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Abstract
This paper provides an alternate characterization of second-
order polynomial-time computability, with the goal of mak-
ing second-order complexity theory more approachable. We
rely on the usual oracle machines to model programs with
subroutine calls. In contrast to previous results, the use of
higher-order objects as running times is avoided, either ex-
plicitly or implicitly. Instead, regular polynomials are used.
This is achieved by refining the notion of oracle-poly-time
computability introduced by Cook. We impose a further re-
striction on oracle interactions to force feasibility. Both the
restriction and its purpose are very simple: it is well-known
that Cook’s model allows polynomial depth iteration of func-
tional inputs with no restrictions on size, and thus does not
preserve poly-time computability. To mend this we restrict
the number of lookahead revisions, that is the number of
times a query whose size exceeds that of any previous query
may be asked. We prove that this leads to a class of feasi-
ble functionals and that all feasible problems can be solved
within this class if one is allowed to separate a task into
efficiently solvable subtasks. Formally, the closure of our
class under lambda-abstraction and application are the basic
feasible functionals. We also revisit the very similar class of
strongly poly-time computable operators previously intro-
duced by Kawamura and Steinberg. We prove it to be strictly
included in our class and, somewhat surprisingly, to have
the same closure property. This is due to the nature of the
limited recursion operator: it is not strongly poly-time but
decomposes into two such operations and lies in our class.

Keywords higher-order computability, feasibility of func-
tionals, oracle Turing machines, applied lambda-calculus
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1 Introduction
In the setting of ordinary computability theory, where com-
putation is performed on finite objects (e.g., numbers, strings,
or combinatorial objects such as graphs) there is a well-
accepted notion of computational feasibility, namely polyno-
mial-time (or poly-time) computability. The extendedChurch-
Turing thesis codifies the convention: the intuitive notion
of feasibility is captured by the formal model of computabil-
ity by a poly-time Turing machine.1 From a programming
perspective this can be interpreted as a formal definition
of a class of programs that should be considered fast. Of
course this theory only applies to programs whose execu-
tion is determined from a finite string that is considered the
input. In practice, software often relies on external libraries
or features user interaction. One may address this by moving
to a setting where a Turing machine acts not only on finite
inputs but additionally interacts with ‘infinite inputs’. This
leads to the familiar oracle Turing machine (OTM) model,
where infinitary inputs are presented via an oracle that can
be fed with and will return finite strings, so that only finite
information about the oracle function is available at any step
of the computation. The word oracle is used as no assump-
tions about the process that produces values are made. In
particular, the oracle provides return values instantly. From
the software point of view this means judging the speed of
a program independently of the quality of libraries or lazy
users. Since the oracle can be understood as type-one input
and oracle machines to compute type-two functions, the in-
vestigation of resource consumption in this model is called
second-order complexity theory.

Can a sensible account of feasible computation be given in
this model? If so, can it be kept consistent with the familiar
notion of poly-time for ordinary Turing machine computa-
tion and the more traditional way of using oracle machines
with 0-1 valued oracles [6]? These problems were first posed
by Constable in 1973 [5]. He proposed only potential solu-
tions and the task was taken up again by Mehlhorn in 1976,
who gave a fully-formulated model [20]. This model is cen-
tered around Cobham’s scheme-based approach to charac-
terizing poly-time [4]. While such scheme-based approaches
are very valuable from a theoretical point of view, for some
applications it may be desirable to have a characterization
that relies on providing bounds on resource consumption in

1Ignoring the possibility of quantum computers.
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a machine-based model. Indeed, Mehlhorn related his formu-
lation to the oracle machine model by proving that it satisfies
the Ritchie-Cobham property: a functional is in his class
if and only if there is an oracle machine and a bounding func-
tional from the class such that for any inputs the machine
computes the value of the functional and has a running time
bounded by the size of the bounding functional. The impred-
icative nature of Mehlhorn’s OTM characterization left open
the possibility of a characterisation based more closely on
the type-one model of poly-time Turing machines.

Only in 1996 did Kapron and Cook show that it is possible
to give such a characterisation by relying on the notions
of function length and second-order polynomials [14].
The resulting class of basic poly-time functionals was
proved equal to Mehlhorn’s, providing evidence of its natu-
ralness and opening the way for applications in diverse areas.
A representative but by no means exhaustive list includes
work in computable analysis [16], programming language
theory [10], NP search problems [1], and descriptive set the-
ory [28]. The model was also used as a starting point for
understanding how complexity impacts classical results on
computability in higher types [3, 23, 24].

Ideas similar to those used by Kapron and Cook were used
for a number of logical characterizations of the basic poly-
time functionals supporting appropriateness of the class.
Works using logics based on bounded arithmetic [12, 27] rely
on implicit representations of second-order polynomials.2
A drawback of the Kapron-Cook approach is that length
functions and second-order polynomials are not particularly
natural objects to work with. For instance, the length of a
function —which can be viewed as the most basic example of
a second-order polynomial — is not feasible. This has direct
implications for applications. The most common approach to
avoid technical difficulties is to restrict to length-monotone
oracles [16, 28]. This corresponds to using only a fragment
of second-order complexity theory and may in turn lead to
technical difficulties.
Additional support for Mehlhorn’s class and insight into

its structure came from initial doubts of whether it is broad
enough to include all type-two functionals that should be
considered feasible. Cook formulated a notion of intuitive
feasibility, and pointed out that a type-two well quasi-
ordering functional, which meets the criteria of intuitive
feasibility, is not in Mehlhorn’s class [7]. Subsequent work
uncovered a number of shortcommings of the notion of in-
tuitive feasibility. Seth provided a class satisfying the con-
ditions but having no recursive presentation [25] and also
proved that Cook’s functional does not preserve the Kalmar
elementary functions [26]. Attempts by Seth and later by
Pezzoli to formulate further restrictions on intuitive feasi-
bility to avoid noted pitfalls lead back to Mehlhorn’s class
[22].

2We note that a very different logical approach is provided in [19]

Cook’s intuitive feasibility uses the notion of oracle poly-
time, which is formulated using ordinary polynomials. A
POTM (for ‘polynomial oracle Turing machine’) is an oracle
machine whose running time is bounded in the maximum
size of its string input and all answers returned by its oracle
input during its computation on these inputs. By itself, this
notion is too weak to provide a class of feasible functionals:
it is well known that iterating a poly-time function may re-
sult in exponential growth and that this is possible within
this class. While Cook’s approach was to rule out this be-
haviour on a semantic level, an alternate approach explored
by a number of works involves the introduction of further
restrictions to the POTM model [13, 22, 25]. Most of these
restrictions are fairly elaborate and in some sense implicitly
use bounding by second-order polynomials.

This paper investigates less elaborate ways to restrict the
behaviour of POTMs.We present two simple syntactic restric-
tions to this model that give proper subclasses of Mehlhorn’s
class and prove them to — when closed in a natural way —
lead back to the familiar class of feasible functionals.
The first restriction, originally introduced by Kawamura

and Steinberg, is called finite length revision and opera-
tors computable by a POTM with finite length revision are
called strongly poly-time computable [18]. It is known
that this excludes very simple examples of poly-time com-
putable operators. The second restriction is similar, original
to this work and we dub it finite lookahead revision. We
call operators that are computable by such a POTM mod-
erately poly-time computable. The name is motivated by
our results that this class includes the strongly poly-time
computable operators (Proposition 3.8) and is contained in
the poly-time operators (Proposition 3.7). These inclusions
are proven to be strict (Example 3.9), but in contrast to strong
poly-time it requires some effort to find something that is
poly-time but not moderately poly-time. Along the way we
prove that in our setting an additional restriction on the
POTMs that Kawamura and Steinberg impose is not actually
a restriction (Lemma 3.2).
In both cases, the failure to capture feasibility is due to a

lack of closure under composition. The main result of this
paper (Theorem 4.8) is that each of these classes, when closed
under lambda-abstraction and application, results in exactly
the poly-time functionals. To prove this we establish moder-
ate poly-time computability of limited recursion (Lemma 4.4)
and provide a factorization of any moderately poly-time
computable operator into a composition of two strongly
poly-time computable operators (Theorem 4.9). The proof
of the later turns out to have a nice interpretation: the outer
operator executes the original machine while throwing exep-
tions in certain cases and the inner operator is an exception
handler whose form only depends on restricted information
about the original operator. Finally, we point out a casewhere
composition does not lead to a loss of moderate poly-time
computability (Lemma 4.10).
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The notion of a POTM is what a person familiar with com-
plexity theory would probably come up with first if asked
what programs with subroutine calls should be considered
efficient. The inadequacy of this model is very easy to grasp:
even if the subroutine is poly-time, there is no guarantee that
the combined program runs in poly-time. The two conditions
of finite length and lookahead revision are very straightfor-
ward attempts to solve this issue. We prove that imposing
either in addition to the POTM condition leads to feasible
programs and that it remains possible to produce solutions
to all feasible problems as long as one is willing to separate
the task at hand into subtasks if necessary. We provide some
– but far from complete – insight into when such a split is
necessary and how it can be done.

A full version of this paper is available at [15].

1.1 Preliminaries
Let Σ denote any finite alphabet, and Σ∗ the set of finite
strings over Σ. Usually Σ = {0, 1}, occasionally we use a
separator symbol #. The empty string is denoted ϵ , and ar-
bitrary elements of Σ∗ are denoted a, b, . . . . If a, b ∈ Σ∗,
we write ab to denote their concatentation, |a| to denote
the length of a, a≤n to denote a truncated to its n high-
order bits, for n ≥ 0. We write b ⊆ a to indicate that
b is an initial segment of a (i.e. for some 0 ≤ n ≤ |a|,
b = a≤n). For every k ∈ N and 1 ≤ i ≤ k we note that
there exist poly-time functions ⟨·, . . . , ·⟩ : (Σ∗)k → Σ∗ and
πi,k : Σ∗ → Σ∗ such that πi,k (⟨a1, . . . , ak ⟩) = ai . We as-
sume that for every k there are constants c1, c2 such that
|⟨a1, . . . , ak ⟩| ≤ c1 · (|a1 |+ · · ·+ |ak |)+c2 and that increasing
the size of any of the strings ai does not decrease the size of
the tuple. Tupling is lifted to functions φ1, . . . ,φk : Σ∗ → Σ∗

via ⟨φ1, . . . ,φk ⟩(a) := ⟨φ1(a), . . . ,φk (a)⟩. A type 0 functional
is an element of Σ∗, and for t ∈ N, a type t + 1 funtional is
a mapping from functionals of type ≤ t to Σ∗. This paper is
mostly concerned with type t functionals for t ≤ 2.

2 Second-order complexity theory
In [14], Kapron and Cook introduce a computational model
for type-two polynomial time functionals using oracle Turing
machines. We begin by reviewing their model. For notational
simplicity, we do this in the operator setting: Denote by
B := Σ∗ → Σ∗ the Baire space, that is the collection of all
univariate type 1 functions. The elements of B are denoted
by φ,ψ , . . . . An operator is a mapping F : B → B.
An oracle Turing machine (OTM) or for short oracle

machine is a Turing machine that has distinguished and
distinct query and answers tapes and a designated oracle
state. The run of an oracle machineM on oracle φ and input
a proceeds as the run of a regular machine on input a, but
whenever the oracle machine enters the oracle state, with b
written on the query tape, φ(b) is placed immediately on the
answer tape, and the read/write head returns to its initial

position on both of these tapes. If the machine terminates
we denote the result byMφ (a).

The number timeM (φ, a) of steps an oracle machine M
takes given oracle φ and input a is counted as in a Turing
machine with the following addition already implied above:
entering the oracle state takes one time step, but there is no
cost for receiving an answer from the oracle. 3 The running
time of an oracle machine usually depends on the oracle.

2.1 Second-order time bounds and poly-time
To be able to talk about bounds for this running time it is
necessary to have a notion for the size of an oracle.

Definition 2.1. For a given oracle function φ : Σ∗ → Σ∗

define its size function |φ | : N→ N by

|φ |(n) := max
|a | ≤n
{|φ(a)|}.

This suggests the type NN × N→ N as the right type for
running times: if T is a function of this type, we say that the
running time of an oracle machineM is bounded by T if for
all oracles φ : Σ∗ → Σ∗ and all strings a it holds that

timeM (φ, a) ≤ T (|φ |, |a|).

The only thing left to do is to pick out the time bounds that
should be considered polynomial.

Definition 2.2. The set of second-order polynomials is
the smallest subset of NN × N→ N that contains the func-
tions (l ,n) 7→ 0, (l ,n) 7→ 1, (l ,n) 7→ n, is closed under point-
wise addition and multiplication and such that whenever P
is an element, then so is (l ,n) 7→ l(P(l ,n)).

We may now use Kapron and Cook’s characterization [14]
as our definition of Mehlhorn’s class:

Definition 2.3. An operator F : B → B is polynomial-
time computable or for short poly-time if there is an ora-
cle machineM and a second-order polynomial P such that
for all oracles φ and all strings a it holds that

1. F (φ, a) = Mφ (a)
2. timeM (φ, a) ≤ P(|φ |, |a|)

We use P to denote the class of all poly-time operators.

This notion gives rise to a notion of poly-time computable
functionals of type two. By abuse of notation we also refer to
this class of functionals by P. The functional view becomes
important in Section 4.

Remark In literature the above notion is often referred to
as ‘basic poly-time’. As discussed in the introduction this is
due to past uncertainties about the class being broad enough.
We believe that enough evidence has been gathered that the
class is appropriate and therefore drop the ‘basic’.
3In this paper, we follow the unit-cost model [20], as opposed to the length-
cost model [14]. Note that while an answer is received from the oracle in a
single step, any further processing takes time dependant on its length.
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Consider the following result taken from [18] that im-
plies the closure of poly-time computable operators under
composition.

Theorem2.4. Let P ,Q be second-order polynomials that bound
the running times of two oracle machines. Then there exists
an oracle machine K that computes the composition of the
corresponding operators and a C ∈ N such that for all φ and a

timeK (φ, a) ≤ C · P(|φ |,Q(P(|φ |, ·), |a|))Q(P(|φ |, ·), |a|) + 1).

The proof is straightforward and the reader not famil-
iar with the setting may sketch a proof to get a feeling for
oracle machines, running time bounds and second-order
polynomials. Unsurprisingly, the machine K is constructed
by replacing the oracle query commands in the program of
the machine computing the outer operator by copies of the
program of the machine computing the inner operator and
slightly adjusting the rest of the code. Note how this result
lends itself to generalizations: Kawamura and Steinberg use
it to lift closure under composition to a class of partial oper-
ators they still refer to as poly-time computable. The proof
also remains valid if the second-order polynomials P and Q
are replaced by more general functions S and T that fulfill a
monotonicity condition.
Reasoning about second-order polynomials as bounding

functions can at times be tricky. Their structure theory is
significantly less well developed than that of regular polyno-
mials. Indeed, it is not clear whether second-order polynomi-
als allow a nice structure theory at all. Furthermore, the use
of nonfinitary objects in running times raises the question
of computational difficulty of evaluating such bounds. It is a
very simple task to find the length of a string from a string.
In contrast, evaluating the length |φ |(n) = max |a | ≤n |φ(a)| of
a string function is intuitively a hard task as it involves tak-
ing a maximum over an exponential number of inputs. The
following theorem from [14] makes this intuition formal.

Theorem 2.5. The length function is not polynomial-time
computable: An operator L that fulfills

|L(φ)(a)| = |φ |(|a|)

cannot be poly-time computable.

As a consequence, a running time bound of an oracle
machine is not very useful for estimating the time of a run
on a given oracle and input. Even if the running time is a
second-order polynomial P , to get the value P(|φ |, |a|) one
has to evaluate the length function several times.
Of course, in this setting the task is a little silly. It is pos-

sible to evaluate the machine and just count the number of
steps it takes. This results in a tighter bound that can be
computed from the oracle and the input in polynomial time.
However, from a point of view of clockability, the problem
is relevant: given a second-order polynomial P that is inter-
preted as a ‘budget’ and an oracle machineM that need not
run in polynomial time it is in general impossible to specify

another machine N that runs in poly-time and such that for
all oracles and inputs

timeM (φ, a) ≤ P(|φ |, |a|) ⇒ N φ (a) = Mφ (a).

That is: N returns the correct value in the case that the run
ofM is in budget [18].

2.2 Oracle poly-time
The following notion was originally introduced by Cook [7]
and has been investigated by several other authors as well
[22, 25, 26]. Recall that for an oracle machineM the number
of steps this machine takes on input a with oracle φ was
denoted by timeM (φ, a) and that for counting the steps, the
convention to count an oracle query as one step was chosen.
Definition 2.6. LetM be an oracle machine. For any oracle
φ and input a denote bymφ,a the maximum of the lengths
of the input and any of the oracle answers that the machine
gets in the run on input a with oracle φ. The machineM is
said to run in oracle poly-time if there is a polynomial p
such that for all oracles φ and inputs a

timeM (φ, a) ≤ p(mφ,a). (sc)
Let OPT denote the class of operators that are computed by
a machine that runs in oracle poly-time.

To avoid confusionwith different notions of running times,
we call a function t : N→ N that fulfills the condition from
(sc) in place of p a step-count ofM . Thus, an oracle machine
runs in oracle poly-time if and only if it has a polynomial
step-count. An oracle machine with a polynomial step-count
may be referred to as a POTM.

The nature of the restrictions imposed on POTMs signifi-
cantly differs from imposing a second-order time bound as is
done in Definition 2.3. Instead of using higher-order running
times, the same type of function that are used as running
times for regular Turing machines is used. The dependence
on the oracle is accounted for by modifying the input of
the function. This appears to be a relaxation of bounding by
second-order polynomials. The following result of [7] shows
that this is indeed the case.
Theorem 2.7 (P ⊆ OPT). Any oracle machine that runs in
time bounded by a second-order polynomial has a polynomial
step-count.

Proof. LetM be an oracle machine that runs in time bounded
by a second-order polynomial P . For n ∈ N let ln : N→ N
be the constant function with value n. The polynomial

p(n) := P(ln ,n)

is a step-count. This can be verified by replacing an arbitrary
oracle with a truncated version that returns the empty string
on arguments that the machine never asks for. �

It is well known that P forms a proper subclass of OPT.
There exist operators in OPT that do repeated squaring and
thus do not preserve poly-time computability.
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Example 2.8 (P ( OPT). The operator

F (φ)(a) := φ |a |(0)

can be computed by a machine that runs in oracle poly-time
but does not preserve poly-time computability as it maps
the poly-time computable function φ(a) := aa to a function
whose return values grow exponentially.

3 Recovering feasibility from OPT
The failure of OPT to preserve poly-time computability in-
dicates that it is unsuitable as a class that captures an ac-
ceptable notion of feasibility. We may ask whether there is a
natural way to restrict the POTMmodel to recover feasibility.
One way to do this is to introduce preservation of poly-time
functions as an extrinsic or a semantic restriction [21]. This
is the approach taken by Cook with his notion of intuitively
feasible functionals [7]. Since the formulation of Cook’s re-
strictions is most comfortably done using lambda calculus
we postpone restating them to Section 4. Here, we consider
intrinsic or syntactic restrictions of the POTM model instead.
While in part this is motivated by some of the drawbacks
of the extrinsic approach, we believe that the syntactic ap-
proach stands on its own merit. In particular, if the syntactic
condition is simple enough and checkable with minimal over-
head, it provides simpler analysis techniques for showing
that a particular operator is feasible.
Motivated by the difficulty encountered with repeated

squaring in Example 2.8, we consider POTMs with restric-
tions on the oracle access that disallow this behaviour. Simi-
lar restrictions have been considered by Seth [25, 26]. Seth’s
class C1 employs POTMs that are clocked with a form of
dynamic bound on the size of any query made that faintly
resembles second-order polynomials. Seth proves this class
to coincide with Mehlhorn’s class P and uses it to propose
bigger classes. Seth also considers the class C0 consisting of
operators computable by POTMs whose number of queries
to the oracle is uniformly bounded by a constant. Pezzoli
considers restrictions that differ from ours in that she max-
imizes over all possible oracle inputs of a certain size and
not only the queries that are asked by the machine [22],
thereby implicitly involving the size function. Pezzoli proves
her class equal to P and uses it to specify super-classes.

We seek conditions that disallow iteration without degen-
erating toC0, whose purpose can be seen without knowledge
of second-order polynomials and that do not refer to values
of the functional input untouched in the computation.

3.1 Strong poly-time computability
The first restriction onOPT that we consider was introduced
by Kawamura and Steinberg in [18]:

Definition 3.1. An oracle machine is said to run withfinite
length revision if there exists a number r such that in the
run of the machine on any oracle and any input the number

of times it happens that an oracle answer is bigger than the
input and all of the previous oracle answers is at most r .

It should be noted that Kawamura and Steinberg use a
slightly different notion of a step-count. They say that a
function t : N→ N is a step-count of an oracle machineM
if for all oracles and inputs it holds that

∀k ∈ N : k ≤ timeM (φ, a) ⇒ k ≤ t(mk,φ,a),

wheremk,φ,a is the maximum of |a| and the biggest oracle
answer given in the first k steps of the computation of M
with oracle φ and input a. For the function t to be a step-
count in the sense of the present paper it suffices to satisfy
the condition for the special choice k := timeM (φ, a). The
reason we use the same name for both of these notions is that
they are equivalent in our setting. The result is interesting in
its own right as the advantage of Kawamura and Steinberg’s
notion is that it can be checked on the fly whether a given
polynomial is a step-count of an oracle machine without the
risk of spending a huge amount of time if this is not the case.
We only state this for the case we are really interested in,
but the proof generalizes.

Lemma 3.2. Every oracle machine that computes an oper-
ator from OPT has a polynomial step-count (in the sense of
Kawamura and Steinberg).

Proof. The polynomial that proves a machine to be a POTM
turns out to be a step-count. This can be verified by mod-
ifying an arbitrary oracle to return the empty string in all
positions the machine does not look at. �

The key idea of the above proof is that the oracle can be
modified arbitrarily. In a setting where not all oracles are
eligible this might not be possible anymore. In this case it is
advisable to work with step-counts in the sense of Kawamura
and Steinberg. Since this paper only considers total operators,
i.e. no restrictions are imposed on the oracles, it is irrelevant
which notion is used. In particular we may formulate strong
poly-time computability as introduced in [18].

Definition 3.3. An operator is strongly poly-time com-
putable if it can be computed by an oracle machine that has
both finite length-revision and a polynomial step-count. The
class of these operators is denoted by SPT.

As the name suggests, strong poly-time computability
implies poly-time computability. We state this as it can be
deduced from the results of this paper. A direct proof is given
in [18].

Proposition 3.4 (SPT ⊆ P). The running time of a machine
that has a polynomial step-count and finite length revision can
be bounded by a second-order polynomial.

Proof. This is an immediate consequence of Proposition 3.8
that proves the inclusion of SPT in a broader class called
MPT that is introduced in the next section and proven to be
included in P in Proposition 3.7. �
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A merit of strong poly-time computability is that it has a
direct interpretation as additional information about the run-
ning time of the machine: knowing a polynomial step-count
of a program and the number r of length revisions, one can
modify the program to provide real-time information about
how long it estimates it will run. It can provide an estimate
of the remaining computation time under the assumption
that all necessary information has already been obtained
from the oracle. In case new information is gained via oracle
interaction it may update this estimate, but it may only do
so at most r times.
A drawback of strong poly-time computability is that it

severely restricts the access a machine has to certain oracles.
It may always run into an increasing sequence of answers
early in the computation. Once it runs out of length revisions,
it can not pose any further oracle queries. There is no way
to design a machine with finite length revision that does not
simply abort when the revision budget is exceeded. This is
reflected in the following example, first considered in [20],
that shows that there are operators from P that are not in
SPT.

Example 3.5 (SPT ( P). The operator

F (φ)(a) := 1maxb⊆a |φ(b) |

is poly-time but not strongly poly-time. Any machine com-
puting F must query φ at every b ⊆ a. Regardless of the
order in which the machine decides to ask the queries, there
is always an oracle whose answers are increasing in size.
However, F ∈ P, as it may be computed by examining |a|
queries, each of which is of size at most |φ |(|a|).

The idea behind the counterexample is that it is possible to
construct an oracle that forces an arbitrary number of length
revisions for a fixed machine and polynomial step-count.
More details for a very similar example can be found in [18]
and the same method is also used in Example 3.9.

3.2 Finite lookahead revision
The notion of strong poly-time computability rests on con-
trolling the size of answers provided by calls to the oracle.
While this restriction achieves the goal of disallowing any-
thing but finite depth iteration, Example 3.5 shows that it also
excludes rather simple poly-time computable operators. This
suggests an alternate form of control, namely controlling the
size of the queries themselves instead of the answers.

Definition 3.6. An oracle machine is said to run withfinite
lookahead revision if there exists a natural number r , such
that for all possible oracles and inputs it happens at most r
times that a query is posed whose size exceeds the size of all
previous queries.

We are mostly interested in operators that can be com-
puted by a machine that has both finite lookahead revision

and a polynomial step-count. In keeping with the terminol-
ogy of strong poly-time, we shall call the class of operators so
computablemoderate poly-time, denotedMPT. Consider
the operator F that maximizes the size of the return value of
the oracle over the initial segments of the string input. This
operator was used to separate SPT from P in Example 3.5
and therefore fails to be strongly poly-time computable. The
operator F is included inMPT: a machine computing F on
inputs φ, a may just query the initial segments of a in de-
creasing order of length to obtain the maximum answer.
While the definition above seems reasonable enough, it

entails that machines may need to unnecessarily pose oracle
queries: to ask all interesting queries up to a certain size
it may be necessary to pose a big query whose answer is
of no interest to the computation just to avoid lookahead
revisions during the computation. It is possible to tweak the
oracle access of machines to avoid this behaviour and still
capture the class of operators that are computed with finite
lookahead revision. For instance one may use a finite stack
of oracle tapes, where no pushing is allowed and popping
requires the machine to specify a number of cells the tape is
then truncated to in unary. While this model is not the most
straightforward one, it is appealing since similar restrictions
on oracle access have to be imposed to reason about space
bounded computation in the presence of oracles [2, 17].

Proposition 3.7 (MPT ⊆ P). The running time of a machine
that has a polynomial step-count and finite lookahead revision
can be bounded by a second-order polynomial.

Proof. The running time of a machine with polynomial step-
count p that never does more than r lookahead revisions is
bounded by the second-order polynomial

P(l ,n) := (p ◦ l)r (p(n)) + p(n).

This can be proven by induction over the number of looka-
head revisions. �

Proposition 3.8 (SPT ⊆ MPT). Every strongly poly-time
computable operator is moderately poly-time computable.

Proof. Let M be a machine that proves that an operator is
strongly poly-time computable. Let p be a polynomial step-
count of the machine. Consider the machine N that works as
follows: first it checks whether p(|a|) is bigger than |a| and
if so poses an oracle query of this size. Then N follows the
first p(|a|) steps thatM takes while remembering the size of
the biggest oracle answer that it receives. IfM terminates N
returns its return value. If M encounters a length revision,
then N repeats the procedure with p(|a|) replaced by p(m),
wherem is the maximal size of an oracle answer thatM has
encountered so far. It can be checked that the number of
lookahead revisions of N is no bigger than the number of
length-revisions of M . Since N and M compute the same
operator, this proves the assertion. �
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Although MPT is more powerful than SPT, it is still not
powerful enough to capture all of P:

Example 3.9 (MPT ( P). Consider the operator F : B → B
defined as follows: First recursively define a sequence of
functions Fi : B → Σ∗ by

F0(φ) := ϵ and Fn+1(φ) := (φ ◦ φ)(Fn(φ))≤ |φ(ϵ ) | .
That is: start on value ϵ and n times iterate the process of
applying the function φ ◦ φ and then truncating the result
to have length |φ |(0). Set

F (φ)(a) := F |a |(φ).

On one hand this operator is poly-time: the straight for-
ward algorithm for computing F runs in polynomial time.
On the other hand it cannot be computed by a machine with
finite lookahead revision and a polynomial step-count. Veri-
fying this can be done by taking an arbitrary machine that
has a polynomial step-count and computes F and for each
given natural number constructing an oracle that forces the
machine to make at least this number of lookahead revisions.
The construction exploits the fact that a polynomial-time
machine can not exhaustively search through all queries of
small length and forces a sequence of increasing queries by
writing the information about locations of queries with in-
creasingly big answers at positions that can not be accessed
without having gotten the previous big answer. The details
of the construction can be found in the full version of this
paper [15].

4 Lambda-calculi for feasible functionals
The preceding section presented two classes SPT andMPT
of operators based on simple syntactic restrictions to POTMs,
both of which fail to capture all of P. The rest of the paper
proves that this is exclusively due to a failure of closure of
these classes under composition.

Composition is a notion from the operator setting, but for
this chapter the functional standpoint is more convenient.
In the functional setting, there are more ways of combining
functionals. consider for instance F ,G : B × Σ∗ → Σ∗: one
may apply G and hand the resulting string as input to F , i.e.
send φ and a to F (φ,G(φ, a)), or leave the string argument in
G open and use this as function input for F : I.e. send φ and a
to F (λb.G(φ, b), a). The latter captures the composition of op-
erators and uses the familiar notation for lambda-abstraction.
Onemay go one step further and also use lambda-abstraction
over φ and a to express the two ways to combine functionals
by terms in the lambda-calculus with F and G as constants.
On the other hand, any term in the lambda-calculus with
constants from a given class of functionals can be interpreted
as a functional again. It should be noted that in general these
functionals need not be type-one or two anymore as the
lambda-calculus provides variables for each finite type.

This section reasons about closures of classes of function-
als under λ-abstraction and application as a subsitute for

closure under composition in the operator setting. We do
not attempt to give a self-contained presentation of the tools
from lambda-calculus needed here and point to [9] for more
details. Our primary focus is on using such calculi definition-
ally – that is we are interested in the denotational semantics
of type-one and -two terms, and only require operational
notions to reduce arbitrary terms to such terms. In partic-
ular, we consider systems with constant symbols for every
function in some type-one or -two class, without necessarily
giving reduction rules for such symbols. Note that we do not
initially restrict the type-level of the functionals we work
with. We consider closure at all finite types and recover the
classes of interest by taking sections.

Definition 4.1. For a class X of functionals, let λ(X) denote
the set of simply-typed λ-terms which include a constant
symbol for every element of X. For a set T of terms the one-
section ofT , denotedT1, is the class of functions represented
by type-one terms of T . The two-section of T , denoted T2,
is the set of functionals represented by type-two terms of T .

Denote the class of poly-time computable functions by P.
It is well-known that λ(P)1 = P. Seth proves that λ(P)2 = C0,
where C0 is his class of functionals computed by POTMs
only allowed to access their oracle a finite number of times.
Mehlhorn’s schematic characterization of poly-time [20]

fits quite nicely into the lambda calculus approach. However,
the limited recursion on notation scheme translates to a type-
three constant as it produces a type-two functional from a
set of type-two functionals. Work by Cook and Urquhart
revealed that it is possible to use a type-two constant instead
[9]. Cook and Urquart consider lambda-terms with symbols
for a collection of basic poly-time computable functions as
well as one type-two symbol R capturing limited recursion
on notation. We denote the functional that Cook and Urquart
use to give meaning to R by R ′ as for our purposes a slightly
different one is more convenient. Set R ′(φ, a,ψ , ϵ) = a and

R ′(φ, a,ψ , ci) =
{
t if |t| ≤ |ψ (ci)|;
ψ (ci) otherwise.

where t = φ(ai,R ′(φ, a,ψ , c)). Readers familiar with the
Mehlhorn’s limited recursion on notation scheme should
note that this is an application of the scheme to feasible func-
tionals and that R ′ itself is a feasible functional. The next
section verifies this directly for a very similar functional.
Cook and Kapron consider an equivalent version of the

Cook-Urquhart system which includes constant symbols
for all type-one poly-time functions [8], and call the func-
tionals that correspond to terms in this system the basic
feasible functionals, denoted by BFF. This means that
BFF = λ(P ∪ {R ′}) up to identification of lambda terms
with the functionals they represent. Clearly, in this setting,
R ′ is needed only for higher-order recursions.

7



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Bruce M. Kapron and Florian Steinberg

The class BFF contains functionals of all finite types and
can be cut down to the types we are interested in by consider-
ing the sections BFF1 and BFF2. While there are reasonable
doubts whether the class BFF captures feasiblity in all finite
types [11], the significance of its two-section is demonstrated
by the following result of Kapron and Cook [14].

Theorem 4.2 (P = BFF2). The basic feasible functionals of
type-two are exactly the poly-time functionals.

It is also true that BFF1 = P. Cook’s notion of intuitively
feasible functionals is based on this property of BFF1: a type-
two functional F is intuitively feasible if the corresponding
operator is in OPT and adding it to BFF does not change the
one-section, i.e. λ(P ∪ {R ′, F })1 = P.

4.1 Limited recursion as an operator
As mentioned, using a recursion functional slightly different
from Cook and Urquart’s R ′ is more convenient for our
purposes. Consider the limited recursion functional R,
i.e. the type-two functional defined by R(φ, a, b, ϵ) := a and

R(φ, a, b, ci) := φ(ci,R(φ, a, b, c))≤ |b |

First we establish that we may indeed swap the recursion
functional R ′ with this functional.

Proposition 4.3 (λ(P ∪ {R}) = BFF). The recursion func-
tionals R ′ and R are equivalent in the sense that

R ∈ λ(P ∪ {R ′})2 and R ′ ∈ λ(P ∪ {R})2

Proof. Clearly, R(φ, a, b, c) = R ′(λsλt.φ(s, t)≤ |b |, a, λs.b, c).
For the other direction first show that the operator

F (ψ )(c) := max
c′⊆c

F (ψ )(c′)

may be defined using R. Define F ′ such that F (ψ )(c) =
ψ (F ′(ψ , c)). Thus,

F ′(ψ , c) = R(λsλt.M(ψ , s, t), ϵ, c, c),

whereM(ψ , s, t) = s ifψ (s) > ψ (t) and t otherwise. Let ℓ be
the poly-time function that satisfies: ℓ(s, t) = s if |s| ≤ |t|
and t otherwise. Then

R ′(φ, a,ψ , c) = R(λsλt.ℓ(φ(s, t),ψ (s)), a, F (ψ , c), c).

This proves the assertion. �

The classesMPT and SPT contain operators. To capture
the limited recursion functional R we first need to give an
equivalent operator. Indeed an arbitrary type-two functional
may be translated to an operator within the lambda calculus
in exactly the same way and this may be interpreted as an
alternate normal form. Not surprisingly, this normal form
relies on the availability of tupling functions and projections.
In the situations we are most interested in these are always
available, either because constants for the poly-time com-
putable functions are available or because we can provide
replacements for these.

A different way to approach this problem would be to
adapt the definition of oracle machines to allow for multiple
oracles and multiple input and output tapes. It is worthwhile
to note that the definitions of MPT and SPT generalize in
a straight forward way and that this is equivalent to using
translations. The extended definition is more convenient for
high level proofs as it hides all uses of tupling and projections.
However, it requires additional definitions and notations and
for the sake of being self-contained we mostly avoid it.
Recall that we denote the k-ary poly-time computable

string-tupling functions by ⟨·, . . . , ·⟩ and that they have
polynomial-time computable projections π1,k , . . . πk,k . The
limited recursion operator R is defined by

R(ψ ) := λa.R(λbλc.ψ (⟨b, c⟩),π1,3(a),π2,3(a),π3,3(a)).
The right hand side is a type-two term from λ(P ∪ {R}) and
thus R ∈ λ(P ∪ {R})2 = P. Recall that the tupling func-
tions for string functions were defined by ⟨φ, . . . ,ψ ⟩(a) =
⟨φ(a), . . . ,ψ (a)⟩. Thus, the tupling functions on string func-
tions are also available as a type-two terms. The same is true
for the projections. Therefore any type-two functional can
be replaced by an operator using lambda-abstraction and ap-
plication and additionally tupling functions and projections.

4.2 The lambda-closures of MPT and SPT
This section proves that λ(MPT)2 = P = λ(SPT)2. For the
first equality, the strategy is very simple: We prove R ∈ MPT.
For the second equality additional work has to be done.

Lemma 4.4 (R ∈ MPT). The limited recursion operator is
moderately poly-time computable.

Proof. A high-level description of an oracle machineM com-
puting R can be given as follows: On inputsψ and a fix the fol-
lowing notations: t0 := π1,3(a), c := π2,3(a) and b := π3,3(a).
The machine M operates as follows: first it queries ψ at
1max{ | ⟨c,t0 ⟩ |, | ⟨c,b⟩ | } . The return value is not used, but this
query guarantees that M has exactly one lookahead revi-
sion. Then, for i = 1, . . . ,n = |c| set ti ← ψ (⟨c≤i , ti−1⟩)≤ |b | ,
and return tn . Since |ti | ≤ |b| for 1 ≤ i ≤ n, the initial query
made byM is the largest. ThusM has a quadratic step-count
and lookahead revision 1. �

This theorem does not rely on the reformulation of the
recursion functional. It can be checked that it is also true
if Cook and Urquart’s formulation is used. However, the
description of the machine becomes more involved.

The first main result of this section follows easily.

Theorem 4.5 (λ(MPT) = BFF). The functionals represented
by lambda terms with symbols for moderate poly-time com-
putable operators are exactly the basic feasible functionals.

Proof. For any poly-time computable function ψ ∈ B, the
constant operator defined by Kψ (φ) := ψ is moderately poly-
time computable. Thus the lambda-term λa.Kψ (λb.b)(a)may
be used as replacement forψ . For multiple arguments note
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that the operator defined byT (φ)(a) := ⟨φ(ϵ), a⟩ is moderate
poly-time computable.
Due to the moderate poly-time computability of the lim-

ited recursion operator R and the availability of tupling func-
tions from the first part of the proof, the lambda-term

λφλaλbλc.R(λd.φ(π1(d),π2(d)))(⟨a, b, c⟩)

may be used to replace the symbol R. �

Unfortunately the same tactic is bound to fail for the
strongly poly-time computable operators: an argument simi-
lar to that given for themaximization operator in Example 3.5
shows that the limited recursion operator is not in SPT. This
forces us to attempt to split the functional into simpler parts.
Due to the concrete form of our limited recursion functional,
this can fairly easily be done. It should be noted though, that
this is a very special case of a more general theorem proved
in the next section and that understanding the decomposi-
tion in the next lemma is not crucial for the understanding
of the paper and thus the proof is omitted.

Lemma 4.6 (R ∈ λ(SPT)2). There exists a lambda-term with
two constants from SPT that evaluates to the limited recursion
functional R.

The following theorem can now be proven completely
analogous to the same statement for MPT.

Theorem 4.7 (λ(SPT) = BFF). The functionals represented
by lambda terms with symbols for strongly poly-time com-
putable operators are exactly the basic feasible functionals.

Proof. The only adjustment that has to be made is to change
the lambda term replacing R to the term over SPT that exists
according to Lemma 4.6. �

As we are mainly interested in the two sections, we gather
these special cases from the Theorems 4.5 and Theorem 4.7
and state them as the main results of this paper.

Theorem 4.8 (λ(MPT)2 = P = λ(SPT)2). The type-two func-
tionals represented by terms in the closure of both SPT and
MPT under lambda-abstraction and application are exactly
the poly-time computable functionals.

4.3 Some results about composition
The decomposition of the limited recursion functional into a
lambda-term over two strongly poly-time computable func-
tionals from Lemma 4.6 is a special case of a general phe-
nomenon. It is instructive to revisit the maximization func-
tional from Example 3.5 with this in mind. For the statement
of the corresponding result we switch back to the opera-
tor setting and provide a decomposition of any moderate
poly-time computable operator into a composition of two
strongly poly-time computable operators. Note that com-
position of operators may be expressed as a lambda term:
S ◦T = λφ.(S ◦T )(φ) = λφ.S(T (φ)). Furthermore, the trans-
lations between functionals and operators were shown to

be possible within the lambda-calculus over SPT. Thus, the
decomposition from Lemma 4.6 is a special case of the fol-
lowing theorem.

Theorem 4.9 (MPT ⊆ SPT ◦ SPT). Any moderate polynom-
ial-time computable operator can be written as composition of
two strongy poly-time computable operators.

Proof. Factor a machineM into machines M̃ and N that are
defined as follows: The machine M̃ on oracle φ and on input
⟨a, b⟩ first checks if the string b is of the form c#c′. If it is
not it returns the empty string. If it is, then it asks the query
c. The answer to that first query is ignored and instead the
steps M does on input a and with oracle φ are carried out
while keeping track of the sizem of the biggest oracle answer.
In case a length revision is encountered on oracle query d,
the machine checks if d is shorter than the string c′. If so, M̃
returns d#1 |c′ |− |d | . If not, it returns d##1m . IfM terminates
it returnsM(a).

To describe how the machine N works, let p be a polyno-
mial step-count of the original machine and r its number of
lookahead revisions. With oracleψ and on input a the ma-
chine N evaluatesm := p(|a|) and poses the query ⟨a, #1m⟩
to the oracle. If the answer contains a # and triggers a length
revision, it returns the empty string. If the answer contains
a single # and does not trigger a length revision, it copies
the string d of digits that occur before the # and poses as
next query ⟨a, d#1m⟩. If the answer contains a double #, it
checks whether the length k of the string after the double #
is bigger than |a| and if so replacesm by p(k). If the answer
does not contain a #, it returns the answer. If it has to repeat
the procedure more than 2r + 1 times, it returns ϵ . �

To illustrate this decomposition, we informally describe its
effect on the limited recursion functional R from Section 4.1:

R(φ, a, b, c) = P(λdλt.Q(φ, t, b, c, d), a, b, c),

where Q acts like a re-entrant version of R which may be
started at an arbitrary point in the recursion, and raises an
exception whenever it encounters more than one length
revision. P acts as an exception handler that restarts Q in
case an exception is thrown. The following is a high-level
description of an oracle machineM computing Q. On inputs
φ, t, b, c, d, first check that d ⊆ c. If not, return an “abort”
value, say ϵ . Otherwise, letting t0 = t,M does the following
for i = 1, . . . ,n = |c| − |d|:

1. Set ci ← c≤(i+ |d |), si ← φ(ci , ti−1) and ti ← s≤ |b |i
2. If i > 1 and |si | > |si−1 | return ci , ti encoded as a

string of a length only dependent on |b|.
If all steps execute, return tn marked as return value. In this
case it is simple to guarantee that all exception messages
have the same length and this makes it possible for the ex-
ception handler P to avoid length revisions. Now an OTM N
computing, P, on inputsψ , a, b, c, repeatedly callsψ , starting
with inputs ϵ, a. If any answer is marked as a return value
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then N returns this answer. If an answer is an exception
message, N decodes it and feeds it back toψ . If an answer is
neither, or if more than two length revisions occur or more
than |c| iterations pass, then N aborts and returns ϵ .
Methods similar to those employed in the proof of Theo-

rem 4.9 can be used to prove that in special cases composition
does not lead outside ofMPT.

Lemma 4.10 (MPT1 ◦ MPT ⊆ MPT). Let F ,G ∈ MPT be
such that the machine computing F does only one lookahead
revision. Then F ◦G ∈ MPT.

5 Conclusions and future work
We have given two characterisations of feasible type-two
computation which coincide with the familiar notion of poly-
time, but have a simple and appealing syntactic description.
They use POTMs with simple restrictions on how oracles
may be accessed as building blocks. Such machines may call
other POTMs as subroutines, but as long as all the machines
obey the query restriction, the result is poly-time. Although
we do not consider it the main contribution — the evidence
is overwhelming already — these characterizations further
support the naturalness of the notion of feasibility in second-
order complexity theory: both of these models, formulated
without any notion of length-functions, second-order poly-
nomials, or limited recursion on notation, lead to the familiar
notion. The simplicity of the characterisation should make
it easier to reason about feasibility in the type-two setting.
While the results of this paper are satisfactory, they do

raise a lot of additional questions. For instance we conclude
that SPT ( MPT ⊆ SPT◦SPT ⊆ P and that at least one more
inclusion must be strict (as MPT ( P). We tried to prove the
equality ofMPT ◦MPT and P early in our search for closure
properties ofMPT. This lead us to ideas very similar to those
pursued by Seth [26]. We now believe MPT ◦MPT and P to
be different and similar inclusions combining more opera-
tors from SPT orMPT to be strict, but have not yet produced
counterexamples. For instance the functional from Exam-
ple 3.9 can be written as F (φ, a) = R(λb.φ(φ(b)), ϵ,φ(ϵ), a).
Both the limited recursor R and λb.φ(φ(b)) are fromMPT.
This leads to another goal, namely a more direct proof

of the closure results that may provide a concrete decom-
position into few elements of SPT or MPT. The number of
components needed may provide a measure for the complex-
ity of a task that resolves finer than poly-time. This is in
particular interesting as there does not exist a second-order
substitute for the degree of a polynomial or even linearity.
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