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Abstract. For a given set of queries (which are expressions

in some query language) Q = {Q1, Q2, . . .Qk } and for an-

other query Q0 we say that Q determines Q0 if – informally

speaking – for every database D, the information contained

in the views Q(D) is sufficient to compute Q0(D).
Query Determinacy Problem is the problem of deciding,

for givenQ andQ0, whetherQ determinesQ0. Many versions

of this problem, for different query languages, were studied

in database theory. In this paper we solve a problem stated

in [CGLV02] and show that Query Determinacy Problem is

undecidable for the Regular Path Queries – the paradigmatic

query language of graph databases.

1 Introduction
Query determinacy problem (QDP). Imagine there is a

databaseDwe have no direct access to, and there are views of

thisD available to us, defined by some set of queriesQ = {Q1,

Q2, . . .Qk } (where the language of queries from Q is a pa-

rameter of the problem). And we are given another queryQ0.

Will we be able, regardless of D, to compute Q0(D) only us-

ing the views Q1(D),Q2(D), . . .Qk (D)? The answer depends
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on whether the queries in Q determine1 query Q0. Stating it

more precisely, the Query Determinacy Problem is2:

The instance of the problem is a set of queries Q =

{Q1, . . .Qk }, and another query Q0.

The question is whether Q determinesQ0, which means that

for (♣) each two structures (database instances) D1 and D2

such that Q(D1) = Q(D2) for each Q ∈ Q, it also holds that

Q0(D1) = Q0(D2).

QDP is seen as a very natural problem in the area of database

theory, with a 30 years long history as a research subject –

see for example [H01], or Nadime Francis thesis [F15] for a

survey. In [DPT99] QDP naturally appears in the context of

query evaluation plans optimization. More recent examples

are [FG12], where the context for QDP is the view update

problem or [FKN13], where the context is description logics.

In the above examples the goal is optimization/efficiency

so we “prefer” Q0 to be determined by Q. Another context,
where it is “preferred” that Q0 is not determined, is privacy:

we would like to release some views of the database, but in

a way that does not allow certain query to be computed.

The oldest paper we were able to trace, where QDP is

studied, is [LY85]. Over the next 30 years many decidable

and undecidable cases have been identified. Let us just cite

some more recent results: [NSV10] shows that the problem

is decidable for conjunctive queries if each query from Q has

only one free variable; in [A11] decidability is shown for Q
and Q0 being ”conjunctive path queries”. This is generalized

in [P11] to the the scenario where Q are conjunctive path

queries but Q0 is any conjunctive query.

The paper [NSV06] was the first to present a negative

result. QDP was shown there to be undecidable if unions

of conjunctive queries are allowed in Q and Q0. In [NSV10]

it was proved that determinacy is also undecidable if the

elements of Q are conjunctive queries and Q0 is a first or-

der sentence (or the other way round). Another negative

result is presented in [FGZ12]: determinacy is shown there

to be undecidable if Q is a DATALOG program and Q0 is a

conjunctive query. Finally, closing the classification for the

traditional relational model, it was shown in [GM15] and

[GM16] that QDP is undecidable forQ0 and the queries in Q
1
Or, using the language of [CGLV00], [CGLV00a] [CGLV02] and [CGLV02a],

whether Q are lossless with respect to Q0.

2
More precisely, the problem comes in two different flavors, “finite” and

“unrestricted”, depending on whether the (♣) “each” ranges over finite struc-
tures only, or all structures, including infinite.
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being conjunctive queries.

QDP for Regular Path Queries. While the determinacy

problem is nowwell understood for the pure relationalmodel
3
,

it has been, for a long time, open for the graph databases

scenario. In this scenario, the underlying data is modeled as

graphs, in which nodes are objects, and edge labels define

relationships between those objects. Querying such graph-

structured data has received much attention recently, due to

numerous applications, especially for the social networks.

There are many more or less expressive query languages

for such databases (see [B13]). The core of all of them (the

SQL of graph databases) is RPQ – the language of Regular

Path Queries. RPQ queries ask for all pairs of objects in the

database that are connected by a specified path, where the

natural choice of the path specification language, as [V16]

elegantly explains, is the language of regular expressions.

This idea is at least 30 years old (see for example [CMW87,

CM90]) and considerable effort was put to create tools for

reasoning about regular path queries, analogous to the ones

we have in the traditional relational databases context. For

example [AV97] and [BFW98] investigate decidability of the

implication problem for path constraints, which are integrity

constraints used for RPQ optimization. Also, containment

of conjunctions of regular path queries has been addressed

and proved decidable in [CDGL98] and [FLS98], and then, in

more general setting, in [JV09] and [RRV15].

It is natural that also query determinacy problem has been

stated, and studied, for Regular Path Queries model. This

line of research was initiated in [CGLV00], [CGLV00a]

[CGLV02] and [CGLV02a], and it was [CGLV02] where the

central problem of this area – decidability of QDP for RPQ

was first stated (called there “losslessness for exact seman-

tics”).

A method for computing a rewriting of a regular path

query in terms of other regular expressions (if such rewrit-

ing exists)
4
is shown in [CGLV02]. And it is proven that

it is 2ExpSpace-complete to decide whether there exists a

rewriting of the query that can be expressed as a regular

path query. Then a notion of monotone determinacy is de-

fined, meaning that not only Q0(D) is a function5 of Q(D)
but this function is also monotone – the greater Q(D) (in
the inclusion ordering) the greater Q0(D), and it is shown

that monotone determinacy is decidable in ExpSpace. This

proves that monotone determinacy, which is – like rewritabil-

ity – also a notion related to determinacy but stronger, does

not coincide with the existence of a regular path rewriting,

which is 2ExpSpace-complete (while of course the existence

of rewriting implies monotonicity). This proof is indirect

3
Apparently, when talking about the relational model, there may still be

some work to do concerning QDP in the context of bag semantics, see

[GB14].

4
Existence of rewriting is a related property to determinacy, but stronger.

5D is an argument here. Saying that “Q0(D) is a function of Q(D)” is equiv-
alent to saying that Q determines Q0.

and it is interesting that a specific example separating mono-

tone determinacy and rewritability has only been shown

in [FSS14]. However, [CGLV02a] also provides an example

where a regular path view determines a regular path query

in a non-monotone way showing that, in this setting, deter-

minacy does not coincide with monotone determinacy.

In [CGLV02], apart from the standard QDP, the authors

consider the so called “losslessness under sound semantics”.

They show that computing “certain answers” (under this

semantics) of a regular path query with respect to a regular

path view reduces to the satisfiability of (the negation of)

uniform CSP (constraint satisfaction problem). Building on

this connection and on the known links between CSP and

Datalog [FV98], they show how to compute approximations

of this CSP in Datalog. This is studied in more detail in

[FSS14] and a surprising result is proved, that when a regular

path view determines a regular path query in a monotone

way, then one of the approximations is exact.

But, despite the considerable body of work in the area

around the main problem, little was so far known about the

problem of decidability of QDP for RPQ itself. On the positive

side, the previously mentioned result of Afrati [A11] can be

seen as a special case, where each of the regular languages

(defining the queries) only consists of one word (path queries,

considered in [A11] constitute in fact the intersection of

CQ and RPQ). Another positive result is presented in [F17],

where “approximate determinacy” is shown to be decidable if

the query Q0 is (defined by) a single-word regular language,

and the languages defining the queries in Q0 and Q are over

a single-letter alphabet. The failure to solve the problem

completely even for this very simple variant shows how

complicated things very quickly become. But it is the analysis

which is so obviously hard (not QDP itself as a computational

problem) and it is not immediately clear how QDP for RPQ

could be used to encode anything within. In consequence,

no lower bounds have been known so far, except of a simple

one from [F15], where undecidability is shown if Q0 can be

context-free rather than just regular.

Our contribution. The main result of this paper is:

Theorem 1.1. QDP-RPQ, the Query Determinacy Problem
for Regular Path Queries, is undecidable.

To be more precise, we show that the problem, both in

the “finite” and the “unrestricted” version, is co-r.e.-hard,

which means that if we take, as an input to our encoding,

a Turing machine which accepts (the empty input) then, as

the result of the encoding we get a negative instance of QDP

(“no determinacy”), and if we begin from a non-accepting

machine then the resulting instance is positive. Notice that

this gives the precise bound on the complexity of the “finite”

version of QDP for RPQ – it is easy to see that finite non-

determinacy is recursively enumerable. But there is no such

upper bound for the “unrestricted” case, and we are not sure
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what the precise complexity can be. We believe that the

problem may be harder than co-r.e.-complete.

Regarding the technique we use: clearly we were tempted

to save as much as possible from the techniques of [GM15]

and [GM16]. But hardly anything survived in the new situa-

tion (one exception is that the idea of the green-red Chase

from [G15] evolved into the notion of Escape here). The two

important constructions in [GM15] and [GM16] used queries

with high number of free variables (this is where states of

the Turing machine are encoded, in the form of spiders with

fancy colorings) and queries which can be homomorphically,

non-trivially, mapped into themselves – this is how the orig-

inal small structure (“green spider” in [GM15] and [GM16]

or (green) D0 in this paper) could grow. None of the mecha-

nisms is available in the current context, so in principle the

whole proof was built from scratch.

Remark. [B13] makes a distinction between “simple paths

semantics” for Recursive Path Queries and “all paths seman-

tics”. As all the graphs we produce in this paper are acyclic

(DAGs), all our results hold for both semantics.

Organization of the paper The rest of this paper is devoted
to the proof of Theorem 1.1. In short Section 2 we introduce

the (very few) notions and some notations we need to use.

In Section 3 we first follow the ideas from [GM15] defining

red-green signature. Then we define the game of Escape and

state a crucial lemma (Lemma 3.3), asserting that this game

really fully characterizes determinacy for Recursive Path

Queries. In Section 3.3 we prove this Lemma.

At this point we will have all the tools ready for proving

Theorem 1.1. In Section 4 we explain what is the undecidable

problem we use for our reduction, and present the reduction.

In Sections 5 – 10 we use the characterization provided by

Lemma 3.3 to prove correctness of this reduction.

2 Preliminaries
Structures. When we say “structure" we always mean a

directed graph with edges labeled with letters from some

signature/alphabet Σ. In other words every structure we

consider is relational structure D over some signature Σ
consisting of binary predicate names. Letters D,M, G and H
are used to denote structures. Ω is used for a set of structures.

For two structures G and G′ over Σ, with sets of vertices

V and V ′, a function h : V → V ′ is (as always) called a

homomorphism if for each two vertices ⟨x ,y⟩ connected by

an edge with label E ∈ Σ in G there is an edge connecting

⟨h(x),h(y)⟩, with the same label E, in G′.

Chains and chain queries. Given a set of binary predicate

names Σ and a word w = a1a2 . . . an over Σ∗ we define a

chain queryw(x0,xn) as a conjunctive query:
∃x1, ...,xn−1

a1(x0,x1) ∧ a2(x1,x2) ∧ . . . an(xn−1,xn).
We use the notation w[x0,xn] to denote the canonical

structure (“frozen body”) of queryw(x0,xn) – the structure

consisting of elements x0,x1, . . . xn and atoms a1(x0,x1),
a2(x1,x2), . . . an(xn−1,xn).
Regular path queries. For a regular languageQ over Σ we

define a query, which is also denoted by Q , as:

Q(x ,y) = ∃w ∈Qw(x ,y)
In other words such a query Q looks for a path in the

given graph labeled with any word from Q and returns the

endpoints of that path.

We use lettersQ and L to denote regular languages and Q
andL to denote sets of regular languages. The notationQ(D)
has the natural meaning of: Q(D) = {⟨x ,y⟩ |D |= Q(x ,y)}.

3 Red-Green Structures and Escape
3.1 Red-green signature and Regular Constraints
For a given alphabet (signature) Σ let ΣG and ΣR be two

copies of Σ one written with "green ink" and another with

"red ink". Let Σ̄ = ΣG ∪ ΣR .
For any word w from Σ∗ let G(w) and R(w) be copies of

this word written in green and red respectively. For a regular

language L over Σ let G(L) and R(L) be copies of this same

regular language but over ΣG and ΣR respectively. Also for

any structure D over Σ let G(D) and R(D) be copies of this
same structure D but with labels of edges recolored to green

and red respectively.

For a pair of regular languages L over Σ and L′ over Σ′ we
define Regular Constraint L→ L′ as a formula

∀x,yL(x ,y) ⇒ L′(x ,y).
We use the notation D |= r to say that an RC r is satisfied

in D. Also, we write D |= T for a set T of RCs when for each

t ∈ T it is true that D |= t .
For a graph D and an RC t = L → L′ let rq(t ,D) (as

“requests”) be the set of all triples ⟨x ,y,L → L′⟩ such that

D |= L(x ,y) and D ̸ |= L′(x ,y). For a set T of RCs by rq(T ,D)
we mean the union of all sets rq(t ,D) such that t ∈ T . Re-
quests are there in order to be satisfied:

function Add

arguments:
• Structure D
• RC L→ L′

• pair ⟨x ,y⟩ such that ⟨x ,y,L→ L′⟩ ∈ rq(L→ L′,D)
body:

1: Take a word w = a0a1 . . . an from L′ and create a

new path w[x ,y] = a0(x ,x1),a1(x1,x2), . . . ,an(xn−1,y)
where x1,x2, . . . ,xn−1 are new vertices

2: return D ∪w[x ,y].

Notice that the result Add(D,L→ L′, ⟨x ,y⟩) depends on
the choice ofw ∈ L′. So the procedure is non-deterministic.

For a regular language L we define L→ = G(L) → R(L)
and L← = R(L) → G(L). All regular constraints we are going
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to consider are either L→ or L← for some regular language

L.
For a regular language L we define L↔ = {L→,L←} and

for a set L of regular languages we define:

L↔ =
⋃
L∈L

L↔.

Requests of the form ⟨x ,y, t⟩ for some RC t ∈ L→ (t ∈ L←)
are generated by G(L) (resp. by R(L)). Requests generated by

G(L) or by R(L)) are said to be generated by L.
The following lemma is straightforward to prove and char-

acterizes both determinacy and finite dterminacy in terms

of regular constraints:

Lemma 3.1. A set Q of regular path queries over Σ does not
determine (does not finitely determine) regular path query Q0,
over the same alphabet, if and only if there exists a structure
(resp. a finite structure)M and a pair of vertices a,b ∈ M such
thatM |= Q↔ andM |= (G(Q0))(a,b) butM ̸ |= (R(Q0))(a,b).

Any structureM, as above, will be called counterexample.

3.2 The game of Escape
An instance Escape(Q0, Q) of a solitary game called Escape,
played by a player called Fugitive, is:
• a regular language Q0 of forbidden chains over Σ.
• a set of regular languages Q over Σ,

The rules of the game are:

• First Fugitive picks the initial position of the game as

D0 = (G(w))[a,b] for somew ∈ Q0.

• Suppose Di is the position of the game after Fugitive

move i and Si = rq(Q↔,Di ). Then, in move i + 1,

Fugitive can move to any position of the form:

Di+1 =
⋃

⟨x,y,t ⟩∈Si

Add(Di , t , ⟨x ,y⟩)

• Fugitive loses when for a final position H =
∞⋃
i=0

Di it is

true that H |= (R(Q0))(a,b).
In other words, in order to get Di+1, Fugitive needs to

create, simultanously for each request in Di , a new path

that satisfies this request, and add all these paths, in a free

way, to Di . This is of course very much non-deterministic,

so position Di+1 depends on the Fugitive’s choice
6
.

Let us note that Di+1 = Di when rq(Q↔,Di ) is empty.

It also would not hurt if, before proceeding with the read-

ing, the Reader wanted to solve:

Exercise 3.2. Notice that if i is even (odd) then all the requests
from Si are generated by G(L) (resp. R(L)), for some L ∈ Q
which means that all the edges added by Fugitive in his move
i + 1 are red (resp. green).
6
Like in any reasonable game, the position after each move depends here on

the position before this move, on the rules of the game, and on the decisions

of the player who makes this move.

Let step be ternary relation such that ⟨D,D′,L⟩ ∈ step
whenD′ can be the result of one move of Fugitive, in position

D, in the game of Escape with set of regular languages L.
Obviously, different strategies of Fugitive may lead to dif-

ferent final positions. We will denote set of all final positions

reachable from a starting structure D0, for a set of regular

languages L, as Ω(L↔,D0).
Now we can state the crucial Lemma, that connects the

game of Escape and (the unrestricted version of) QDP-RPQ:

Lemma3.3. For an instance of QDP-RPQ consisting of regular
language Q0 over Σ and a set of regular languages Q over Σ
the two conditions are equivalent:
(i) Q does not determine Q0

(ii) Fugitive has a winning strategy in Escape(Q0, Q).

3.3 Universality of Escape. Proof of Lemma 3.3
First let us leave it as an easy exercise for the Reader to prove:

Lemma 3.4. For each set of RCs T , for each initial position
D0 and for each H ∈ Ω(T ,D0) it holds that H |= T .

With the above Lemma, the proof of Lemma 3.3 (ii)⇒(i) is

straightforward: the winning final position of Fugitive can

serve as the counterexampleM from Lemma 3.1.

The opposite direction, (i)⇒(ii) is not completely obvious.

Notice that it could a priori happen that, while some coun-

terexample exists, it is some terribly complicated structure

which cannot be constructed as a final position in a play of

the game of Escape. We should mention here that all the no-

tions of Section 3 have their counterparts in [G15]. Instead of

Regular Constrains however, in [G15] one finds conventional

Tuple Generating Dependencies
7
, and instead of the game

of Escape one finds the conventional notion of Chase. But,

while in [G15] the counterpart of Lemma 3.3 follows from

the well-known fact that Chase is a universal structure, here

we do not have such convenient tool available off-the-shelf,

and we need to built our own.

Lemma 3.5. Suppose structures D0 and M over Σ̄ are such
that there exists a homomorphism h0 : D0 → M. Let T be a
set of RCs and supposeM |= T . Then from some final position
H ∈ Ω(T ,D0) there exists a homomorphism h : H→ M such
that h0 ⊂ h.

Proof. First we need to prove:

Lemma 3.6. For structures Di ,M over Σ̄, a homomorphism
hi : Di → M and set of RCs T if M |= T then there exists
some structureDi+1 such that step(Di ,Di+1,T ) and there exists
homomorphism hi+1 : Di+1 → M such that hi ⊆ hi+1.

Proof. For r = ⟨x ,y,X → Y ⟩ in Ri = rq(T ,Di ) let x ′ = hi (x)
and y ′ = hi (y). We know thatM |= T soM |= Y (x ′,y ′) and
thus for some a1a2 . . . an ∈ Y there is path p ′ = a1(x ′,x ′1),
7
Notice that if all each of the languages in Q consists of a single word, then

RCs degenerate into TGDs and Escape degenerates into Chase.
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Figure 1. Our Grid.

a2(x ′1,x ′2) . . . an(x ′n−1
,y ′) inM. Let Dri be a structure created

by adding to Di new path p = a1(x ,x1),
a2(x1,x2), . . . an(xn−1,y) (with xi being new vertices). Let

hri = hi ∪ {⟨xi ,x ′i ⟩|i ∈ [n − 1]}. Now let D′ =
⋃

r ∈Ri D
r
i and

h′i =
⋃

r ∈Ri h
r
i . It is easy to see that D′i and h

′
i are requested

Di+1 and hi+1. □

To end the proof of Lemma 3.5 notice that ifD0,D1, . . . are
as constructed by Lemma 3.6 then

⋃∞
i=0
Di is equal to some

final position from Ω(T ,D0) and that

⋃∞
i=0

hi is required
homomorphism h. □

Now we will prove the (i)⇒(ii) part of Lemma 3.3.

Let M be a counterexample from Lemma 3.1, a,b and

w ∈ Q0 such that M |= (G(w))(a,b) and M ̸ |= (R(Q0))(a,b).
Applying Lemma 3.5 to D0 = G(w[a,b]) and toM we know

that there exists a final position H such that there is homo-

morphism from H to M. It is clear that H ̸ |= (R(Q0))(a,b)
as we know that M ̸ |= (R(Q0))(a,b). This shows that H is

indeed a winning final position.

This concludes the proof of the Lemma 3.3.

4 The Reduction
Definition 4.1 (OurGridTilingProblem (OGTP)). Given

a set of shades S (black ∈ S) and a list F ⊆ {V ,H } × S ×
{V ,H } ×S of forbidden pairs ⟨a,b⟩ where a,b ∈ {V ,H } ×S
determine whether there exists a square grid G (a directed

graph, as in Figure 1. but of any size) such that:

(a1) each horizontal edge of G has a label from {H } × S;
(a2) each vertical edge of G has a label from {V } × S;
(b1) bottom-left vertical edge has the label (V , black);
(b2) upper-right horizontal edge has the label (H , black);
(b3) G contains no forbidden paths of length 2 labeled by

(a,b) ∈ F.

By standard argument one can show that:

Lemma 4.2. Our Grid Tiling Problem is undecidable.

Now we present a reduction from OGTP to the QDP-RPQ.

Suppose an instance ⟨S,F⟩ of OGTP is given, we will con-

struct an instance ⟨Q,Q0⟩ of QDP for RPQ.

The edge alphabet (signature) will be Σ = {α , β ,ω} ∪ Σ0,

where Σ0 = {A,B} × {H ,V } × {W ,C} × S. We think of H
andV as directions –Horizontal and Vertical.W andC stand

forWarm and Cold. It is worth reminding at this point that

relations from Σ̄ will – apart from a value from {A,B}, shade,
direction and temperature – have also color, red or green.

Notation 4.3. We use the following notation for elements of
Σ0: ( prs q) := (p,q, r , s) ∈ Σ0

Symbol • and empty space are to be understood as wildcards.
This means, for example, that notation ( Aa H ) denotes the set
{( AW

a H ), ( AC
a H )} and ( •Wa H ) denotes {( AW

a H ), ( BWa H )}.

Now we define Q and Q0. Let Qдood be a set of 8 languages:

1. ω
2. α + β
3. (BWH )(AW

V ) + (BCV )(AC
H )

4. (AC
H )(BCV ) + (AW

V )(BWH )
5. (BCV ) + (BWV )
6. (BWH ) + (BCH )
7. (AW

V ) + (AC
V )

8. (AC
H ) + (AW

H )
Let Qbad be a set of languages:

1. β
(⊕

s ∈S\{black }( AW
s V )

)
Σ⋆

0
ω

2. βΣ⋆
0

(⊕
s ∈S\{black }( BWs H )

)
ω

3. βΣ⋆
0
( •Wa d )( •

W
b d ′ )Σ

⋆
0
ω for each forbidden ⟨(d,a), (d ′,b)⟩ ∈

F.
Finally, let Quдly be a set of languages:

1. αΣ⋆
0
(•W )Σ⋆

0
ω

2. βΣ⋆
0
(•C )Σ⋆

0
ω

We write Q i
дood ,Q

i
bad ,Q

i
uдly to denote the i-th language

of the corresponding group. Now we can define

Q := Qдood ∪ Qbad ∪ Quдly
The sense of the construction will (hopefully) become

clear later. But already at this point the reader can notice

that there is a fundamental difference between languages

from Qдood and languages from Qbad ∪ Quдly . Languages
from Qдood are all finite. The regular constraints (Q3

дood )
↔

and (Q4

дood )
↔

are of the form “for vertices x ,y, z and edges

e1(x ,y) and e2(y, z) of some color in the current structure,

create a newy ′ and add edges e ′
1
(x ,y ′) and e ′

2
(y ′, z) of the op-

posite color” where the pair ⟨e1, e2⟩ comes from some small

finite set of possible choices. Satisfying requests generated by

the remaining languages in Qдood do not even allow/require

adding a new vertex y ′ – just one new edge is added.
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On the other hand, each language inQbad∪Quдly contains
infinitely many words – all words with some bad or ugly

pattern. For L ∈ Qbad ∪ Quдly requests generated by L are

of the form “if you have any path in the current structure,

green or red, between some verticies x and y, containing
such pattern, then add any new path from x to y, of the
opposite color, also containing the same pattern”.

A small difference between languages in Qbad and in

Quдly is that languages in Quдly do not depend on the con-

straints from the instance of Our Grid Tiling Problem while

ones in Qbad encode this instance. One important difference

between languages in Qдood ∪ Quдly and Qbad is that only

the last do mention shades.

Finally, define Qstar t := α[(AC
H )(BCV )]+ω, and let:

Q0 := Qstar t +
⊕

L∈Quдly

L +
⊕

L∈Qbad

L

5 The structure of the proof of correctness
To end the proof of Theorem 1.1 we need to prove:

Lemma 5.1. The following three conditions are equivalent:
(i) An instance ⟨S,F⟩ of OGTP has no solution.
(ii) Q determines Q0.
(iii) Q finitely determines Q0.

The (ii)⇒ (iii) implication is obvious
8
.

Next 4 pages will be devoted to the proof of the (i)⇒ (ii)

implication. We will employ Lemma 3.3, showing that if the

instance ⟨S,F⟩ has no solution then Fugitive does not have
a winning strategy in the Escape(Q, Q0). As we remember

from Section 3.2, in such a game Fugitive will first choose,
as the initial position of the game, a structure w[a,b] for
somew ∈ G(Q0). Then, in each step, he will identify all the

requests present in the current structure and satisfy them. He

will win if he will be able to play forever without satisfying

the query (R(Q0))(a,b).
While analyzing the strategy of Fugitive we will use the

words “must not” and “must” as shorthands for “or otherwise

he will quickly lose the game”.

Now our plan is first to notice that in his strategy Fugitive
must obey the following principles:

(I) The structure resulting from his initial move must be

(G(w))[a,b] for somew ∈ Qstar t .

(II) He must never allow any request generated by Qbad ∪
Quдly to form in the current structure. Notice that if no such

words ever occur in the structure then all the requests are

generated by languages from Qдood .
Then we will assume that Fugitive’s play indeed follows

the two principles and we will imagine us watching him

playing, but watching in special glasses that make us in-

sensitive to the shades from S. Notice that, since the only
8
Notice that we are of course not going to prove that determinacy coincides

with finite determinacy. It does not! But for the instances resulting from

our reduction they indeed coincide.

requests Fugitive will satisfy, are from Qдood , we will not

miss anything – as the definitions of languages in Qдood are

themselves shade-insensitive. In Section 9 we will prove that

Fugitive must construct some particular structure, defined

earlier in Section 7 and called Gm , for somem ∈ N. Then,
in a short Section 10 we will take off our glasses and recall

that the edges of Gm actually have shades. Assuming that

the original instance of OGTP has no solution, we will get

that R(Qbad )(a,b) holds in the constructed structure. This

will end the proof of the (i)⇒(ii) direction. For the implica-

tion (¬i)⇒(¬ii) we will notice, again in Section 10 that if

⟨S,F⟩ has a solution, then one of the structures Gm , with
shades duly assigned to edges, forms a counterexampleM
as required by Lemma 3.1. Since this M will be finite, we

will show that if the instance ⟨S,F⟩ of OGTP has a solution,

then Q does not finitely determine Q0 (which is a stronger

statement than just saying that Q does not determine Q0).

6 Principle I : D0

The rules of the game of Escape are such that Fugitive loses
when he builds a path (from a to b) labeled withw ∈ R(Q0).
So – when trying to encode something – one can think of

words in Q0 as of some sort of forbidden patterns. And thus

one can think of Q0 as of a tool detecting that the player is

cheating and not really building a valid computation of the

computing device we encode. Having this in mind the Reader

can imagine why the words from languages from the groups

Qbad and Quдly , which clearly are all about suspiciously

looking patterns, are all in Q0.

But another rule of the game is that at the beginning

Fugitive picks his initial position D0 as a path (from a to b)
labeled with some w ∈ G(Q0), so it would be nice to think

of Q0 as of initial configurations of this computing device.

The fact that the same object is playing the set of forbidden

patterns and, at the same time, the set of initial configurations

is a problem. But this problem is solvable, as we are going to

show in this Section. And having the languages Qbad∪Quдly
also in Q0 is part of the solution.

Assume that H is a final position of a play of the Escape
game that started with D0 = G(w)[a,b] for some w ∈ Q0.

This means, by Lemma 3.4, that H |= Q↔. Recall that H is a

structure over Σ̄, which means that each edge of H is either

red or green.

Observation 6.1. For all x ,y ∈ H ifH |= G(L)(x ,y) for some
L ∈ Quдly ∪ Qbad then H |= R(Q0)(x ,y).
Proof. Notice thatG(L) → R(L) ∈ Q→ soH |= R(L)(x ,y) and
as L ⊆ Q0 it follows that H |= R(Q0)(x ,y). □

Lemma 6.2 (Principle I). Fugitive must choose to start the
Escape game from D0 = G(q)[a,b] for q ∈ Qstar t .

Proof. If q ∈ Q0 \ Qstar t then D0 |= G(L)(a,b) for some

L ∈ Quдly ∪ Qbad and it follows from Observation 6.1. that

Fugitive loses. □
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7 The grid Gm
Definition 7.1. Gm , for m ∈ N, is (see Fig. 2) a directed

graph (V ,E) where
V = {a,b} ∪ {vi, j : i, j ∈ [0,m]} and where the edges

from E are labeled with symbols α or β or ω or one of the

symbols of the form (prq), where – like before – p ∈ {A,B},
q ∈ {H ,V } and r ∈ {W ,C}. Each label has to also be either

red or green (this gives us (3 + 2
3)2 possible labels, but only

12 of them will be used). Notice that there is no s ∈ S here:

the labels we now use are sets of symbols from Σ̄ like in

Notation 4.3. One should imagine that we watch Fugitive’s
play in shade filtering glasses.

The edges of Gm are as follows:

• Vertex v0,0 is a successor of a. Vertex b is a successor

of vm,m . The successors of vi, j are vi+1, j and vi, j+1

(if they exist). Each node is connected to each of its

successors with two edges, one green and one red.

• Each “Cold” edge, labeled with a symbol in (•C ), is
green.

• Each “Warm” edge, labeled with a symbol in (•W ), is
red.

• Each edge ⟨vi, j ,vi+1, j ⟩ is horizontal – its label is from

(•H ).
• Each edge ⟨vi, j ,vi, j+1⟩ is vertical– its label is from

(•V ).
• The label of each edge leaving vi, j , vm,m , with i + j
even, is from (A), the label of each edge leaving vi, j ,
vm,m , with i + j odd, is from (B).
• Edges (a,v0,0) with labelG(α) and (a,v0,0) with label

R(β) are in E.
• Edges (vm,m ,b) with label G(ω) and (vm,m ,b) with
label R(ω) are in E.

8 Principle II
In this section we assume that the Fugitive obeys Principle I
and he selects the initial structureD0 = G(α[(AC

H )(BCV )]mω)[a,b]
for somem.

Lemma 8.1. Suppose H is the final position of a play of the
Escape game which started from D0.

1. Every edge e ∈ H labeled withG(α),R(α),G(β) or R(β)
begins in a.

2. Every edge e ∈ H labeled with G(ω) or R(ω) ends in b.

Proof. (1) By induction we show that the claim is true in

every Di . It is clearly true in D0. For the induction step use

the fact that for every language L ∈ Q and for each word

w ∈ L ifw contains α or β then:

– this α or β is the first letter ofw and

– all words in L begin from α or β .
(2) Analogous. □

9
Please use a color printer if you can.

Lemma 8.2 (Principle II). Fugitive must never allow any
request generated by Qbad and Quдly to form in the current
structure.

Proof. Let D be the current structure and L ∈ Qbad ∪ Quдly .
First assume thatD |= R(L)(x ,y) for some x ,y. Notice that

from Lemma 8.1 x = a and y = b. Because of that D |=
R(L)(a,b) which means that D |= R(Q0)(a,b) and Fugitive
loses.

Now assume that D |= G(L)(x ,y) for some x ,y. Simi-

larly, from Lemma 8.1, x = a and y = b. We have that

⟨a,b,L→⟩ ∈ rq(Q↔,D) so Fugitive must satisfy this request

with R(w)[a,b] for somew ∈ L which loses, as L ⊆ Q0. □

9 Now we do not see the shades
As we already said, now we are going to watch, and analyze,

Fugitive’s play in shade filtering glasses. We assume he obeys

Principle I, otherwise he would lose. We also assume he

obeys Principle II, but wearing our glasses we are not able

to tell whether any word fromG(Qbad ) ∪ R(Qbad ) occurs in
the current structure. For this reason we cannot use, in our

analysis, arguments referring to languages in Qbad . We are

however free to use arguments from Principle II, referring

to languages in Quдly .

Lemma 9.1. Suppose in his initial move Fugitive selectsD0 =

G(α[(AC
H )(BCV )]mω)[a,b]. Then the final position H must be

equal (from the point of view of a shades-insensitive spectator)
to Gm .

To prove Lemma 9.1 it is enough to show that:

Lemma 9.2. Let Li be like on Figure 3 and LGi and LRi be
parts of Li consisting of (resp.) green and red edges. Then:
(i) D0 = L

G
0
,

(ii) D2i = L
G
2i ∪ L2i−1,

(iii) D2i+1 = L
R
2i+1
∪ L2i .

Lemma 9.2 (i) is Principle I restated. Next subsections of this

Section are devoted to the proof of Lemma 9.2 (ii) and (iii).

This will be done by induction on i .

9.1 General rules for the Fugitive
Now assume D0 as demanded by Lemma 9.1 was really se-

lected and denote vertices of this D0 by a,x1, . . . ,xn ,b, with
n = 2m + 1 (see Figure 3).

Lemma 9.3. For every final positionH that was built obeying
Principles I and II:

1. Every edge e ∈ H labeled withG(α),R(α),G(β) or R(β)
connects a and x1.

2. Every edge e ∈ H labeled with G(ω) or R(ω) connects
xn and b.

Proof. Notice that by Principle II there were no requests

formed by either Qbad or Quдly during the game that led to
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Figure 2. Gm withm = 4 (left). Smaller picture in the top-right corner explains how the different line styles on the main

picture map to Σ0.
9

Figure 3. Five first Layers of Gm withm = 6.

H. It means that all requests were generated by Qдood . But
for every language L ∈ Qдood for each w ∈ L if w contains

α , β orω thenw is a one letter word, and also all other words

of this language contain one letter. So satisfying a request

involving α , β or ω never requires creating new vertices. □

Lemma 9.4. For each y ∈ H,y , a there exist, in H:

• a red path from x1 to y,

• a green path from x1 to y,

For each y ∈ H,y , b there exist, in H:

• a red path from y to xn ,
• a green path from y to xn .

Proof. Notice that for each c ∈ Σ0 there exists a language

L ∈ Qдood such that c ∈ L. This means that for all u,w ∈ H
such that these vertices are endpoints of a green edge e =
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(u,w,G(c)), c ∈ Σ0 there is also a red path connecting u and

w ∈ H (this is since H |= Q ↔дood ).

Reasoning for red edges is analogous. □

In his first move Fugitive must satisfy all the requests in

S0 = rq(Q↔,D0). Notice that (since all the edges of D0 are

green and there are no bad or ugly patterns inD0) all requests

in S0 are actually generated by RCs in Q →дood . And one of

them is generated by (Q2

дood )
→
. Next lemma does not look

spectacular, but this is how we get our foot in the door:

Lemma 9.5. Request req = ⟨a,x1, (α + β)→⟩ in S0 must be
satisfied with R(β)[a,x1].

Proof. First notice that there are numerous requests in S0

generated by Q4

дood , all of them of the form ⟨xi ,xi+2,Q
4 →
дood ⟩.

Each of them can potentially be satisfied in one of two

ways: either by adding a new path labeled with a word

R((AW
V )(BWH )) from xi ,xi+2 or by adding a new path labeled

with R((AC
H )(BCV )).

Consider what would happen if Fugitive tried to satisfy req
with R(α) instead of R(β). First assume that there exists req ∈
S0 generated by Q4

дood that is satisfied with R((AW
V )(BWH )).

Then D1 |= R(Q1

uдly )(a,b) and this is forbidden by Principle

II. So all requests in S0 generated by Q4

дood must be satis-

fied with R((AC
H )(BCV )). But then D1 |= R(Qstar t )(a,b) and

Fugitive loses. □

Now we know that, alongside the green α , there must

exist the red β leading to x1 (see Figure 2). From this we get

that:

Lemma 9.6. If H is a final position that was built obeying
Principles I and II (which started with D0) then: for each edge
e ∈ H,

1. e is labeled with c ∈ R(Σ0) ⇔ c ∈ R(•W )
2. e is labeled with c ∈ G(Σ0) ⇔ c ∈ G(•C )

Proof. (1) Assume by contradiction that there exists a red

edge e ∈ H, from some x to some x ′, labeled with c ∈ R(•C ).
By Lemma 9.4 there is a path, consisting of edges from R(Σ0),
from x1 to x and another such path from x ′ to xn . This implies

that H |= Q2

uдly (a,b) which is forbidden by Principle II. (2)

Like (1) but then H |= Q1

uдly (a,b). □

Notice that eachQ i
дood for i = 3 . . . 8 consists of twowords

(from the point of view of a shades-insensitive spectator).

This sounds like good news for Fugitive: when satisfying

requests generated by these languages he has some choice.

But actually he does not, as the next lemma tells us:

Lemma 9.7. Let i ∈ {3 . . . 8} and let Q i
дood = {wi ,w

′
i }.

1. IfDj |= G(wi )(x ,y), for some j , andDj ̸ |= R(Q i
дood )(x ,y)

then ⟨x ,y,Q i →
дood ⟩ ∈ rq(Q i →

дood ,Dj ) and the Fugitive
must satisfy this request with R(w ′i )[x ,y].

2. IfDj |= R(wi )(x ,y), for some j , andDj ̸ |= G(Q i
дood )(x ,y)

then ⟨x ,y,Q i ←
дood ⟩ ∈ rq(Q i ←

дood ,Dj ) and the Fugitive
must satisfy this request with G(w ′i )[x ,y].

Proof. (1) Let i ∈ {3, . . . , 8} and let j be such that Dj |=
G(wi )(x ,y) and Dj ̸ |= R(Q i

дood )(x ,y). Assume by contra-

diction that Fugitive satisfies ⟨x ,y,Q i →
дood ⟩ with R(wi )[x ,y].

Then Dj+1 |= G(wi )(x ,y) and Dj+1 |= R(wi )(x ,y). Let c be
any letter of wi (notice that c ∈ Σ0). We have that there

exist vertices u,w,p,q ∈ Dj+1 such that Dj+1 |= G(c)(u,w)
and Dj+1 |= R(c)(p,q) and this contradicts Lemma 9.6. (2)

Analogous to the proof of (1). □

Now, in Section 9.2 we assume that D2i = L
G
2i ∪ L2i−1 and

show thatD2i+1 is as claimed in Lemma 9.2 (ii) and in Section

9.3 we assume that D2i+1 = L
R
2i+1
∪ L2i and show that D2i+2

is as claimed in Lemma 9.2 (iii).

9.2 Fugitive’s move 2i: from D2i to D2i+1

Observation 9.8. For D2i it is true that:

(1) All requests in D2i generated by Q4

дood must be satisfied
with R((AW

V )(BWH )).
(2) All requests in D2i generated by Q3

дood must be satisfied
with R((BWH )(AW

V )).
(3) All requests in D2i generated by Q5

дood must be satisfied
with R(BWV ).

(4) All requests in D2i generated by Q8

дood must be satisfied
with R(AW

H ).

Proof. For (1). By hypothesis all requests that are gener-

ated by Q4

дood in D2i are of the form ⟨x ,y,G((AC
H )(BCV )) →

R(Q4

дood )⟩ (Note that (AC
H )(BCV ) ∈ Q4

дood ). By Lemma 9.7

Fugitive must satisfy all such requests with R((AW
V )(BWH )).

Rest of the proofs for (2)-(4) are analogous. □

9.3 Fugitive’s move 2i + 1: from D2i+1 to D2i+2

Proof of the following Observation is analogous to the one

of Observation 9.8.

Observation 9.9. For D2i+1 it is true that:

1. All requests in D2i+1 generated by Q4

дood must be satis-
fied with G((AC

H )(BCV )).
2. All requests in D2i+1 generated by Q3

дood must be satis-
fied with G((BCV )(AC

H )).
3. All requests in D2i+1 generated by Q7

дood must be satis-
fied with G(AC

V ).
4. All requests in D2i+1 generated by Q6

дood must be satis-
fied with G(BCH ).

9.4 The end. No more requests!
Now it is straightforward to verify that:
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Observation 9.10. All requests generated by Qдood are al-
ready satisfied in Dm+1 = Gm .

10 And now we see the shades again
Now we can finish the proof of Lemma 5.1 (i)⇒ (ii).

Suppose the Fugitive’s play ended, in some final position

H = Gm . We take off our glasses, and not only we still see

this H, but now we see it in full colors, with each edge (apart

from edges labeled with α , β andω) having one of the shades
from S. Assume that the original instance S, F of Our Grid

Tiling Problem has no solution, and concentrate on the red

edges of H. They form a square grid, with each vertical edge

labeled with V , each horizontal edge labeled with H , and

with each edge labeled with a shade from S. So clearly, one

of the conditions (b1)-(b3) of Definition 4.1 is unsatisfied.

But this implies that a path labeled with a word from one of

the languages Q1

bad– Q3

bad occurs in H, which is in breach

of Principle II. This ends the proof of Lemma 5.1 (i)→ (ii).

For the proof Lemma 5.1 (¬i)→ (¬iii) assume the original

instance ⟨S,F⟩ of Our Grid Tiling Problem has a solution –

a labeled gridm ×m for somem. Call this grid G.
Recall that Gm is finite and it satisfies all regular con-

straints from Q↔дood (Observation 9.10) and from Q↔uдly (for

trivial reasons, as no paths from any G(L) ∪ R(L) with L ∈
Quдly occur in Gm ). Now copy the shades of the edges of G
to the respective edges of Gm . Call this new structure (Gm
with shades added)M. It is easy to see thatM constitutes a

finite counterexample, as in Lemma 3.1.
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