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Abstract

Proof nets for MLL (unit-free Multiplicative Linear Logic) are

concise graphical representations of proofs which are canoni-

cal in the sense that they abstract away syntactic redundancy

such as the order of non-interacting rules. We argue that Gi-

rard’s extension to MLL1 (first-order MLL) fails to be canon-

ical because of redundant existential witnesses, and present

canonical MLL1 proof nets called unification nets without them.

For example, while there are infinitely many cut-free Girard

nets ∀x Px ⊢ ∃x Px, one per arbitrary witness for ∃x, there is

a unique cut-free unification net, with no specified witness.

Cut elimination for unification nets is local and linear time,

while Girard’s is non-local and exponential time. Since some

unification nets are exponentially smaller than corresponding

Girard nets and sequent proofs, technical delicacy is required

to ensure correctness is polynomial-time (quadratic).

These results transcend MLL1 via a methodological insight:

for canonical quantifiers, the standard parallel/sequential di-

chotomy of proof nets is insufficient; an implicit/explicit wit-

ness dichotomy is needed. Current work extends unification

nets to additives and uses them to extend combinatorial proofs

[Proofs without syntax, Annals of Mathematics, 2006] to clas-

sical first-order logic.
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1 Introduction

Girard’s elegant proof nets [8, 7] are concise graphical rep-

resentations of proofs in MLL (unit-free Multiplicative Linear

Logic). For example, the two MLL proofs
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∀xPx ⊢ ∃xPx

Figure 1. Illustrating unification net canonicity.

P,P Q,Q
⊗

P,P⊗Q,Q R,R
⊗

P,P⊗Q,Q⊗R,R

P,P

Q,Q R,R
⊗

Q,Q⊗R,R
⊗

P,P⊗Q,Q⊗R,R

translate to the same MLL proof net:

P P⊗Q Q⊗R R

MLL proof nets are canonical in the sense that they abstract

away syntactic redundancy such as the order of non-interact-

ing rules. For example, the two proofs above differ only in

the order they introduce non-interacting tensors P⊗Q and

Q⊗R; the proof net abstracts away this arbitrary choice. Such

syntactic redundancies are not merely subjective aesthetic fail-

ures: as noted by Girard [11], they burden sequent calculus

cut elimination with endless mechanical rule commutations.

By purging these commutations, cut elimination for MLL proof

nets is local (each reduction being a local graph rewrite) and

linear time (eliminating all cuts taking time linear in the size

of the net). In contrast, cut elimination for MLL sequent calcu-

lus is non-local and at best quadratic.

Girard extended MLL proof nets with quantifiers, to MLL1

(first-order MLL), over a series of three papers [8–10]. He reit-

erated them in his book The Blind Spot [12], choosing one for

the cover picture, and characterizing them as “The only really

satisfactory extension of proof-nets” [12, Ch. 11].

At first glance, they do indeed appear satisfactory: like the

MLL nets they extend, they abstract away the redundant order

of non-interacting rules using parallelism [11]. However, we

argue that they fail to be canonical (hence fail to be satisfac-

tory) due to redundant existential witnesses, inherited from

sequent calculus. For example, consider ∀xPx ⊢ ∃xPx , whose

one-sided form is ∃xPx,∃xPx . Figure 1 (top) shows an in-

finite family of cut-free MLL1 proofs Πt, one per existential

https://doi.org/10.1145/3209108.3209159
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P(gu, fx,a), P(gu, fx,a)
∃

∃vP(gu, fv,a), P(gu, fx,a)
∀

∃vP(gu, fv,a), ∀xP(gu, fx,a)
∃

∃vP(gu, fv,a), ∃w∀xP(w, fx,a)
∀

∀u∃vP(gu, fv,a), ∃w∀xP(w, fx,a) Q(h(z,a)), Q(h(z,a))
⊗

∀u∃vP(gu, fv,a),
(
∃w∀xP(w, fx,a)

)
⊗Q(h(z,a)), Q(h(z,a))

∃

∀u∃vP(gu, fv,a),
(
∃w∀xP(w, fx,a)

)
⊗Q(h(z,a)), ∃yQ(y)

P(gu, fx,a)
∃

∃vP(gu, fv,a)
∀

∀u∃vP(gu, fv,a)

P(gu, fx,a)
∀

∀xP(gu, fx,a)
∃

∃w∀xP(w, fx,a) Q(h(z,a))
⊗(

∃w∀xP(w, fx,a)
)
⊗Q(h(z,a))

Q(h(z,a))
∃

∃yQ(y)

∀u∃v P(gu, fv,a)
(
∃w∀xP(w, fx,a)

)
⊗ Q(h(z,a)) ∃yQ(y)

Figure 2. An MLL1 proof, its Girard net, and its unification net.

witness term t = z, a, f(z,a), f(g(z), h(a,b)), etc. The choice

of t is arbitrary, hence redundant. Correspondingly, there is

an infinite family of cut-free Girard nets Gt (Figure 1 centre),

one per witness term t, since Girard nets inherit redundant

existential witnesses from sequent calculus.1

We present canonical MLL1 proof nets called unification

nets, or unets for short, free of redundant existential witnesses.

Fig. 1 (bottom) illustrates canonicity: in contrast to the infinite

families of cut-free sequent proofs and Girard nets, there is a

unique cut-free unification net of ∀xPx ⊢ ∃xPx. Fig. 2 shows

another comparison: an MLL1 proof with two axioms, the cor-

responding Girard net with two axiom links, and the corre-

sponding unification net with two links . Unlike a Girard

axiom link, a unification net link can go between atoms which

are not strictly dual, such as Q(h(z,a)) and Q(y) in Fig. 2.

1.1 Local linear-time cut elimination

Unification net cut elimination is local and linear time, while

Girard’s is non-local and exponential time and space. Fig. 3

shows the two-step cut elimination of a unification net with

one cut . Each step is a purely local graph rewrite. Fig. 4

shows the corresponding Girard cut elimination. The first step

is non-local, since it substitutes fx for y globally. Chaining

such substitutions, each duplicating a term, causes exponen-

tial growth (see Appendix A).

1.2 Brevity

By leaving witnesseses implicit, unification nets are more con-

cise than sequent proofs and Girard nets. Some sequents re-

quire exponentially large cut-free proofs and Girard nets (see

App. B), i.e., cut-free sequent proofs and Girard nets are not

polynomially bounded [5]. In contrast, cut-free unification nets

are only linearly larger than their underlying sequents, hence

they are polynomially bounded (indeed linearly bounded).

1The [11] variant introduces additional redundancy not even present in sequent
calculus, due to explicit witness annotations ∃t even in the case of vacuous
quantifiers, so by Girard net we shall always mean the [10] and [12] variant.

∀xPfx ∃yPy ∀yPy ∃z
(
Pz⊗(Qz`Qz)

)

∀xPfx Py Py ∃z
(
Pz⊗(Qz`Qz)

)

∀xPfx ∃z
(
Pz⊗(Qz`Qz)

)

Figure 3. Unification net cut elimination is local.
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`
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global substitution y 7→ fx

Pfx
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∀xPfx

Pfx Pfx Pfx

Qfx Qfx
`

Qfx`Qfx
⊗

Pfx⊗(Qfx`Qfx)
∃

∃z
(
Pz⊗(Qz`Qz)

)

Pfx
∀

∀xPfx

Pfx

Qfx Qfx
`

Qfx`Qfx
⊗

Pfx⊗(Qfx`Qfx)
∃

∃z
(
Pz⊗(Qz`Qz)

)

Figure 4. Girard net cut elimination is not local.

1.3 Beyond sequentialization

Fig. 5 summarizes the relationship between MLL1 sequent cal-

culus, Girard nets, and unification nets. The lower-left corner,

unification calculus (§6.2), is a variant of MLL1 sequent calcu-

lus in which, like unification nets, existential witnesses remain

implicit; it was conceived to fill out the commuting square.

The east-west axis is the standard parallel/ sequential di-

chotomy of proof nets [11]: sequent calculus and unification

calculus are sequential (west), with redundant order on non-

interacting rules; Girard nets and unification nets are parallel

(east), abstracting away this redundancy. The north-south axis

is an implicit/explicit witness dichotomy: sequent calculus and

Girard nets have redundant explicit witnesses (north); unifi-

cation calculus and unification nets abstract away this redun-

dancy by leaving witnesses implicit (south).

1.4 Combinatorial proofs for classical first-order logic

Proof without syntax [16] reformulated classical propositional

logic in terms of combinatorial proofs rather than syntactic

proofs. A key motivation for the present paper on unification
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Figure 5. Relating MLL1 sequent calculus, Girard nets,

and unification nets. Each double-headed arrow is a sur-

jection between cut-free sub-systems. The diagram com-

mutes from top-left to bottom-right: the surjection from

cut-free MLL1 sequent calculus proofs to cut-free unifi-

cation nets factorizes through both cut-free Girard nets

(eliminating order redundancy first) and cut-free unifica-

tion calculus (eliminating witness redundancy first).

nets was as a stepping stone towards extending combinatorial

proofs to classical first-order logic (in preparation; see also

[18]). A first-order combinatorial proof of Smullyan’s drinker

paradox ∃x(Px⇒∀yPy) is shown below-left.

x

Px

y
Py

∃x Px ∃x∀yPy

∃x
(
Px ∨ ∀yPy

)

The lower graph abstracts the proved formula ∃x(Px⇒∀yPy),

the upper graph abstracts a unification net, and the dotted

lines indicate a skew fibration, a lax graph fibration. As in the

original propositional case [17] (see also [4, 30]), a skew fi-

bration parallelizes all contraction and weakening in a proof.

By using a semi-combinatorial style [17, §2.1], above-right,

the upper unification net becomes more apparent. See [18]

for other first-order examples in semi-combinatorial style.

1.5 Extending unification nets to additives

Joint work in progress aims to extend unification nets to ALL1

(first-order Additive Linear Logic without units). Since the ex-

amples in Figure 1 involve no multiplicative connective, they

are also additive; thus the unification net in Figure 1 is both

multiplicative and additive.

1.6 Technical delicacy for p-time (quadratic) correctness

Since some unification nets are exponentially smaller than cor-

responding Girard nets and sequent proofs (App. B) technical

delicacy is required to ensure that correctness is polynomial

time. Theorem 5 (p. 6) shows that it is at worst quadratic time.

1.7 Canonicity Theorem

The two cut-free MLL1 proofs

Pa,Pa
∃

∃xPx,Pa
∃

∃xPx,∃xPx

Pfc,Pfc
∃

Pfc,∃xPx
∃

∃xPx,∃xPx

are equivalent in the sense that the left yields the right by com-

muting the order of the ∃ rules and replacing one arbitrary

choice of existential witness, a, by another, fc. While they

have distinct Girard nets (because Girard nets inherit redun-

dant explicit witnesses), they have the same unification net

(from Fig. 1): ∃xPx ∃xPx . In §4 we formalize this notion of

proof equivalence and prove a Canonicity Theorem (Thm. 6,

p. 7): two cut-free MLL1 proofs are equivalent if and only if

they have the same unification net.

1.8 Related work

Unification in the context of first-order logic goes back to Her-

brand’s theorem [15]. Robinson’s resolution [28] is a seminal

work. Our links between predicates which are not strictly dual

(e.g. Px and Pfy) are akin to the first-order connections or

matings employed in automated theorem proving [3, 1]. In

fact, Bibel in [3, p. 4] coined link as an alternative term for

a connection; we have adopted this terminology. The roots of

first-order connections/matings with unification can be traced

back to Quine [27] and Prawitz [26].

Our leaps from ∃x vertices to ∀y vertices play a similar role

to Girard’s jumps between ∀y vertices and occurrences of wit-

nesses containing y, but in a more rarefied context without ex-

plicit witnesses. Both leaps and jumps capture dependencies

between ∀ rules and ∃ rules in a proof, and the interaction

between tensors and quantifiers. Bellin and van de Wiele [2]

add a condition on eigenvariables to Girard’s MLL1 net defini-

tion [10] to streamline kingdoms and empires. Since we leave

witnesses implicit, and have no need for eigenvariables, we do

not need an analogous condition.

Abstract representations of first-order quantifiers with ex-

plicit witnesses for classical logic have been presented by Heijl-

tjes [14] (extending Miller’s expansion trees [24]) and McKin-

ley [23]. Straßburger presents proof nets for second-order

MLL in [29]. First-order proof nets with explicit witnesses are

employed in linguistic analysis, for example, [25]; it would be

interesting to see if using unification nets could lead to simpli-

fication.

2 MLL1

As in [10], we work with MLL1 (first-order Multiplicative Lin-

ear Logic without units). We adopt the following conventions:

term variables x, y, z; n-ary function symbols f, g, h (n>1);



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Dominic J. D. Hughes

constants (0-ary function symbols) a, b, c; terms s, t, u; n-ary

predicate symbols P, Q, R (n>0); formulas A, B, C; sequents

Γ , ∆, Σ. Fix an arity-preserving negation or duality function

( ) on predicate symbols such that P = P and P , P for all P.

A predicate or atom is an expression Pt1 . . . tn for any n-ary

predicate symbol P and terms ti. We may insert parentheses

to increase readability, e.g., Pffy = P(ffy) = P
(
f(f(y))

)
if f

is a unary (1-ary) function symbol. Formulas are generated

from atoms by binary connectives tensor ⊗ and par ` and

unary quantifiers ∀x and ∃x for each variable x. Negation ex-

tends to formulas by P t1 . . . tn = P t1 . . . tn, A⊗B = A`B,

A`B=A⊗B, ∃xA=∀xA, ∀xA=∃xA.

We identify a formula with its parse tree, a directed tree

with leaves labelled by atoms and internal vertices by connec-

tives and quantifiers, and edges directed towards the root. A

sequent is a disjoint union of formulas.2 We write comma for

disjoint union. Sequents are proved using the following rules,

where A[x 7→t] denotes the result of simultaneously substitut-

ing the term t for all free occurrences of x in A.

ax

P,P

Γ,A,B
`

Γ,A`B

Γ,A[x 7→t]
∃

Γ,∃xA

Γ,A A,∆
cut

Γ,∆

Γ,A B,∆
⊗

Γ,A⊗B,∆

Γ,A
∀

Γ,∀xA
(x not free in Γ)

These are the standard rules for first-order multiplicative lin-

ear logic [8–10], omitting turnstile ⊢ (redundant in a right-

sided calculus) and the exchange rule (redundant since we

treat sequents as labelled forests). A sequent just above a rule

is a hypothesis of a rule, and the sequent just below the rule

is its conclusion. The conclusion of a proof is its final sequent

(the conclusion of its final rule).

A quantifier is vacuous if it binds no variable. For example,

in ∀x∃y∀zPzc both ∀x and ∃y are vacuous, but ∀z is not. An

instance
Γ,A[x 7→t]
Γ,∃xA of an ∃ rule in a proof Π is vacuous if x

does not occur free in A; otherwise its witness is t (recover-

able from A[x 7→t] and A since A has at least one x). If every

∃ rule in Π introduces a distinct bound variable, we can un-

ambiguously say that x is vacuous or has witness t (since x

unambiguously determines the ∃ rule instance).

A sequent is clean if all quantifed variables are distinct from

each other and from all free variables. E.g. ∃xPx,∀yQzy is

clean but ∃xPx,∀xQzx and ∃xPx,Qx are not. In a clean se-

quent, an existential (resp. universal) variable is one bound

by an existential (resp. universal) quantifier. For example, in

∀xPfx,∃yQyz the variables x, y, and z are universal, existen-

tial and free (respectively).

3 Cut-free unification nets

A link on a sequent Γ is a pair {l,l′} of leaves in Γ whose pred-

icate symbols are dual. A linking on Γ is a set of disjoint links

on Γ whose union contains every leaf of Γ . We draw a link {l,l′}

as an undirected edge between the predicate symbols of l and

l′. For example, a linking with two links is shown in Figure 6

(copied from the bottom of Fig. 2).

2We follow standard graph theory and work with graphs up to isomorphism,
i.e., modulo renaming of vertices. Thus disjoint union becomes associative.

∀u∃vP(gu, fv,a)
(
∃w∀x P(w, fx,a)

)
⊗ Q(h(z,a)) ∃yQ(y)

Figure 6. A linking with mgu (most general unifier)

[v 7→x,w 7→gu,y 7→h(z,a)], hence precedences v y x

and wy u .

Let λ be a linking on Γ . Without loss of generality, assume Γ

is clean (renaming bound variables if necessary, e.g. ∃xPx,Qx

becomes ∃yPy,Qx ). A unifier for λ is an assignment of terms

to existential variables which equalizes the term sequences at

either end of every link, e.g., σ = [v 7→x,w 7→gu,y 7→h(z,a) ] is a

unifier for the Fig. 6 linking since upon substituting according

to σ the first link has the three-term sequence (gu, fx,a) at ei-

ther end, and the second has the one-term sequence (h(z,a)).

The formal unification problem is as follows. A link be-

tween P(s1, . . . , sn) and P(t1, . . . , tn) determines n equations

si = ti. Taking the union across all links, we obtain a set of

equations E. Solve E for the existential variables (treating free

and universal variables as constants). For example, the left

link P(gu, fv,a) P(w, fx,a) in Fig. 6 determines three equations

gu=w, fv= fx and a=a, and the right link Q(h(z,a)) Q(y)

yields h(z,a)=y, so E is {gu=w, fv= fx, a=a, h(z,a)=y}.

Solve E for existential variables v, w, y (treating the universal

u and x as constants): [v 7→x,w 7→gu,y 7→h(z,a) ].

A linking is unifiable if it has a unifier. Unifiability can be

determined in linear time [22]. The most general unifier or

mgu yields every other unifier by substitution. For example,

the mgu of ∃xPx ∃yPy is σ= [x 7→α,y 7→α ] for α a free vari-

able: every unifier is σt=[x 7→t,y 7→t ] for some term t, and σ

yields σt by substituting t for α, i.e., σt = σ[α 7→t ]. The mgu is

defined up to free variable renaming [21]: [x 7→β,y 7→β ] also

represents the mgu, for any other free variable β.

Let λ be a unifiable linking on a sequent Γ . Without loss

of generality, assume Γ is clean. A precedence x y y is an

existential variable x and a universal variable y such that the

mgu of λ assigns to x a term containing y. For example, the

precedences of the linking in Fig. 6 are v y x and w y u .

The graph G(λ) of λ is the labelled directed forest Γ together

with an undirected edge between leaves l and l ′ for every link

{l,l′} in λ, and a directed edge ∃x ∀y, called a leap, for every

precedence xy y . A switching of λ is any derivative of G(λ)

obtained by deleting all but one edge into each ` and ∀ and

undirecting remaining edges. For example, the graph of

(∃xPx)` (∀yPy)

is below-left, followed by its four switchings.

Px Py

∃x ∀y

`

Px Py

∃x ∀y

`

Px Py

∃x ∀y

`

Px Py

∃x ∀y

`

Px Py

∃x ∀y

`

A linking is correct if it is unifiable and its switchings are trees

(acyclic and connected). For example, the linking above is cor-

rect: all four switchings are trees. In §3.3 we prove that cor-

rectness can be verified in quadratic time, despite the fact that
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constructing an explicit mgu, used to extract leaps, may take

exponential time and space.

A cut-free unification net on Γ is a correct linking on Γ .

The following two linkings show that the interaction of ⊗
and ∀ is a necessary part of correctness, via leaps and switch-

ings. Although the linkings differ only by exchanging ⊗ for `,

the left is correct, but the right is not.3

P ` ∀xQx ∃y(P⊗Qy) P ⊗ ∀xQx ∃y(P`Qy)

The respective graphs are

`

P ∀x

Qx

∃y

⊗

P Qy

⊗

P ∀x

Qx

∃y

`

P Qy

The respective switchings obtained by choosing the left `

edge and ∀x leap are:

`

P ∀x

Qx

∃y

⊗

P Qy

⊗

P ∀x

Qx

∃y

`

P Qy

All four switchings of the left linking are trees (including the

one shown above-left). However, the right linking has a non-

tree switching, shown above-right. Thus one cannot hope for a

factorized correctness criterion treating the propositional and

first-order parts independently, for example, verifying sepa-

rately that the underlying propositional MLL linking is correct

(true for both linkings above), and that quantifier precedence

y (together with the subformula relation on quantifiers) is

acyclic (also true for both linkings above).

3.1 Translation from cut-free proofs

Every cut-free proof Π of a sequent Γ translates to a cut-free

unification net ⌊Π⌋ on Γ in a manner similar to MLL proof nets:

track dual pairs of predicate symbols from each axiom down

the proof to form links on Γ .

A formal inductive definition of ⌊Π⌋ is shown in Figure 7,

where θ ⊲ Γ asserts that θ is a cut-free unification net on Γ ,

and we make two simplifying assumptions (without loss of

generality): in the ⊗ case θ and φ are disjoint, and in the ∀

and ∃ cases the leaf vertices of A, ∀xA, ∃xA and A[x 7→t] are

the same (only their labels vary). Figure 2 shows the transla-

tion of a proof to the unification net of Figure 6, together with

the corresponding Girard net for comparison. The proof of the

following theorem is a routine induction:

3The left is an instance of prenex extrusion A⊗∃xB ⊢ ∃x(A⊗B), provable
in MLL1 (x not free in A), while the right is an instance of the unprovable
A` ∃xB ⊢ ∃x(A`B). The right x was renamed to y to avoid ambiguity.

ax

{ {P,P }} ⊲ P,P

θ ⊲ Γ,A,B
`

θ ⊲ Γ,A`B

θ ⊲ Γ,A[x 7→t]
∃

θ ⊲ Γ,∃xA

θ ⊲ Γ,A φ ⊲ B,∆
⊗

θ ∪ φ ⊲ Γ,A⊗B,∆

θ ⊲ Γ,A
∀

θ ⊲ Γ,∀xA
(x not free in Γ)

Figure 7. Inductive translation of a cut-free MLL1 proof.

Theorem 1. The translation ⌊Π⌋ of a cut-free MLL1 proof Π is

a well-defined cut-free unification net.

3.2 Cut-free surjectivity theorem

In standard proof net theory, a surjectivity theorem of the

following form would typically be called a sequentialization

theorem. However, as remarked in the Introduction and em-

phasized in Fig. 5, for unification nets the (non-deterministic)

inverse of the surjection is both sequentialization (choice of

rule orderings) and explicit witness assignment (choice of wit-

nesses). Thus we simply label the theorem as surjectivity.

Theorem 2 (Cut-free Surjectivity). The translation from cut-

free proofs to cut-free unification nets is surjective.

We prove this theorem via an MLL encoding of a unification

net, called the frame, via which we appeal to the standard

MLL splitting tensor theorem.

Let θ be a unification net on Γ . Define the frame of θ by

exhaustively applying the following subformula rewrites, in

order, to obtain a linking θm on an MLL sequent Γm:

(1) Encode every precedencey as a new link. Iterate through

the precedences xy y one by one. For each such precedence

xy y , with corresponding subformulas ∃xA and ∀yB, add a

link as follows. Let Q be a fresh predicate symbol (distinct per

precedence). Replace ∃xA by Q⊗∃xA and ∀yB by Q`∀yB,

and add a link between Q and Q.

(2) Delete quantifiers. After (1) replace every subformula of

the form ∀yA or ∃xA by A. (We no longer need their leaps,

because we encoded leaps as links in step 1.)

(3) Delete terms. After (2) replace each predicate Pt1 . . . tn
by a nullary predicate symbol P.

For example, the frame of the unification net θ shown below-

left is the MLL linking θm below-right:

(∃xPx)` (∀yPy) (Q⊗P)` (Q`P)

Lemma 3. Let θ be a unification net on Γ . The frame θ
m

on Γ
m

is an MLL proof net.

Proof. Switchings correspond before and after the frame con-

struction. �

Let θ be a unification net on Γ . A ⊗ root vertex v splits if delet-

ing v (and its two edges) from the graph G(θ) disconnects it

into two connected components.

Lemma 4. No tensor added during the frame construction splits:

if θ is a unification net on Γ and θ
m

is its frame on Γ
m

, then no

tensor of the graph G(θ
m
) added during step (1) of the frame

construction splits.
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Proof. Lemma 3 and a routine analysis of switchings. �

Proof of Theorem 2 (Cut-free Surjectivity). Let θ be a cut-free

unification net on Γ . W.l.o.g. Γ is clean. Proceed by induction

on the number of connectives and quantifiers in Γ . In the base

case Γ is Pt1 . . . tn,Pt1 . . . tn for an n-ary predicate symbol

P and terms ti, so the corresponding axiom translates to θ, a

single link. For the induction step, let G be the graph of θ.

(`). Suppose Γ is ∆,A`B. Let Γ ′ be ∆,A,B and define θ ′

on Γ ′ by the same links as θ (identifying the leaves of Γ ′ and

Γ). The linking θ ′ is a unification net because (a) the mgu of θ

is also that of θ ′ (all quantifiers and terms remain untouched,

so the unification problem is identical) and (b) every switch-

ing of θ ′ is a tree, since a non-tree would induce a non-tree

switching of θ by adding an edge to the deleted ` down from

the root of A (or B). Appeal to induction with θ ′ for a cut-

free proof Π ′ whose translation is θ ′. Appending the ` rule
∆,A,B
∆,A`B yields a cut-free proof Π, whose translation is θ be-

cause all links pass through the ` rule.

(∀). Suppose Γ is ∆,∀xA. Let Γ ′ be ∆,A and define θ ′ on Γ ′

by the same links as θ (identifying the leaves of Γ ′ and Γ). The

mgu of θ is also that of θ ′ since x has only transitioned from

universal to free (hence the unification problem is identical).

Every switching of θ ′ is a tree, since a non-tree would induce

a non-tree switching of θ by adding an edge down from the

root of A to the deleted ∀x. Appeal to induction with θ ′ for

a cut-free proof Π ′ whose translation is θ ′. Appending the ∀

rule ∆,A
∆,∀xA yields a cut-free proof Π, whose translation is θ

because all links pass through the ∀ rule.

(∃). Suppose G has a root ∃ with no outward leap, say ∃x.

Let σ be the mgu of θ, assigning t to x. Delete ∃x by replacing

the corresponding formula ∃xA in Γ by A[x 7→t ] to form Γ ′,

write down a final ∃ rule inferring Γ from Γ ′, and appeal to

induction with θ ′ on Γ ′. We obtain the mgu of θ ′ on Γ ′ by

deleting the assignment x 7→t from σ and replacing every other

assignment y 7→u with y 7→u ′ for u ′ = u[x 7→t ]. Every switching

of the graph G ′ of θ ′ on Γ ′ is a tree because each induces a

switching in G (since the deleted ∃x was a root of Γ and every

leap in G ′ is also a leap in G).

(∃⊗). Otherwise every root of G is either an ∃ with an out-

ward leap or a ⊗. Let θm on Γm be the frame of θ on Γ . By the

standard MLL splitting tensor theorem4 [8, Thm. 2.9.7], some

⊗ root v of θm on Γm splits. By Lemma 4 v is a ⊗ in Γ , and

since every root ∃ has an outward leap, v is a root (since no

root ⊗ of Γm can result from step 2 in the frame construction

deleting an ∃ below it). Thus v splits in G : deleting v (and

its two incoming edges) disconnects G into G1 and G2. Let Γi
be the underlying sequent of Gi and θi the respective restric-

tion of θ. Since v splits, each θi is a unification net: its mgu is

by restriction from θ, and any non-tree switching of θi would

induce a non-tree switching of θ. Write down a ⊗ rule Γ1 Γ2
Γ

and appeal to induction with θ1 on Γ1 and θ2 on Γ2. �

3.3 Correctness is at worst quadratic time

Define the size of a sequent Γ as the number of registers |Γ | re-

quired to memorize Γ on a random access machine (cf. [13]).

4Every MLL net with a ⊗ and no root ` has a root ⊗ which splits.

In any non-redundant representation, |Γ | is linear in the num-

ber of occurrences of symbols (predicate symbols, function

symbols, variables, connectives and quantifiers) in Γ .5 We an-

alyze the worst-case asymptotic complexity of verifying the

correctness of a cut-free unification net on Γ in terms of |Γ |.

Unifiability can be verified in linear time [22]. However,

a standard mgu [x1 7→t1, . . . , xn 7→tn ] may take exponential

time to construct, and be exponential in size. Since such an

mgu generates the leaps in the correctness criterion, via prece-

dences, correctness is naively exponential time and space.

Theorem 5. The correctness of a cut-free unification net can be

verfied in quadratic time.

Proof. The primary unification algorithm of [22] provides in

linear time an assignment [x1 7→u1, . . . , xn 7→un ] with xi not

in uj for i 6 j such that the mgu σ is [ x1 7→t1, . . . , xn 7→tn ]

for ti = ui[xi+1 7→ui+1 ] . . . [xn 7→un ] (the sequential compo-

sition of n−i single-variable substitutions applied to ui). We

shall extract all precedences of σ via transitive closure, with-

out having to construct σ. Let {yi1, . . . ,yimi
} be the set of

variables occurring in ui (existential, universal and free), and

define u ′
i as fiyi1 . . .yimi

for a fresh mi-ary function sym-

bol fi. The assignment σ ′ = [ x1 7→t ′1, . . . , xn 7→t ′n ] for t ′i =

u ′
i[xi+1 7→u ′

i+1 ] . . . [xn 7→u ′
n ] has the same precedences as σ

but can be constructed in quadratic time since each xj appears

at most once in each u ′
i. Thus we can construct the linking

graph in quadratic time. The linking graph determines a con-

tractibility graph [6] with `s and ∀s as switched nodes, and

leaves, ⊗s and ∃s as unswitched nodes, checkable in linear

time [13]. Hence the overall complexity of correctness is at

worst quadratic. �

4 Canonicity Theorem

For background on this section, see §1.7. Let Π be a proof of Γ .

Without loss of generality, assume Γ is clean. Thus every ∃ rule

introduces a distinct existential variable. Let x be an existen-

tial variable in Π and let ρ be the ∃ rule
Γ,A[x 7→t]
Γ,∃xA introducing

x. The scope of x in Π is every occurrence of t above ρ which

descends to an occurrence of x in ∃xA in the conclusion of

ρ. Given a term u, define the witness replacement Π[x 7→u] by

replacing every occurrence of t in the scope of x by u. For ex-

ample, if Π is below-left then Π[x 7→hzb] is below-centre (not

a well-formed proof) and Π[x 7→hzb][y 7→hzb] is below-right (a

well-formed proof):

Pfc,Pfc
∃

Pfc,∃yPy
∃

∃xPx,∃yPy

x 7→hzb
−→

Phzb,Pfc
∃

Phzb,∃yPy
∃

∃xPx,∃yPy

y7→hzb
−→

Phzb,Phzb
∃

Phzb,∃yPy
∃

∃xPx,∃yPy

If σ = [x1 7→t1, . . . , xn 7→tn ] is an assigment of terms to exis-

tential variables in Π, define Πσ = Π[x1 7→t1] . . . [xn 7→tn], the

re-witnessing of Π along σ. This is well-defined modulo the

choice of ordering of the xi because scopes of distinct existen-

tial variables cannot overlap. For example, Π[x 7→hzb,y 7→hzb ]

above-right is a re-witnessing of Π above-left.

5Although the number of distinct symbols in the logic is infinite, only a finite
number k occur in any given sequent. We assume the symbols are enumerated
1, . . . ,k. (This avoids an artificial inflation of |Γ |, which would make the com-

plexity problem easier.)
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Two cut-free MLL1 proofs are commutation-equivalent if

one yields the other by a sequence of (zero or more) rule com-

mutations. We use the standard notion of rule commutation

in MLL1, for example,

Γ,A,B
∀

Γ,∀xA,B C,∆
⊗

Γ,∀xA,B⊗C,∆

↔

Γ,A,B C,∆
⊗

Γ,A,B⊗C,∆
∀

Γ,∀xA,B⊗C,∆

We only admit a commutation if it results in a well-formed

proof. For technical convenience we assume every sequent in

a cut-free proof is clean. Otherwise we may falsely reject a

commutation due to variable clashes. For example, we would

have to reject the left-to-right commutation above if x were

free in C (to avoid breaking the ∀-rule side condition on the

right); by assuming all sequents are clean, we avoid such arte-

facts. There is nonetheless one commutation where we must

be careful, even when all sequents are clean:

Γ,A[x 7→t],B
∃

Γ,∃xA,B
∀

Γ,∃xA,∀yB

↔

Γ,A[x 7→t],B
∀

Γ,A[x 7→t],∀yB
∃

Γ,∃xA,∀yB

The left-to-right direction is unavailable if t contains y (break-

ing the side-condition of the ∀-rule on the right).

Two cut-free MLL1 proofs are equivalent if one yields the

other by a sequence of rule commutations and/or re-witness-

ings. For example, the two proofs at the beginning of §1.7 are

equivalent but not commutation-equivalent.

Theorem 6 (Canonicity). Two cut-free MLL1 proofs are equiva-

lent (modulo rule commutations and re-witnessings) if and only

if they have the same unification net.

The proof follows from a number of auxiliary results below,

whose individual proofs are routine and generally omitted.

Let θ be a cut-free unification net on Γ and G(θ) its graph.

A root v of Γ is ready if any of the following cases hold: v is a

` or ∀; v is an ∃ with no outgoing leap in G(θ); v is a ⊗ which

splits G(θ). A rule ρ commutes downwards if a commutation

rewrite applies with ρ as the upper rule.

Lemma 7. Let ρ be a penultimate logical rule in a cut-free proof

Π introducing a vertex v. If v is ready in the unification net of

Π, then ρ commutes downwards.

Let Π be a cut-free proof of Γ and v a vertex of Γ . Since MLL1

has no contraction or weakening, a unique rule in Π intro-

duces v. By iterating Lemma 7 we obtain:

Lemma 8. Let θ be the unification net of a cut-free proof Π. If

v is a ready vertex in θ, then Π is commutation-equivalent to a

cut-free proof Π ′ whose final rule introduces v.

Lemma 9. Let σ be the mgu of the unification net of a cut-free

proof Π . The re-witnessing Πσ is a well-defined cut-free proof.

Let Π be cut-free proof. Without loss of generality, its conclu-

sion Γ is clean, hence every quantifer rule introduces a dis-

tinct bound variable. Define the witness assignment σΠ of Π

by σΠ(x) = x if the existential rule introducing x is vacuous,

otherwise set σΠ(x) to be the witness of x. Lemma 8 yields:

Lemma 10. Suppose Π and Π ′ are cut-free proofs with the same

witness assignment and the same unification net. Then Π and Π ′

are commutation-equivalent.

Proof of Thoerem 6 (Canonicity). Let Π and Π′ be cut-free

proofs with the same unification net, whose mgu is σ. By

Lem. 9 the re-witnessingsΠσ and Π′σ are well-defined cut-free

proofs, which are commutation-equivalent by Lem. 10 since

they have the same witness assigment, σ. Thus Π and Π ′ are

equivalent modulo rule commutations and re-witnessings. �

5 Cut

Extending unification nets with cuts comes essentially for free,

as in the propositional case [8] where one treats a cut as

a tensor A A ≈ A⊗A . For quantifiers one must generalize

slightly, to an existentially closed tensor: A A ≈ ∃x(A⊗A)

where ∃x = ∃x1 . . .∃xn for x1 . . . xn the free variables in A.

A cut A A is a disjoint union of dual formulas A and A, the

cut formulas, with an undirected edge between their roots, a

cut edge. A cut sequent is a disjoint union of a sequent and

zero or more cuts. Let ∆ be a cut sequent. A link on ∆ is a

pair {l,l′} of leaves in ∆ whose predicate symbols are dual.

A linking on ∆ is a set of disjoint links on ∆ whose union

contains every leaf of ∆. Figure 3 shows three examples.

We consider every free variable of A (hence also A) to be

bound in the cut A A. Such bound variables are the cut vari-

ables of A A. Their renaming is analogous to renaming of

existential or universal variables. The (cut-free) encoding of

a cut A A is the existentially closed tensor ∃x(A⊗A) where

∃x denotes ∃x1∃x2 . . .∃xn for x1 . . . xn the free variables in

A. (For definiteness, we assume a fixed order of the xi.) For

technical convenience, and without loss of generality, we as-

sume the leaves of the encoding are identical to the leaves

of the cut. (For example, if Px Px is the cut whose leaves are

l and l ′, labelled Px and Px, respectively, then the encoding

is ∃x(Px⊗Px) with the same leaves l and l ′, still labelled Px

and Px, respectively.) The encoding of a cut sequent ∆ is the

sequent ∆⊗ obtained by replacing each cut by its encoding.

Let θ be a linking on a cut sequent ∆. By our assumption

that the leaves remain unchanged by encoding, θ also consti-

tutes a (cut-free) linking on ∆⊗. The linking θ on ∆ is correct

if θ is correct (in the cut-free sense of §3) on ∆⊗. A unifica-

tion net (or unet for short) on a cut sequent ∆ is a correct

linking on ∆.

Since cut-free encoding is linear time, the following is a

corollary of cut-free quadratic-time correctness:

Theorem 11. Unification net correctness can be verified in qua-

dratic time.

5.1 Cut elimination

A cut reduction on a unification net is a subgraph rewrite of

any of the following forms:

Ps Pt Pt Pu

atomic

Ps Pu

A`B A⊗B

multiplicative

A B A B

∃xA ∀xA

quantifier

A A
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Here t denotes any sequence of terms. We refer to the upper

subgraphs as redexes.

Theorem 12. Reducing a cut from a unification net yields a

unification net.

To prove this theorem we shall require auxiliary definitions

and a key lemma concerning the reduction of a quantifier cut.

A cycle in the graph of a linking is a subgraph C with vertex

set {v1, . . . , vn} for n>2, all vi distinct, and an edge (directed

or undirected) between vi and vi+1 for all i (mod n), such

that if n= 2 then C contains two distinct edges between v1

and v2; C is a switching cycle [19] if it contains at most one

directed edge into any given ` or ∀ vertex.

Lemma 13. Let θ be a unification net on Γ , ∃xA ∀xA and let

the linking θ′ on Γ , A A result from reducing the distinguished

quantifier cut. Then the graph of θ′ has no switching cycle.

Proof. The respective cut-free encodings are

Γ ⊗
,∃x1 . . . ∃xn(∃xA⊗∀xA) Γ ⊗

,∃x1 . . . ∃xn∃x(A⊗A)

where the additional ∃x in the latter is because, without loss

of generality, x is free in A: when x is not free in A, the result

is trivial since ∃x and ∀x in the redex cut ∃xA ∀xA are vac-

uous, so topologically inert. To avoid bound variable conflict,

rename ∀x to ∀ẋ, as in Γ ⊗
,∃x1 . . .∃xn(∃xA⊗∀ẋȦ), where Ȧ

is the result of substituting ẋ for x in A.

Let σ be a unifier for θ. Thus σ = [z1 7→t1, . . . , zk 7→tk, x 7→t ],

where the zi include the xj. The term t assigned to x can-

not contain ẋ, or there would be a switching cycle due to the

resulting precedence x y ẋ , via the ⊗ of the encoding of

∃xA ∀xA . Let t ′i result from substituting t for ẋ in ti. Define

σ ′ = [z1 7→t ′1, . . . , zk 7→t ′k, x 7→t ]. This is a well-defined unifier

for θ′ since none of the t ′i contains ẋ (because t did not con-

tain ẋ). Without loss of generality, σ ′ is an mgu.

We must prove that G(θ′) has no switching cycle. Suppose
C ′ were such. We consider three cases according to whether

there are zero, one or two (or more) leaps in C ′ which are

not in G(θ). Let r and r be the root vertices of A and A, re-

spectively, and assume that Ȧ has the same vertices as A. We

assume G(θ) and G(θ′) have the same vertices, except for the

necessary difference around the tensors of the encodings of

the two cuts:

r r

∃x ∀ẋ

⊗

in G(θ)

r r

⊗

∃x

in G(θ′)

For technical convenience assume the vertex of ∃x is the same

in each case.

Case (0): every leap of C ′ is in G(θ). Define a switching

cycle in G(θ) from C ′ by, if necessary, re-routing a traversal of

the tensor of the encoding of A A to the tensor of the encoding

of ∀ẋȦ ∃xA.

Case (1): C ′ contains a single leap ∃zi ∀y which does not

occur in G(θ). (The leap must be from an ∃zi since both σ and

σ ′ assign x 7→t.) This is depicted below-left, where the dashed

line represents one or more edges in C ′.

∃zi ∀y ∃zi ∀y ∃x

⊗
∀ẋ

The leap ∃zi ∀y came from a precedence zy y present in

θ′ but not in θ. Such an additional precedence can arise only

from the construction of t ′i by substituting t for ẋ in ti, hence

y must be in t, so x y y is a precedence of θ (since x 7→t

is in σ), with a corresponding leap ∃x ∀y in G(θ). Since

ti contains ẋ, there is a precedence xi y ẋ , hence a leap

∃zi ∀ẋ in G(θ). Thus we can construct a switching cycle in

G(θ) as above-right.

Case (2+): there are two or more leaps in C ′ ⊆ G(θ′) not

present in G(θ), say (without loss of generality) ∃z1 ∀y1

and ∃z2 ∀y2. Either (a) the leaps are in the same direction

around C ′, as shown below-left, or (b) they are in opposite

directions, as shown below-right.

∃z1 ∀y1 ∃z2 ∀y2 ∃z1 ∀y1 ∀y2 ∃z2

Reasoning for each ∃zi and ∀yi as in case (1) for ∃zi and ∀y,

we have leaps ∃x ∀yi and ∃zi ∀x. Thus, in G(θ), if (a),

we can construct the switching cycle below-left, and if (b), the

switching cycle below-right.

∀y1 ∃z2

∃x ∀ẋ

⊗

∀y1 ∀y2

∃x

�

Proof of Theorem 12. Each of the three reductions preserves

the difference between the number of links and the number of

⊗s and cuts, thus (see e.g. [20, §4.7.1]) to confirm a switch-

ing is a tree we need only check that it is acyclic. Acyclicity

of all switchings is equivalent [20, §4.7.2] to there being no

switching cycle in the graph of the linking.

Atomic case: an atomic cut reduction takes θ on Γ,Pt Pt

to θ′ on Γ . Let σ be mgu for θ, which by definition equalizes

the term sequences s and t (due to the left link in the redex)

and t and u (due to the right link). By transitivity σ equalizes

s and u, thus the restriction σ ′ of σ to existential variables in

θ′ is an mgu for θ′. A switching cycle C ′ of G(θ′) induces a

corresponding switching cycle C of G(θ): since σ ′ is a restric-

tion of σ, every leap in C ′ determines a corresponding leap in
C ; if C ′ passes through the new link Ps Pu, in C go instead

between Ps and Pu via the cut Pt Pt (i.e., via the ⊗ of its

encoding ∃x(Pt⊗Pt)).
Multiplicative case: a multiplicative cut reduction takes θ

on Γ , A`B A⊗B to θ′ on Γ , A A, B B . There is no change

in mgu, precedences or leaps, so the reasoning of the usual

multiplicative case [11] goes through directly.

Quantifier case: Lemma 13. �

Theorem 14 (Strong normalization). Every sequence of cut re-

ductions terminates.

Proof. Each reduction decreases the size of the cut sequent. �



Unification nets: canonical proof net quantifiers LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Write (θ,∆)
c
→ (θ ′,∆′) if the unification net θ on ∆ yields θ ′

on ∆′ by reducing the cut whose cut edge is c.

Lemma 15 (Diamond). If (θ1,∆1)
c1← (θ,∆)

c2→ (θ2,∆2) for

distinct cut edges c1 and c2, then there exists a unique (θ ′,∆′)

such that (θ1,∆1)
c2→ (θ ′,∆′)

c1← (θ2,∆2).

Proof. A routine case analysis, relying on the fact that cut re-

duction is local and cuts are pairwise disjoint. �

Theorem 16 (Confluence). Cut reduction is confluent.

Proof. Theorem 14 (Strong normalization) and Lemma 15. �

Theorem 17 (Linear time cut elimination). Eliminating all

cuts from a unification net on ∆ is linear time in the size of ∆.

Proof. Every cut reduction is local, decreasing the size of the

cut sequent, and cuts are pairwise disjoint. �

5.2 Surjectivity Theorem with cut

Corresponding to the existentially closed tensor encoding, we

extend the cut rule by keeping the cut formulas in the conclu-

sion and allowing a substitution σ of the cut formulas A and

A in the hypotheses:

Γ, Aσ Aσ, ∆
cut

Γ,A A, ∆

Here σ is any substitution of terms for free variables in A and

A. Define MLL1⊔ as the extension of MLL1 with this rule. Two

examples are below:

Pfx,Pfx

Pfx,Pfx
∃

Pfx,∃zPz
cut

Pfx,Pfx Pfx,∃zPz

Pfx,Pfx

Pfx,Pfx
∃

Pfx,∃zPz
cut

Pfx,Py Py,∃zPz

In the left example σ is trivial, so that Aσ = A, and in the

right example σ = [y 7→fx ].

Theorem 18. The translation from MLL1⊔ proofs to linkings is

a surjection onto unification nets.

Proof. Follows from Theorem 2 via cut-free encoding. �

6 Factorization through Girard nets and
unification calculus

We factorize the surjection ⌊−⌋ from cut-free MLL1 proofs

onto cut-free unification nets defined in §3.1 in two different

ways: the two outer paths of the commuting square in Fig. 5.

For technical convenience, throughout this section we assume

every sequent is clean.

6.1 Factorization through cut-free Girard nets

Define the translation of a cut-free Girard net on Γ to a linking

on Γ in the same manner as the translation of a cut-free proof:

track the axiom links down to links on the concluding sequent.

Lemma 19. The translation of a cut-free Girard net is a cut-free

unification net.

The proof is a routine induction, by using the explicit wit-

nesses in the Girard net to ensure unifiability.

Theorem 20. The translation from cut-free Girard nets to cut-

free unification nets is surjective.

Proof. Let θ be a cut-free unification net on Γ with mgu σ. We

unfold θ into a cut-free Girard net G by working upwards from

each root of Γ .

We first unfold each formula A in Γ to a fragment of G with

concluding formula A. Define the unfolding Â of a formula A

as the following tree, alternating between Girard-links and for-

mulas, whose root, called the conclusion of Â, is the formula A.

If A is an atom, then Â = A. If A = B⊗C, define Â as B̂ Ĉ
B⊗C ,

the disjoint union of B̂ and Ĉ and a ⊗ -link taking the conclu-

sions B and C of B̂ and Ĉ as hypotheses and A = B⊗C as its

conclusion. If A = B`C define Â analogously, with ` in place

of ⊗ . If A = ∀xB, define Â as B̂
∀xB , the tree B̂ with a ∀-link

taking the conclusion B of B̂ as its hypothesis and A = ∀xB as

its conclusion. If A = ∃xB, define Â as
B̂[x 7→t]
∃xB , where t is the

the term assigned to x by the mgu σ and B̂[x 7→t] is the result

of substituting t for x in every formula in B̂. Thus Â is the

tree B̂[x 7→t] and an ∃-link whose hypothesis is the conclusion

B[x 7→t] of B̂[x 7→t] and whose conclusion is A = ∃xB. Define

the unfolding Γ̂ of Γ as the disjoint union of the unfoldings of

its formulas. By induction, the atoms in Γ̂ are in bijection with

the leaves of Γ . Define G from Γ̂ as follows: for each link {l, l′}

in θ between a pair of leaves in Γ , add a Girard axiom-link

l̂ l̂′ between the corresponding pair of atoms in Γ̂ .

We must show that G is a cut-free Girard net. First we

prove that the atoms of each axiom-link in G are strictly dual.

Each axiom-link L̂ in G is derived from a link L in θ between

leaves P(t1, . . . , tn) and P(t ′1, . . . , t ′n). Since the mgu σ equal-

izes corresponding term sequences, we have tiσ = t ′iσ. The

same substitutions of existential variables applied in the un-

folding of formulas in Γ̂ , so the axiom-link L̂ in G is between

P(t1σ, . . . , tnσ) and P(t ′1σ, . . . , t ′nσ), strictly dual.

We must show that G has no switching cycle. W.l.o.g. ev-

ery jump from a formula A with an eigenvariable x to the

conclusion ∀xB of the corresponding ∀x-link can move to an

edge from either (a) the hypothesis B of the ∀x-link, or (b)

the hypothesis C of a ∃-link: if A is above ∀xB, choose (a),

following the path between A and B; otherwise A must have

a ∃-link below it which prevents the eigenvariable x from be-

ing free in the conclusion, and we choose (b), following the

path between A and the hypothesis C of the ∃-link. Thus G-

switchings and θ-switchings correspond.

Since Γ is assumed clean, G satisfies the requisite closure

condition (by suitably renaming free variables to constants).

By induction, since the translation from cut-free Girard nets

to cut-free unification nets defined in Lemma 19 uses the con-

verse steps to those above (removing rather than adding wit-

nesses), G translates to θ. �

Theorem 21. The surjection from cut-free MLL1 proofs to cut-

free unification nets factorizes through cut-free Girard nets.

Proof. The surjection from cut-free MLL1 proofs to cut-free

Girard nets, followed by that from cut-free Girard nets to cut-

free unification nets, is the translation ⌊−⌋ from cut-free MLL1
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proofs to unification nets defined in §3.1 (the diagonal of

Fig. 5) because each is defined by the same tracking of dual

predicate symbols down from axioms. �

6.2 Factorization through cut-free unification calculus

Let Π be a proof of Γ . Define its skeleton as Πι for ι the identity

on the non-vacuous existential variables of Π. (Re-witnessing

Πσ was defined in §4.) Define a unification proof of Γ as a

skeleton of a proof of Γ , and define unification calculus as the

MLL1 proof system comprising unification proofs.6 In general,

a skeleton will not be a well-formed sequent calculus proof

since its axioms can be ill-formed, with non-dual predicates

Pt1 . . . tn and Pu1 . . .u1.

Theorem 22. The correctness of a unification proof can be ver-

ified in polynomial time.

Proof. Check the unifiability of the (ill-formed) axioms of the

unification proof U. If they are not unifiable, U is invalid. Oth-

erwise, let σ be an mgu, and verify that Uσ is a well-defined

MLL1 proof. Naively this is exponential time (since construct-

ing the mgu is exponential time and space, in general). How-

ever, we can use the same technique as in the quadratic-time

complexity proof (Theorem 5) to build a sequential mgu, then

lazily confirm that every rule of Uσ would be a well-formed

rule were we to actually carry out the substitution σ at each

rule (verifying that the predicates in every link become dual,

and the ∀ rule side condition on free variables holds). �

Theorem 23. The surjection from cut-free MLL1 to cut-free uni-

fication nets factorizes through cut-free unification calculus.

Proof. Instead of extracting links directly from a proof Π, first

take the skeleton Πι (dropping explicit witnesses) then extract

the links from Πι. Since the (ill-formed) axiom rules of Πι are

those of Π, only with some terms substituted, we extract the

same links as going directly from Π. �

A Girard’s cut elimination is exp-time/space

Let G be the Girard net

Px

∀xPx

Px Pfxx

Px⊗Pfxx

∃x(Px⊗Pfxx)

Pfxx

∃xPx

for f a binary function symbol and Gn the result of cutting n

copies of G against one another using n−1 cuts, each between

copies of ∀xPx and ∃x Px, renaming to ensure unique eigen-

variables. The cut-free normal form of Gn has a term with 2n

occurrences of x, so is exponentially larger than Gn.

B Exponentially large cut-free Girard nets

Here is a minimal cut-free Girard net on

∃v ∃y P(v, v◦v,y,y◦y),∃x ∃z P(c, x, x◦x, z)

for P a 4-ary predicate, ◦ an infix binary function symbol, and

abbreviations c2 = c◦c, c4 = c2◦c2, c8 = c4◦c4:

6One could investigate cut elimination on unification calculus by mimicking
sequent calculus cut elimination without the explicit witnesses. Since witnesses
are absent, such a cut elimination is likely to be polynomial-time.

P
(
c, c2, c4, c8

)
∃

∃y P(c, c2,y,y◦y)
∃

∃v ∃y P(v, v◦v,y,y◦y)

P
(
c, c2, c4, c8

)
∃

∃z P
(
c, c2, c4, z

)
∃

∃x ∃z P(c, x, x◦x, z)

Its axiom link is exponentially larger than the sequent: in the

general case with P n-ary, the axiom link has 2(2n−1) copies

of c. This example has no connective, so also shows that Gi-

rard’s first-order additive nets [11] with explicit existential

witnesses grow exponentially; indeed, it shows that quantifier-

only sequent proofs and Girard nets do. The corresponding

cut-free unification net grows only linearly with n, here n = 4:

∃v ∃y P(v, v◦v,y,y◦y) ∃x ∃z P(c, x, x◦x, z)
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