRpj (X j ) ≥ cj , and VaRqj (X j ) ≥ vj . Moreover, ⊥
constraints are trivially satisfied.

For completeness sake, we also considerMCcrit
obj,dim queries, i.e.

the corresponding problem on (finite state) Markov chains.

Notation. We introduce the following abbreviations.When dealing
with an MDPM, CVaRσp denotes CVaRp relative to the probability
space over runs induced by the strategy σ . When additionally the
random variable X (e.g., mean payoff) is clear from the context, we
may write CVaRp and CVaRσp instead of CVaRp (X ) and CVaRσp (X ),
respectively. We also define analogous abbreviations for VaR.

5 Single dimension
We show that all queries in one dimension are in P. Furthermore,
our LP-based decision procedures directly yield a description of a
witness strategy and allow for optimization objectives. We refer
to the input constraints by e for expectation, (p, c) for CVaR, and
(q, v) for VaR. Further, we use i for indices related to SCCs / MECs.

5.1 Weighted reachability
First, we show the simple result for Markov Chains, providing some
insight in the techniques used in the MDP case.

Theorem 5.1. MC{E,CVaR,VaR}r,single is in P.

Proof. Let M be a finite-state Markov chain, r a reward function,
and T = {b1, . . . ,bn } the target set. Recall that all bi are absorb-
ing, hence single-state BSCCs. We obtain the stationary distribu-
tion p ofM′ in polynomial time by, e.g., solving a linear equation
system [31]. With p, we can directly compute the CDF of Rr as
FRr (v ) =

∑
bi :r(bi )≤v p (bi ) and immediately decide the query. □

Let us consider the more complex case of MDP. We show a
lower bound on the type of strategies necessary to realize obj = r
queries with constraints on expectation and one of VaR or CVaR.
We then continue to prove that this class of strategies is optimal.
This characterization is used to derive a polynomial time decision
procedure based on a linear program (LP) which immediately yields
a witness strategy. Finally, when we deal with the mean payoff case
in Sec. 5.2, we make use of the reasoning presented in this section.
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Randomization is necessary for weighted reachability. In the
following example, we present a simple MDP on which all de-
terministic strategies fail to satisfy specific constraints, while a
straightforward randomizing one succeeds in doing so.

Example 5.2. Consider the MDP outlined in Fig. 3. The only non-
determinism is given by the choice in the initial state s0. Hence, any
strategy is characterised by the choice in that particular state. Let
now σa and σb denote the deterministic strategies playing a and b
in s0, respectively. Clearly, σa achieves an expectation, CVaRσa0.05,
and VaRσa0.05 of 5. On the other hand, σb obtains an expectation of
9 with CVaRσb0.05 and VaRσb0.05 equal to 0.

Thus, neither strategy satisfies the constraints q = p = 0.05,
e = 6, and c = 2 (or v = 5). This is the case even when the strategy
has arbitrary (deterministic) memory at its disposal, since in the
first step there is nothing to remember. Yet, σ = 3

4σa+
1
4σb achieves

E = 3
45 +

1
49 = 6 ≥ e, CVaRp = 2.5 ≥ c, and VaRq = 5 ≥ v. △

Hence strategies satisfying an expectation constraint together
with either a CVaR or VaR constraint may necessarily involve ran-
domization in general. We prove that (i) under mild assumptions
randomization actually is sufficient, i.e. no memory is required, and
(ii) fixed memory may additionally be required in general.

Definition 5.3. LetM be an MDP with target set T and reward
function r. We say that M satisfies the attraction assumption if
A1) the target set T is reached almost surely for any strategy, or
A2) for all target state s ∈ T we have r(s ) ≥ 0.

Essentially, this definition implies that an optimal strategy never
remains in a non-target MEC. This allows us to design memoryless
strategies for the weighted reachability problem.

Theorem 5.4. Memoryless randomizing strategies are sufficient for
MDP{E,VaR,CVaR}r,single under the attraction assumption.

Proof. Fix an MDPM and reward function r. We prove that for
any strategy σ there exists a memoryless, randomizing strategy σ ′
achieving at least the expectation, VaR, and CVaR of σ .

All target states ti ∈ T form single-state MECs, as we assumed
that all target states are absorbing. Consequently, σ naturally in-
duces a distribution over these si . Now, we apply [19, Theorem 3.2]
to obtain a strategy σ ′ with Pσ

′

[♢si ] ≥ Pσ [♢si ] for all i .
WithA1), we have

∑
pi = 1 and thus Pσ

′

[♢ti ] = Pσ [♢ti ]. Hence,
σ ′ obtains the same CDF for the weighted reachability objective.
Under A2), the CDF F ′ of strategy σ ′ stochastically dominates the
CDF F of the original strategy σ , concluding the proof. □

Theorem 5.5. Two-memory stochastic strategies (i.e. with both ran-
domization and stochastic update) are sufficient forMDP{E,VaR,CVaR}r,single .

The proof is a simple application of the following Thm. 5.10, as
weighted reachability is a special case of mean payoff. Together with
an example for the lower bound it can be found in [28, Sec. A.2].

(1) All variables ya , xs , xs are non-negative.
(2) Transient flow for s ∈ S :

1s0 (s ) +
∑

a∈A
ya∆(a, s ) =

∑
a∈Av(s )

ya + xs

(3) Switching to recurrent behaviour:∑
s ∈T

xs = 1

(4) VaR-consistent split:

xs = xs for s ∈ T< xs ≤ xs for s ∈ T=
(5) Probability-consistent split:∑

s ∈T≤
xs = p

(6) CVaR and expectation satisfaction:∑
s ∈T≤

xs · r(s ) ≥ p · c
∑

s ∈T
xs · r(s ) ≥ e

Figure 4. LP used to decide weighted reachability queries given a
guess t of VaRp. T∼ := {s ∈ T | r(s ) ∼ t }, ∼∈ {<,=, ≤}.

Inspired by [15, Fig. 3], we use the optimality result fromThm. 5.4
to derive a decision procedure for weighted reachability queries
under the attraction assumptions based on the LP in Fig. 4.

To simplify the LP, we make further assumptions – see [28,
Sec. A.2] for details. First, all MECs, including non-target ones,
consist of a single state. Second, all MECs from which T is not
reachable are considered part of T and have r = 0 (similar to the
“cleaned-up MDP” from [19]). Finally, we assume that the quantile-
probabilities are equal, i.e. p = q. The LP can easily be extended
to account for different values by duplicating the xs variables and
adding according constraints.

The central idea is to characterize randomizing strategies by the
“flow” they achieve. To this end, Equality (2) essentially models
Kirchhoff’s law, i.e. inflow and outflow of a state have to be equal.
In particular, ya expresses the transient flow of the strategy as the
expected total number of uses of action a. Similarly, xs models
the recurrent flow, which under our absorption assumption equals
the probability of reaching s . Equality (3) ensures that all transient
behaviour eventually changes into recurrent one.

In order to deal with our query constraints, Constraints (4) and
(5) extract the worst p fraction of the recurrent flow, ensuring that
the VaRp is at least t . Note that equality is not guaranteed by the LP;
if xs = xs for all s ∈ T≤ , we have VaRp > t . Finally, Inequality (6)
enforces satisfaction of the constraints.

Theorem 5.6. LetM be an MDP with target states T and reward
function r, satisfying the attraction assumption. Fix the constraint
probability p ∈ (0, 1) and thresholds e, c ∈ Q. Then, we have that

1. for any strategy σ satisfying the constraints, there is a t ∈ r(S )
such that the LP in Fig. 4 is feasible, and

2. for any threshold t ∈ r(S ), a solution of the LP in Fig. 4 in-
duces a memoryless, randomizing strategy σ satisfying the
constraints and VaRσp ≥ t .

Proof. First, we prove for a strategy σ satisfying the constraints that
there exists a t ∈ r(S ) such that the LP is feasible. By Thm. 5.4, we
may assume that σ is a memoryless randomizing strategy. From [19,
Theorem 3.2], we get an assignment to the ya ’s and xs ’s satisfying
Equalities (1), (2), and (3) such that Pσ [♢s] = xs for all target states
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s ∈ T . Further, let v = VaRσp be the value-at-risk of the strategy. By
definition of VaR, we have that Pσ [X < v] ≤ p.

Assume for now that Pσ [X < v] = p, i.e. the probability of
obtaining a value strictly smaller than v is exactly p. In this case,
choose t to be the next smaller reward, i.e. t = max{r(s ) < v}. We
set xs = xs for all s ∈ T≤ , satisfying Constraints (4) and (5).

Otherwise, we have Pσ [X < v] < p. Now, some non-zero frac-
tion of the probability mass atv contributes to the CVaR. Again, we
set the values for xs according to Constraint (4). The only degree of
freedom are the values of xs where r(s ) = t . There, we assign the
values so that

∑
s ∈T= xs = p −

∑
s ∈T<

xs , satisfying Equality (5).
It remains to check Inequality (6). For expectation, we have∑
s ∈T xs · r(s ) =

∑
s ∈T P

σ [♢s] · r(s ) = Eσ [Rr] ≥ e. For CVaR,
notice that, due to the already proven Constraints (4) and (5), the
side of Inequality (6) is equal to CVaRσp and thus at least c.

Second, we prove that a solution to the LP induces the desired
strategy σ . Again by [19, Theorem 3.2], we get a memoryless ran-
domizing strategy σ such that Pσ [♢s] = xs for all states s ∈ T .
Then Eσ [Rr] =

∑
s ∈T P

σ [♢s] · r(s ) =
∑
s ∈T xs · r(s ) ≥ e. Further,

CVaRp (Rr) =
1
p

(∑
s :r(s )<v

xs · r(s ) + (p −
∑

s :r(s )<v
xs ) · v

)
by definition. Now, we make a case distinction on xs = xs for all
s ∈ T=. If this is true, we have v = VaRσp = min{r ∈ r(S ) | r > t },
but Pσ [X < v] = p. Consequently, T≤ = {s ∈ T : r(s ) < v}
and

∑
s :r(s )<vxs = p. Otherwise, we have v = t and consequently

T< = {s | r(s ) < v}. Inserting in the above equation immediately
gives the result CVaRp (Rr) = 1

p
∑
s ∈T≤ r(s ) · xs . □

The linear program requires to know the VaRσp beforehand,
which in turn clearly depends on the chosen strategy. Yet, there are
only linearly many values the random variable Rr attains. Thus we
can simply try to find a solution for all potential values of VaRσp ,
i.e. {r ∈ r(S )}, yielding a polynomial time solution.

Corollary 5.7. MDP{E,VaR,CVaR}r,single is in P.

Proof. Under the attraction assumption, this follows directly from
Thm. 5.6. In general, the reduction to mean payoff used by Thm. 5.5
and the respective result from Cor. 5.11 show the result. □

5.2 Mean payoff
In this section, we investigate the case of obj = m. Again, the
construction for MC is considerably simple, yet instructive for the
following MDP case.

Theorem 5.8. MC{E,VaR,CVaR}m,single is in P.

Proof sketch. For each BSCC Bi , we obtain its expected mean payoff
ri = E[Rm | Bi ] through, e.g., a linear equation system [31]. Almost
all runs in Bi achieve this mean payoff and thus the corresponding
random variable is discrete. We reduce the problem to weighted
reachability by using the known reformulation

P[Rm = c] =
∑

Bi :ri=c
P[♢Bi ].

We replace each of these BSCCs by a representative bi to obtain
M′. Define the set of target states T = {bi } and the reachability
reward function r′(bi ) = ri . By applying the approach of Thm. 5.1,
we obtain the expectation, VaR, and CVaR for reachability in M′

which by construction coincides with the respective values for
mean payoff inM. □

5
10

0

a b 0.9

0.1

Figure 5. Memory is necessary for mean payoff queries

For the MDP case, recall that simple expectation maximization
of mean payoff can be reduced to weighted reachability [2] and
deterministic, memoryless strategies are optimal [31]. Yet, solving
a conjunctive query involving either VaR or CVaR needs more pow-
erful strategies than in the weighted reachability case of Thm. 5.4.
Nevertheless, we show how to decide these queries in P.

Randomization and memory is necessary for mean payoff. A
simple modification of the MDP in Fig. 3 yields an MDP where both
randomization and memory is required to satisfy the constraints of
the following example.

Example 5.9. Consider the MDP presented in Fig. 5. There, the
same constraints as before, i.e. q = p = 0.05, e = 6, and c = 2 (or
v = 5), can only be satisfied by strategies with both memory and
randomization. Clearly, a pure strategy can only satisfy either of the
two constraints again. But now a memoryless randomizing strategy
also is insufficient, too, since any non-zero probability on action
b leads to almost all runs ending up on the right side of the MDP,
hence yielding a CVaRp and VaRq of 0. Instead, a stochastic strategy
with M = {a,b} can simply choose α = {a 7→ 3

4 ,b 7→
1
4 } and play

the corresponding action indefinitely, satisfying the constraints. △

We prove that this bound actually is tight, i.e. that, given sto-
chastic memory update, two memory elements are sufficient.

Theorem5.10. Two-memory stochastic strategies (i.e. with both ran-
domization and stochastic update) are sufficient forMDP{E,VaR,CVaR}m,single .

Proof. Let σ be a strategy on an MDPM with reward function r.
We construct a two-memory stochastic strategy σ ′ achieving at
least the expectation, VaR, and CVaR of σ .

First, we obtain a memoryless deterministic strategy σopt which
obtains the maximal possible mean payoff in each MEC [31]. We
then apply the construction of [9, Proposition 4.2] (see also [15,
Lemma 5.7]), where the ξ is our σopt. (Technically, this can be
ensured by choosing the constraints of the LP L according to σopt.)

Intuitively, this constructs a two-memory strategy σ ′ on M
behaving as follows. Initially, σ ′ remains in each MEC with the
same probability as σ , i.e. Pσ

′

[♢□Mi ] = Pσ [♢□Mi ] by following a
memoryless “searching” strategy and stochastically switching its
memory state to “remain”. Once in the “remain” state, the behaviour
of the optimal strategy σopt is implemented.

Clearly, (i) both strategies remain in a particular MEC with the
same probability, and (ii) σ ′ obtains as least as much value in each
MEC as σ . Hence the CDF induced by σ ′ stochastically dominates
the one of σ , concluding the proof. □

This immediately gives us a polynomial time decision procedure.

Corollary 5.11. MDP{E,VaR,CVaR}m,single is in P.

Furthermore, we can use results of [15, Lemma 16] to trade the
stochastic update for more memory.
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Figure 6. Exponential memory is necessary for mean payoff when
only deterministic update is allowed.

Corollary 5.12. Stochastic strategies with finite, deterministic mem-
ory are sufficient forMDP{E,VaR,CVaR}m,single .

Deterministic strategies may require exponential memory. As
sources of randomness are not always available, one might ask what
can be hoped for when only determinism is allowed. As already
shown in Ex. 5.2, randomization is required in general. But even if
some deterministic strategy is sufficient, it may require memory
exponential in the size of the input, even in an MDP with only 3
states. We show this in the following example.

Example 5.13. Consider the MDP outlined in Fig. 6 together with
the constraints q = p = 0.05, e = 6, and c = 2 (or v = 5). Again,
any optimal strategy needs a significant part of runs to go to the
right side in order to satisfy the expectation constraint. Yet, any
strategy can only “move” a small fraction of the runs there in
each step. In particular, after k steps, the right side is only reached
with probability at most 1 − (1 − ε )k . When choosing ε = 2−n ,
which needs Θ(n) bits to encode, a deterministic strategy requires
k ≥ c/ log(1−2−n ) ∈ O (2n ) memory elements to count the number
of steps. The same holds true for any deterministic-update strategy.

On the other hand, a strategy with stochastic memory update can
encode this counting by switching its state with a small probability
after each step. For example, a strategy switching with probability
p = 3ε from “play b” to “play a” satisfies the constraint. △

5.3 Single constraint queries
In this section, we discuss an important sub-case of the single-
dimensional case, namely queries with only a single constraint, i.e.
|crit| = 1. We show that deterministic memoryless strategies are
sufficient in this case.

One might be tempted to use standard arguments and directly
conclude this from the results of Thm. 5.4 as follows. Recall that this
theorem shows that memoryless, randomizing strategies are suffi-
cient; and that any such strategy can be written as finite convex
combination of memoryless, deterministic strategies. Most con-
straints, for example expectation or reachability, behave linearly
under convex combination of strategies, e.g., Eσλ (X ) = λEσ1 [X ] +
(1 − λ)Eσ2 [X ]. Consequently, for an optimal memoryless strategy,
there is a deterministic witness, which in turn also is optimal.

Surprisingly, this assumption is not true for CVaR. On the con-
trary, the CVaR of a convex combination of strategies might be
strictly worse than the CVaRs of either strategy, as shown in the
following example. We prove a slightly weaker property of CVaR
which eventually allows us to apply similar reasoning.

Example 5.14. Recall the MDP in Fig. 3 and let p = 0.05. As
previously shown, CVaRσap = 5 and CVaRσbp = 0, but the mixed
strategy σλ =

1
2σa +

1
2σb achieves CVaRσλp = 0 instead of the

convex combination 1
25 +

1
20 = 2.5.

Forp = 0.2, we have CVaRσap = CVaRσbp = 5. Yet, any non-trivial
convex combination of the two strategies yields a CVaRp less than
5. See [28, Sec. A.1] for more details. With according constraints,
this effectively can force an optimal strategy to choose between a
or b. This observation is further exploited in the NP-hardness proof
of the multi-dimensional case in Sec. 6. △

Since CVaR considers the worst events, the CVaR of a combi-
nation intuitively cannot be better than the combination of the
respective CVaRs. We prove this intuition in the general setting,
where instead of a convex combination of strategies we consider a
mixture of two random variables.

Lemma 5.15. CVaRp (X ) is convex in X for fixed p ∈ (0, 1), i.e. for
random variables X1,X2 and λ ∈ [0, 1]

CVaRp (λX1 + (1 − λ)X2) ≤ λ CVaRp (X1) + (1 − λ) CVaRp (X2).

The proof can be found in [28, Sec. A.1]. This result allows us to
apply the ideas outlined in the beginning of the section.

Theorem 5.16. For any obj ∈ {r,m}, deterministic memoryless
strategies are sufficient forMDPcritobj,single when |crit| = 1.

Proof. This is known for crit = {E} [31] and crit = {VaR} [21].
For CVaR, observe that the convex combination of deterministic

strategies cannot achieve a better CVaR than the best strategy
involved in the combination (see Lem. 5.15). This immediately yields
the result for obj = r through Thm. 5.4. For obj = m, we exploit
the approach of Thm. 5.10. Recall that there we obtained a two-
memory strategy σ ′. Both randomization and stochastic update are
used solely to distribute the runs over all MECs accordingly. By
the above reasoning, for each MEC it is sufficient to either almost
surely remain there or leave it. This behaviour can be implemented
by a deterministic memoryless strategy on the original MDP. □

6 Multiple Dimensions
In this section, we deal with multi-dimensional queries. We con-
tinue to use i for indices related to MECs and further use j for
dimension indices. First, we show that the Markov Chain case does
not significantly change.

Theorem 6.1. For any obj ∈ {r,m},MC{E,VaR,CVaR}obj,multi is in P.

Proof. Similarly to the single-dimensional case, we decide each
constraint in each dimension separately, using our previous results.
The query is satisfied iff each of the constraints is satisfied. □

6.1 NP-Hardness of reachability and mean payoff
For the MDP on the other hand, multiple dimensions add significant
complexity. In the following, we show that already the weighted
reachability problem with multiple dimensions and only CVaR con-
straints, i.e.MDP{CVaR}r,multi , is NP-hard. This result directly transfers

to mean payoff, i.e. obj = m. Recall that in contrastMDP{E}r,multi and

evenMDP{E,VaR0 }r,multi , i.e. constraints on the expectation and ensuring
that almost all runs achieve a given threshold, are in P [15].

Theorem 6.2. For any obj ∈ {r,m},MDP{CVaR}obj,multi is NP-hard (when
the dimension d is a part of the input).
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Figure 7. Gadget for variable xm . Uniform transition probabilities
are omitted for readability.

Proof. We prove hardness by reduction from 3-SAT. The core idea
is to utilize observations from Fig. 3 and Ex. 5.14, namely that CVaR
constraints can be used to enforce a deterministic choice.

Let {Cn } be a set of N clauses withM variables xm and set the di-
mensionsd = N+M . By abuse of notation,n refers to the dimension
of clause Cn andm to the one of variable xm , respectively.

The gadget for the reduction is outlined in Fig. 7. Observe that,
due to the structure of the MDP, we have that Rr = Rm.

Overall, the reduction works as follows. Initially, a state ?m ,
representing the variable xm , is chosen uniformly. In this state, the
strategy is asked to give the valuation of xm through the actions
“xm = tt” or “xm = ff”. As seen in Ex. 5.14, the structure of
the shaded states can be used to enforces a deterministic choice
between the two actions. Particularly, in dimensionm we require
CVaRp ≥ 5 for p = M−1

M + 1
M · 0.5 · 0.2. Since all other gadgets yield

0 in dimensionm and only half of the runs going through ?m end
up in the shaded area, this corresponds to Ex. 5.14, where p = 0.2.

Once in either state xm or xm , a state cn corresponding to a
clause Cn satisfied by this assignment is chosen uniformly. In the
example gadget, we would have xm ∈ Cn1 ∩ Cn2 , and xm ∈ Cn3 .
We set the reward of cn to 1n . Then a clause cn is satisfied under
the assignment if the state cn is visited with positive probability,
e.g. if CVaR1 ≥ 1

M · 0.5 ·
1
N . Clearly, a satisfying assignment exists

iff a strategy satisfying these constraints exists. □

6.2 NP-completeness and strategies for reachability
For weighted reachability, we prove that the previously presented
bound is tight, i.e. that the weighted reachability problem with
multiple dimensions and CVaR constraints is NP-complete when d
is part of the input and P otherwise. First, we show that the strategy
bounds of the single dimensional case directly transfer. Intuitively,
this is the case since only the steady state distribution over the
target set T is relevant, independent of the dimensionality.

Theorem 6.3. Two-memory stochastic strategies (i.e. with both ran-
domization and stochastic update) are sufficient forMDP{E,VaR,CVaR}r,multi .
Moreover, if rj (s ) ≥ 0 for all s ∈ T and j ∈ [d], then memoryless
randomizing strategies are sufficient.

Proof. Follows directly from the reasoning used in the proofs of
Thm. 5.10 and Thm. 5.4. □

(1) All variables ya , xs , x
j
s are non-negative.

(4) VaR-consistent split for j ∈ [d]:

x js = xs for s ∈ T
j
< x js ≤ xs for s ∈ T

j
=

(5) Probability-consistent split for j ∈ [d]:∑
s ∈T j

≤

x js = pj

(6) CVaR and expectation satisfaction for j ∈ [d]:∑
s ∈T j

≤

xs · r(s ) ≥ pj · cj
∑

s ∈T
xs · rj (s ) ≥ ej

Figure 8. LP used to decide multi-dimensional weighted reachabil-
ity queries given a guess t of VaRpj . Equalities (2) and (3) are as in
Fig. 4, T j

∼ := {s ∈ T | rj (s ) ∼ tj }, ∼∈ {<,=, ≤}.

Theorem 6.4. MDP{E,VaR,CVaR}r,multi is in NP if d is a part of the input;
moreover, it is in P for any fixed d .

Proof sketch. To prove containment, we guess the VaR threshold
vector t out of the set of potential ones, namely {r | ∃i ∈ [d], s ∈
T .ri (s ) = r }d and use an LP to verify the solution. We again assume
that each MEC can reach the target set and is single-state, as we
did for Fig. 4. The arguments used to resolve this assumption are
still applicable in the multi-dimensional setting. The LP consists of
the flow Equalities (2) and (3) from the LP in Fig. 4 together with
the modified (In)Equalities (4)-(6) as shown in Fig. 8.

The difference is that we extract the worst fraction of the flow
in each dimension. Consequently, we have d instances of each xs
variable, namely x js . The number of possible guesses t is bounded
by |T |d and thus the guess is of polynomial length. For a fixed d
the bound itself is polynomial and hence, as previously, we can try
out all vectors. □

6.3 Upper bounds of mean payoff
In this section, we provide an upper bound on the complexity of
mean-payoff queries. Strategies in this context are known to have
higher complexity.

Proposition 6.5 ([9]). Infinite memory is necessary forMDP{E}m,multi.

Note that this directly transfers to MDP{CVaR}m,multi, as CVaR1 = E.
However, closing gaps between lower and upper bounds for the
mean payoff objective is notoriously more difficult. For instance,
MDP{VaR}m,multi is known to be in EXP, but not even known to be NP-

hard, neither isMDP{E,VaR}m,multi . Sincewe have proven thatMDP{CVaR}m,multi
is NP-hard, we can expect that obtaining the matching NP upper
bound will be yet more difficult. The fundamental difference of the
multi-dimensional mean-payoff case is that the solutions within
MECs cannot be pre-computed, rather non-trivial trade-offs must
be considered. Moreover, the trade-offs are not “local” and must be
synchronized over all the MECs, see [15] for details.

We now observe that, as opposed to quantile queries, i.e. VaR
constraints, the behaviour inside each MEC can be assumed to be
quite simple. Our results primarily rely on [16] and use a similar
notation. In particular, given a run ρ, Freqa (ρ) yields the average
frequency of action a, i.e. Freqa (ρ) := lim infn→∞ 1

n
∑n
t=1 1a (at ),

where at refers to the action taken by ρ in step t .
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Definition 6.6. A strategy σ is MEC-constant if for allMi ∈ MEC
with Pσ [♢□Mi ] > 0 and all j ∈ [d] there is a v ∈ R such that
Pσ [Rmj = v | ♢□Mi ] = 1.

Lemma6.7. MEC-constant strategies are sufficient forMDP{E,CVaR}m,multi .

Proof. Fix an MDPM with MECs MEC = {M1, . . . ,Mn }, reward
function r and a strategy σ . Further, define pi = Pσ [♢□Mi ]. We
construct a strategy σ ′ so that (i) Pσ

′

[♢□Mi ] = pi for all Mi , and
(ii) all behaviours of σ on a MECMi are “mixed” into each run on
Mi , making it MEC-constant.

We first define the mixing strategies σi , achieving point (ii). By
[16, Sec. 4.1], there are frequencies (xa )a∈A which
• satisfy

∑
a∈A xa · ∆(a, s ) =

∑
a∈Av(s ) xa for all s ∈ S ,

• for each action a we have Eσ [Freqa] ≤ xa , and
•

∑
a∈A∩Mi xa = pi .

By [16, Cor. 5.5], there is a (Markov) strategy σi onMi where

Pσi
[
Freqa = xa/pi

]
= 1.

Consequently, σi is almost surely constant on Mi w.r.t. Rm. We
apply the reasoning used in the proof of Thm. 5.10 to obtain the
combined strategy σ ′ which achieves point (i) and switches to σi
upon remaining inMi .

Now, fix any j ∈ [d], Mi ∈ MEC, and p,q ∈ (0, 1). We have
that Eσi [Freqa | ♢□Mi ] ≥ Eσ [Freqa | ♢□Mi ] by construction.
Consequently, Eσ

′

(Rmj ) ≥ E
σ (Rmj ).

Since σ ′ is MEC-constant, we have CVaRσ
′

p (Rmj | ♢□Mi ) =

Eσ
′

[Rmj | ♢□Mi ]. Further, by Eσ [Freqa | ♢□Mi ] · pi ≤ Eσi [Freqa]
for all a, we get Eσ [Rmj | ♢□Mi ] ≤ Eσi [Rmj ]. So, CVaR

σi
p (Rmj ) =

Eσi [Rmj ] ≥ E
σ [Rmj | ♢□Mi ] ≥ CVaRσq (Rmj | ♢□Mi ), as CVaR ≤ E.

Finally, we apply this inequality together with property (i), ob-
taining CVaRσp (Rmj ) ≤ CVaRσ

′

p (Rmj ) by [28, Thm. A.4] □

We utilize this structural property to design a linear program for
these constraints. However, similarly to the previously considered
LPs, it relies on knowing the VaR for each CVaRp constraint. Due
to the non-linear behaviour of CVaR, the classical techniques do
not allow us to conclude that VaR is polynomially sized and thus
we do not present the “matching” NP upper bound, but a PSPACE
upper bound, which we achieve as follows.

Theorem 6.8. MDP{E,CVaR}m,multi is in PSPACE.

Proof sketch. We use the existential theory of the reals, which is NP-
hard and in PSPACE [12], to encode our problem. The VaR vector t
is existentially quantified and the formula is a polynomially sized
programwith constraints linear in VaR’s and linear in the remaining
variables. This shows the complexity result.

The details of the procedure are as follows. For each j ∈ [d],
we use the existential theory of reals to guess the achieved VaR
t = VaRpj . Further, we non-deterministically obtain the following
polynomially-sized information (or deterministically try out all
options in PSPACE). For each j ∈ [d] and for each MEC Mi , we
guess if the value achieved inMi is at most (denotedMi ∈ MECj

≤
)

or above (denotedMi ∈ MECj
> ) the respective tj , and exactly one

MECM
j
=, which achieves a value equal to it. Given these guesses,

we check whether the LP in Fig. 9 has a solution.

(1) All variables ya , ys , xa , xs are non-negative.
(2) Transient flow for s ∈ S :

1s0 (s ) +
∑

a∈A
ya · ∆(a, s ) =

∑
a∈Av(s )

ya + ys

(3) Probability of switching in a MEC is the frequency of using
its actions forMi ∈ MEC:∑

s ∈Mi
ys =

∑
a∈Mi

xa

(4) Recurrent flow for s ∈ S :

xs =
∑

a∈A
xa · ∆(a, s ) =

∑
a∈Av(s )

xa

(5) CVaR and expectation satisfaction for j ∈ [d]:∑
s ∈S j≤

xs · rj (s ) +
(
pj −

∑
s ∈S j≤

xs

)
· tj ≥ pj · cj∑

s ∈S
xs · rj (s ) ≥ ej

(6) Verify MEC classification guess for j ∈ [d]:∑
s ∈M j

≤

xs · rj (s ) ≤ tj forM j
≤
∈ MECj

≤
∪ {M

j
=}∑

s ∈M j
≥

xs · rj (s ) ≥ tj forM j
≥
∈ MECj

> ∪ {M
j
=}

(7) Verify VaR guess for j ∈ [d]:∑
s ∈S j≤

xs ≤ pj
∑

s ∈S j≤∪M
j
=
xs ≥ pj

Figure 9. LP used to decide multi-dimensional mean-payoff queries
given a guess t of VaRpj and MEC classification MECj

≤
, M j
=, and

MECj
> . S

j
∼ := {s ∈ S | s ∈ M andM ∈ MECj

∼}, ∼∈ {≤, >}.

Equations (1)-(4) describe the transient flow like the previous
LP’s and, additionally, the recurrent flow like in [31, Sec. 9.3] or
[9, 16, 19]. This addition is needed, since now our MECs are not
trivial, i.e. single state. Again, Inequalities (5) verify that the CVaR
and expectation constraints are satisfied. Finally, Inequalities (6)
and (7) verify the previously guessed information, i.e. the VaR vector
and the MEC classification.

Using the very same techniques, it is easy to prove that solutions
to the LP correspond to satisfying strategies and vice versa. In
particular, Inequalities (6) and (7) directly make use of the MEC-
constant property of Lem. 6.7. □

While MEC-constant strategies are sufficient for E with CVaR,
in contrast, they are not even for justMDP{VaR}m,multi [15, Ex.22]. Con-

sequently, only an exponentially large LP is known forMDP{VaR}m,multi.
We can combine all the objective functions together as follows:

Theorem 6.9. MDP{E,VaR,CVaR}m,multi is in EXPSPACE.

Proof sketch. We proceed exactly as in the previous case, but now
the flows in Equality (4) are split into exponentially many flows,
depending on the set of dimensions where they achieve the given
VaR threshold, see LP L in [15, Fig. 4]. The resulting size of the
program is polynomial in the size of the system and exponential in
d . Hence the call to the decision procedure of the existential theory
of reals results in the EXPSPACE upper bound. □
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Table 1. Schematic summary of known and new results. Strategies are abbreviated by “C/n-M”, where C is eitherDeterministic or Randomizing,
n is the size of the memory, and M is either Detereministic or Stochastic MEMory.

dim single multi
obj any r m
crit |crit | = 1 |crit | ≥ 2 CVaR ∈ crit {E, VaR0 } {VaR} {CVaR}, {CVaR, E} {E, CVaR, VaR}

Complex. P NP-c., P for fixed d P EXP NP-h., PSPACE NP-h., EXPSPACE
Strat. D/1-MEM R/2-SMEM R/2-SMEM R/∞-DMEM

7 Conclusion
We introduced the conditional value-at-risk for Markov decision
processes in the setting of classical verification objectives of reacha-
bility and mean payoff. We observed that in the single dimensional
case the additional CVaR constraints do not increase the computa-
tional complexity of the problems. As such they provide a useful
means for designing risk-averse strategies, at no additional cost. In
the multidimensional case, the problems become NP-hard. Never-
theless, this may not necessarily hinder the practical usability. Our
results are summarized in Table 1.

We conjecture that the VaR’s for given CVaR constraints are poly-
nomially large numbers. In that case, the provided algorithmswould
yield NP-completeness forMDP{CVaR}m,multi and EXPTIME-containment

for MDP{E,VaR,CVaR}m,multi , where the exponential dependency is only
on the dimension, not the size of the system.
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