
A Generalized Modality for Recursion
Adrien Guatto

University of Bamberg

adrien@gua�o.org

Abstract
Nakano’s later modality allows types to express that the output

of a function does not immediately depend on its input, and thus

that computing its �xpoint is safe. This idea, guarded recursion,

has proved useful in various contexts, from functional program-

ming with in�nite data structures to formulations of step-indexing

internal to type theory. Categorical models have revealed that the

later modality corresponds in essence to a simple reindexing of the

discrete time scale.

Unfortunately, existing guarded type theories su�er from signi�-

cant limitations for programming purposes. These limitations stem

from the fact that the later modality is not expressive enough to

capture precise input-output dependencies of functions. As a conse-

quence, guarded type theories reject many productive de�nitions.

Combining insights from guarded type theories and synchronous

programming languages, we propose a new modality for guarded

recursion. This modality can apply any well-behaved reindexing

of the time scale to a type. We call such reindexings time warps.

Several modalities from the literature, including later, correspond

to �xed time warps, and thus arise as special cases of ours.

Keywords Guarded Recursion; Functional Programming; Streams;

Type Systems; Category Theory; Synchronous Programming.

1 Introduction
Consider the following piece of pseudocode.

nat = �x natrec where natrec xs = 0 :: (map (λx.x + 1) xs)

This de�nes nat, the stream of natural numbers, as the �xpoint

of a function natrec. How does one make sure that this de�nition

is productive, in the sense that the next element of nat can always

be computed in �nite time?

Guarded recursion, due to Nakano [27], provides a type-based

answer to this question. In type systems such as Nakano’s, types

capture precedence relationships between pieces of data, expressed

with respect to an implicit discrete time scale. For example, natrec
would receive the type natrec : I Stream Int → Stream Int. The
type Stream Int describes streams which unfold in time at the

rate of one new element per step. The later (I) modality shifts the

type it is applied to one step into the future; thus, I Stream Int also
unfolds at the rate of one element per step, but only starts unfolding

after the �rst step. Hence, the type of natrec expresses that the nth
element of its output stream, which is produced at the nth step,

does not depend on the nth element of its input stream, since the

latter arrives at the (n + 1)th step. This absence of instantaneous

input-output dependence guarantees the productivity of �x natrec.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The de�nitive Version of Record was published in LICS ’18: 33rd

Annual ACM/IEEE Symposium on Logic in Computer Science, July 9–12, 2018, Oxford,

United Kingdom, h�ps://doi.org/10.1145/3209108.3209148.

Guarded recursion enforces this uniformly: �xpoints are restricted

to functions with a type of the form I τ → τ .
Nakano’s original insight has led to a �urry of proposals [3,

4, 6–8, 13, 20, 21, 26, 31]. Recent developments have integrated

several advances—such as clock variables [3] or the constant (�)
modality [13]—into expressive languages capturing many recur-

sive de�nitions out of reach of more syntactic productivity checks.

The topos of trees [7] provides an elegant categorical setting where

such languages �nd their natural home.

Unfortunately, guarded recursion is currently limited by the

inability of existing languages to capture �ne-grained dependencies.

Consider the following function, which returns a pair of streams.

natposrec = fun (xs, ys).(0 :: ys,map (λx.x + 1) xs)

Its �xpoint is productive. This can be seen in the table below, which

gives the �rst iterations of (nat,pos) = natposrec(nat,pos).

nat ⊥ 0 :: ⊥ 0 :: ⊥ 0 :: 1 :: ⊥ 0 :: 1 :: ⊥ . . .

pos ⊥ ⊥ 1 :: ⊥ 1 :: ⊥ 1 :: 2 :: ⊥ . . .

Each stream grows in�nitely often but only by one element every

two steps. The later modality, by itself, cannot capture this growth

pattern, and thus this program cannot be expressed as is in the

guarded languages we know of. Since natposrec is simply natrec
modi�ed to expose the result of a subterm, this shows that existing

systems can be overly rigid. Clouston et al. [13, p. 12] give other

examples hampered by similar problems.

In our view, the example above does not indicate a problem with

guarded recursion per se, but rather illustrates the need for other

temporal modalities beyond later (and constant). Like later and con-

stant, these new modalities would apply temporal transformations

onto types, reindexing them to change how much data is available

at each step. In the example above, one would use a modality ex-

pressing growth at even time steps, and another for growth at odd

time steps. Moreover, these new modalities should be interrelated,

generalizing the known interactions between later and constant.

Contribution In this paper, we propose a theory of temporal

modalities subsuming later and constant. Rather than studying

a �xed number of modalities, we merge all of them into a single

modality ∗ parameterized by well-behaved reindexings of the dis-

crete time scale. We call such reindexings time warps and speak

of the warping modality. The later and constant modalities corre-

spond to speci�c time warps, and thus arise as special cases of ∗.
We build a simply-typed λ-calculus,Core λ∗, around the warping

modality. Core λ∗ integrates a notion of subtyping which inter-

nalizes the mathematical structure of time warps. We describe its

operational semantics, as well as a denotational semantics in the

topos of trees. We show that the type-checking problem for Core λ∗

terms, while delicate because of subtyping, is actually decidable.

1

https://doi.org/10.1145/3209108.3209148

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Adrien Gua�o

2 The Calculus
2.1 Time Warps
Let ω denote the �rst in�nite ordinal and ω + 1 denote its succes-
sor, which extends ω with a maximal element ω. It is technically
convenient to see 0 as a special vacuous time step, and thus we

assume that ω begins at 1. (Clouston et al. [13] follow the same

convention.) However, ω + 1 still begins with 0. If P is a preorder,

we denote by P̂ the set of its downward-closed subsets ordered by

inclusion, and write y : P → P̂ for the order embedding sending x
to {x ′ | x ′ ≤ x}. Observe that ω̂ is isomorphic toω+1, with the iso-

morphism sending the empty subset to 0 and the maximal subset ω
to itself inω+1. Thus, abusing notation, we write y : ω → ω+1 for
the map sending positive natural numbers to their image in ω + 1.

De�nition 1 (Time Warps). A time warp is a cocontinuous (sup-

preserving) function fromω+1 to itself. Equivalently, it is a monotonic

functionp : ω+1 → ω+1 such thatp(0) = 0 andp(ω) =
⊔
n<ω p(n).

We write p ≤ q when p is pointwise smaller than q, that is,
when p(n) ≤ q(n) holds for all n. Given time warps p and q, we
write p ∗q for q ◦p, which is cocontinuous. So is the identity func-

tion. Moreover, function composition is left- and right-monotonic

for the pointwise order. As a consequence,

Property 1. Time warps, ordered pointwise and equipped with com-

position, form a partially-ordered monoid, denotedW.

The following time warps play a special role in our development.

id(n) = n 0(n) = 0 −1(n) = n − 1 ω(n) = ω

The de�nitions above are given for 0 < n < ω since the values

at 0 and ω follow from cocontinuity. The time warps 0 and ω are

respectively the least and greatest elements of W.

2.2 Syntax and Declarative Type System
Core λ∗ is a two-level calculus distinguishing between implicit terms

and explicit terms. Implicit terms correspond to source-level pro-

grams. Explicit terms decorate implicit terms with type coercions.

Coercions act as proof terms for the subtyping judgment [9, 16].

They o�er a convenient alternative to the manipulation of typing

derivations in non-syntax-directed type systems such as ours.

Ground types and scalars Weassume given a �nite set of ground

typesG and a family of pairwise disjoint sets (Sν)ν ∈G . The elements

of Sν are the scalars (ground values) of type ν ∈ G. We denote by s
the elements of S ,

⋃
ν ∈G Sν .

Types The types of Core λ∗ are those of simply-typed λ-calculus,
including products and sums, together with ground types, streams,

and our warping modality ∗p :

τ F ν | Stream τ | τ → τ | τ × τ | τ + τ | ∗p τ .

Informally, ∗p τ should be seen as a “p-times” faster version of τ ,
in the sense of providing p-times more data than τ per step, with

the caveat that if p is less than id, ∗p τ is actually “slower” than τ .

Typing Contexts Typing contexts are lists of bindings xi : τi
with the xi pairwise distinct. We use “·” for the empty context

and dom(Γ) for the �nite set of variables present in Γ. We write Γ(x)
for the unique τ such that (x : τ) occurs in Γ, if it exists.

Γ ` e : τ

Var

Γ,x : τ ` x : τ

Fun

Γ,x : τ1 ` e : τ2

Γ ` fun (x : τ1).e : τ1 → τ2

App

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

Pair

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 × τ2

Proji∈{1,2}

Γ ` e : τ1 × τ2

Γ ` proji e : τi

Inji∈{0,1}

Γ ` e : τ1+i

Γ ` injτ2−i
1+i e : τ1 + τ2

Case

Γ ` e : τ1 + τ2 Γ,xi : τi ` ei : τ for i ∈ {1, 2}

Γ ` case e of{inj
1
x1.e1 | inj

2
x2.e2} : τ

Head

Γ ` e : Stream τ

Γ ` head e : τ

Tail

Γ ` e : Stream τ

Γ ` tail e : ∗−1 Stream τ

Cons

Γ ` e1 : τ Γ ` e2 : ∗−1 Stream τ

Γ ` e1 :: e2 : Stream τ

Const

s ∈ Sν

Γ ` s : ν

Rec

Γ,x : ∗−1 τ ` e : τ

Γ ` rec (x : τ).e : τ

Warp

Γ ` e : τ

∗p Γ ` e by p : ∗p τ

SubR

Γ ` e : τ α : τ <: τ ′

Γ ` e;α : τ ′

SubL

β : Γ <: Γ′ Γ′ ` e : τ

Γ ` β ; e : τ

Struct

Γ ` e : τ σ ∈ Σ(Γ; Γ′)

Γ′ ` σ [e] : τ

Figure 1. Typing Judgment

Explicit Terms The typing judgment for explicit terms e of Core λ∗

is given in Figure 1. Every typing rule fromVar to Case is a standard

one from simply-typed λ-calculus with products and sums. We

describe every other rule in turn, introducing the corresponding

term formers as we go.

The typing rules for stream destructors (head e , tail e) and the

stream constructor (e1 :: e2) capture the fact that streams unfold at

the rate of one element per step. As a consequence, the tail of a

stream exists not now but later. Since the later modality corresponds

in our setting to the time warp −1, the result of tail and the second

argument of (::) must be of type ∗−1 Stream τ .
Core λ∗ terms include scalars from S. A scalar s is assigned the

unique ground type ν such that s ∈ Sν , as speci�ed in rule Const.

Recursive de�nitions rec (x : τ).e follow the insight of Nakano:

the self-reference to x is only available later in the body e , and thus
here receives type ∗−1 τ in rule Rec.

The term e by p marks an introduction point for the warp-

ing modality. Intuitively, it runs e in a local time scale whose

relationship to the surrounding time scale is goverened by the

time warp p: the nth tick of the external time scale corresponds to

thep(n)th tick of the internal one. Thus, assuming e has typeτ , e by p
has type ∗p τ . This change in the amount of data produced comes

at the price of a change in the amount of data consumed: the free

variables of e should themselves be under the ∗p modality. The

context ∗p Γ denotes Γ with ∗p applied to each of its types.

Explicit terms may include type coercions, applied either covari-

antly or contravariantly. Covariant coercion application e ;α applies

the type coercionα to the result of e . Contravariant coercion applica-
tion β ; e coerces the free variables of e using the context coercion β .
We will describe both kinds of coercions in a few paragraphs.

Structure maps Rule Struct is the only non-syntax-directed

rule in our system. It performs weakening, contraction, and ex-

change in a single step, depending on the chosen structure map

between contexts [2, 15]. Structure maps σ ∈ Σ(Γ; Γ′) are functions
from dom(Γ) to dom(Γ′) such that Γ′(σ (x)) = Γ(x) for all x ∈ Γ.

2

A Generalized Modality for Recursion LICS ’18, July 9–12, 2018, Oxford, United Kingdom

α : τ <: τ ′
id : τ <: τ

α1 : τ1 <: τ2 α2 : τ2 <: τ3

α1;α2 : τ1 <: τ3

α : τ <: τ ′

Stream α : Stream τ <: Stream τ ′
α1 : τ

′
1
<: τ1 α2 : τ2 <: τ

′
2

α1 → α2 : τ1 → τ2 <: τ
′
1
→ τ ′

2

α1 : τ1 <: τ
′
1

α2 : τ2 <: τ
′
2

α1 × α2 : τ1 × τ2 <: τ
′
1
× τ ′

2

α1 : τ1 <: τ
′
1

α2 : τ2 <: τ
′
2

α1 + α2 : τ1 + τ2 <: τ
′
1
+ τ ′

2

α : τ <: τ ′

∗p α : ∗p τ <: ∗p τ ′ (wrap, unwrap) : τ ≡ ∗id
τ

(concatp,q , decatp,q) : ∗p ∗q τ ≡ ∗p ∗q τ in�ate : ν <: ∗ω ν

(dist×, fact×) : ∗p (τ1 × τ2) ≡ ∗p τ1 × ∗p τ2

q ≤ p

delayp,q : ∗p τ <: ∗q τ

Figure 2. Subtyping Judgment

The application of a structure map σ , seen as a variable substitu-

tion, to an explicit term e is written σ [e].

Type annotations Both λ-abstractions and injections must con-

tain type annotations. This technical choice ensures that explicit

terms are in Church style, and makes their typing judgment essen-

tially syntax directed (up to rule Struct).

Type Coercions A coercion α : τ <: τ ′ performs a type conver-

sion, transforming input values of type τ into output values of

type τ ′. The rules for this syntax-directed subtyping judgment are

given in Figure 2, where (α ,α ′) : τ ≡ τ ′ is a shorthand for α : τ <:

τ ′ and α ′
: τ ′ <: τ . They �t into three groups.

The �rst group contains the identity coercion and sequential

coercion composition. The identity coercion id does nothing. Two

coercions α1 and α2 can be composed to obtain α1;α2, assuming

the output type of α1 matches the input type of α2.
The second group contains one coercion former for each type

former. Such coercions allow us to coerce values in depth. Their

typing rules express that subtyping is a congruence for all type

formers in the language.

The third group is where the interest of our subtyping relation-

ship lies. It contains coercions re�ecting the mathematical structure

of the warping modality as subtyping axioms, including its inter-

action with other type formers. This group can be divided again,

now between several invertible coercions and a non-invertible one.

• Coercions wrap, unwrap, concatp,q , and decatp,q re�ect

the monoidal structure of time warps at the type level. The

coercions dist× and fact× ensure that the warping modality

commutes with products. The coercion in�ate expresses that
ground types stay constant through time, i.e., ν <: ∗ω ν .

• The remaining coercion, delayp,q : ∗p τ <: ∗q τ , re�ects
the ordering of time warps. Intuitively, it pushes data further

into the future, and must thus ensure that p(n) ≥ q(n) at
any step n. Its action cannot be undone when p , q; for

example, the coercion next , wrap; delayid,−1 : τ <: ∗−1 τ
has no inverse. (This coercion appears an an operator in

some guarded type theories [7, 13, . . .].)

Note that we did not need to introduce an explicit inverse for in�ate
since one is already derivable as delayω, id ; unwrap : ∗ω ν <: ν .

Context Coercions A context coercion β is a �nite map from

variables to coercions. We have β : Γ <: Γ′ i� dom(Γ) = dom(Γ′) ⊆
dom(β), and for every variable x ∈ dom(Γ), β(x) coerces Γ(x)
into Γ′(x). Context subtyping preserves the order of bindings. This

de�nition implies that rule SubL in Figure 1 can only be applied

when β(x) is de�ned for every free variable x of e .

Implicit Terms and Erasure We de�ne implicit terms, denoted t ,
as explicit terms that do not contain any coercions. Each explicit

term e thus corresponds to a unique implicit term obtained by re-

moving every coercion present in e . We adopt the notations of Mel-

liès and Zeilberger [24], and write U(e) for this implicit term. We

also write that e re�nes t , noted e < t , when U(e) = t .
An implicit term is well-typed simply if it has a well-typed re�ner,

in the sense expressed by the de�nition below.

Γ ` t : τ ⇔ ∃e < t , Γ ` e : τ (1)

2.3 Type-Checking Explicit Terms
The language of coercions and explicit terms enjoys uniqueness of

typing. The following result re�ects this fact for coercions.

Property 2 (Uniqueness of Types for Coercions). For any coer-

cion α , for any type τ (resp. τ ′) there is at most one type τ ′ (resp. τ)
such that α : τ <: τ ′ holds.

The analogous result for explicit terms is more delicate since

rule Struct is not syntax-directed. Furthermore, the rule is not

admissible: its use is sometimes required in order to be able to

use another rule. One can prove that there are only three cases

where rule Struct is needed, establishing the following result.

Property 3. Any well-typed explicit term Γ ` e : τ has a canonical

derivation where rule Struct is only used exactly once before every

instance of rules Var, Warp, and SubL.

This characterization provides almost immediately an abstract

deterministic algorithm to type-check explicit terms; see the appen-

dix for details. Its correctness implies the expected result.

Property 4 (Uniqueness of Types for Explicit Terms). For any
�xed Γ and e , there is at most one type τ such that Γ ` e : τ holds.

Type-checking an implicit term t is a much harder problem, since

it involves �nding a well-typed re�ner e < t . Moreover, this re�ner

should be canonical in a certain sense. We study it in Section 5.

2.4 Examples
We �nish this section with a few examples illustrating the type

system, given mostly as implicit terms. We also assume that ground

values and types include the integers.

Example 2.1 (Constant Stream). This prototypical example de�nes

a constant stream of zeroes.

rec (zeroes : Stream Int).(0 :: zeroes) : Stream Int

This works as in other guarded-recursive languages: the stream

constructor (::) expects its second argument to have a type of the

form ∗−1 Stream τ (I Stream τ in other guarded type theories),

which is exactly the one provided by guarded recursion.

Example 2.2 (Non-productive Stream). The non-productive de�-

nition below does not de�ne a stream, which by de�nition should

hold an in�nite number of values.

rec (nothing : Stream Int).nothing – ill-typed!

3

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Adrien Gua�o

This de�nition is ill-typed in Core λ∗ since, in the absence of a

coercion ∗−1 Stream Int <: Stream Int, we cannot apply rule Rec.

Example 2.3 (Silent Stream). While Example 2.2 does not de�ne

a real stream holding an in�nite number of values, it could be said

to de�ne a “silent” stream holding no value at all. Such streams are

captured in Core λ∗ as inhabitants of ∗0 Stream τ , e.g.,

rec (nothing : ∗0 Stream Int).nothing : ∗0 Stream Int.

This de�nition is well-typed since the explicit term rec (nothing :

∗0 Stream Int).(nothing; concat−1,0) re�nes it and has the expected
type. Here, concat−1,0 coerces values of type ∗−1 ∗0 Stream Int to
values of type ∗−1 ∗ 0 Stream Int = ∗0 Stream Int.

Example 2.3 illustrates how Core λ∗ shifts the focus away from

productivity, seen as a yes-or-no question, to a more quantitative

aspect of program execution: the amount of data produced. Other

warps make it possible to capture other forms of partial de�nitions,

beyond completely silent streams. For example, writing 5 for the

warp sending any �nite n to 5, the type ∗5 Stream Int describes
streams containing only 5 elements, all of them available starting

at the �rst time step. The type system of Core λ∗ ensures that

the non-existent elements in such partial streams can never be

accessed; in particular, in a well-typed program deconstructing a

silent stream xs (via head or tail) can only happen under a con-

text of the form C1[C2[−] by 0]. We will see in Section 3 that the

expression e in e by 0 is never actually executed.

Example 2.4. The example below implements the classic higher-

order function map on streams, specialized for streams of integers

since Core λ∗ is monomorphic. As usual, let x : τ = t1 in t2 is

shorthand for (fun (x : τ).t2) t1. We assume that function applica-

tion and by bind tighter than stream construction (::).

rec (map : (Int → Int) → Stream Int → Stream Int).
fun (f : Int → Int) (xs : Stream Int).
let ys : ∗−1 Stream Int = tail xs in f (head xs) :: (map f ys) by −1

Here, using by allows us to temporarily remove the ∗−1 modal-

ity from the type of map in order to perform the recursive call.

Rule Warp requires map, ys, and f to have types of the form ∗−1 τ .
This is already the case for map and ys, and can be achieved

for f using rule SubL with a context coercion sending f to next :
Int → Int <: ∗−1 (Int → Int) and the other variables to id.

Example 2.5. The de�nition given in Example 2.4, since it is closed,

can be put inside a local time scale driven by ω. It thus receives the
type∗ω ((Int → Int) → Stream Int → Stream Int). Such a type is

in e�ect not subject to the context restriction in rule Warp, since

for any p we have ∗ω τ <: ∗p ∗ω τ . Thus, ∗ω corresponds to

the constant (�) modality used in some guarded type theories [13].

In the remaining examples, we represent certain time warps

as running sums of ultimately periodic sequences of numbers,

following ideas from n-synchrony [14, 29]. For example, the se-

quence (1 0)∞ represents the time warp sending 2n to n and 2n + 1
ton+1 for any �nite positiven, while the sequence (0 1)∞ represents

the time warp sending both 2n and 2n + 1 to n. All the time warps

we have used up to now can be represented in this way: id, 0, −1,

and ω are represented by (1)∞, (0)∞, 0 (1)∞, and ω (0)∞ respectively.

Example 2.6 (Mutual Recursion). As announced in Section 1, the

streams of natural and positive numbers can be de�ned in a guarded

yet mutually-recursive way in Core λ∗. This is achieved by re�ect-

ing the rate at which each stream grows during a �xpoint computa-

tion within its type. (In the de�nition below, we represent the time

warp −1 by the sequence 0 (1)∞ for consistency; in particular, the

types of (::) becomes τ → ∗0 (1)∞ Stream τ → Stream τ .)

rec natpos : ∗(1 0)∞ Stream Int × ∗(0 1)∞ Stream Int.
let nat : ∗0 (1)∞ ∗(1 0)∞ Stream Int = proj1 natpos in
let pos : ∗0 (1)∞ ∗(0 1)∞ Stream Int = proj2 natpos in
((0 ::pos) by (1 0)∞, (map (fun (x : Int).x + 1) nat) by (0 1)∞

The uses of projections are well-typed since the warping modal-

ity distributes over products via the dist× coercion. We assume

that map has received the type given in Example 2.5, and thus its

use below by (0 1)∞ is well-typed. Since 0 (1)∞ ∗ (1 0)∞ = (0 1)∞, co-

ercing nat by concat0 (1)
∞,(1 0)∞

gives the type ∗(0 1)∞ Stream Int,
which lets us use nat with type Stream Int under by (0 1)∞. For pos,
since 0 (1)∞ ∗ (0 1)∞ = 0 (0 1)∞ = (1 0)∞ ∗ 0 (1)∞, applying the

coercion concat0 (1)
∞,(0 1)∞

; decat(1 0)
∞,0 (1)∞

lets us use pos with

type ∗0 (1)∞ Stream Int below by (1 0)∞.

Example 2.7. Clouston et al. [13, Example 1.10] present the Thue-

Morse sequence as a recursive stream de�nition which is di�cult

to capture in guarded calculi. The productivity of this de�nition

follows from the fact that a certain auxiliary stream function h pro-

duces two new elements of its output stream for each new element

of its input stream. In Core λ∗, h can be given type Stream Bool →
∗(2)∞ Stream Bool, allowing us to implement the Thue-Morse se-

quence with guarded recursion. (See the appendix.)

3 Operational Semantics
In this section, we present an operational semantics for explicit

terms in the form of a big-step, call-by-value evaluation judgment.

Intuitively, the evaluation judgment e;γ ⇓n v expresses that the

value v is a �nite pre�x of length n of the possibly in�nite re-

sult computed by e in the environment γ . We will say that the

evaluation of e occurred “at step n”, or simply “at n” following
the intuition that n is a Kripke world. Another intuition is that

this judgment describes an interpreter receiving a certain amount n
of “fuel” which controls how many times recursive de�nitions have

to be unrolled [1].

In most fuel-based de�nitional interpreters, the fuel parame-

ter only decreases along evaluation, typically by one unit at each

recursive unfolding. In our case, its evolution is much less con-

strained: the amount of fuel may actually increase or decrease by

an arbitrary amount many times during the execution of a single

term. This behavior follows from the presence of time warps: to

evaluate e by p at n, one evaluates e at p(n). Nevertheless, we show
that the evaluation of a well-typed term always terminates regard-

less of the quantity of fuel initially provided.

Since the evaluation of a term at n might involve the evaluation

of one of its subterms at p(n) with p an arbitrary warp, we may

need to evaluate a term at 0 or ω. The former case is dealt with

using a dummy value stop which inhabits all types at 0. The latter

case might seem problematic, as evaluating a term at ω should

intuitively result in an in�nite object rather than a �nite one. We

represent such results by suspended computations (thunks) to be

forced only when used at a �nite n. This is a standard operational

interpretation of the constant modality [5, 13].

4

A Generalized Modality for Recursion LICS ’18, July 9–12, 2018, Oxford, United Kingdom

v : τ @ n

VScal

s ∈ Sν

s : ν @ n + 1

VCons

v1 : τ @ n + 1 v2 : Stream τ @ n

v1 ::v2 : Stream τ @ n + 1

VClosure

Γ,x : τ1 ` e : τ2 γ : Γ @ n

(x .e){γ } : τ1 → τ2 @ n

VPair

v1 : τ1 @ n v2 : τ2 @ n

(v1,v2) : τ1 × τ2 @ n

VInji∈{1,2}

v : τi @ n

injiv : τ1 + τ2 @ n

VStop

stop : τ @ 0

VThunk

Γ ` e : τ γ : Γ @ ω

box(e){γ } : τ @ ω

VWarp

v : τ @ p(n)

w(p,v) : ∗p τ @ n
γ : Γ @ n

dom(γ) = dom(Γ)
∀x ∈ dom(γ),γ (x) : Γ(x) @ n

γ : Γ @ n

Figure 3. Typing Judgment for Values and Environments

bv cn ⇓ v ′

b s cn+1 ⇓ s

bv1 cn+1 ⇓ v ′
1

bv2 cn ⇓ v ′
2

bv1 ::v2 cn+1 ⇓ v ′
1
::v ′

2

bγ cn+1 ⇓ γ ′

b (x .e){γ } cn+1 ⇓ (x .e){γ ′}

bv1 cn+1 ⇓ v ′
1

bv2 cn+1 ⇓ v ′
2

b (v1,v2) cn+1 ⇓ (v ′
1
,v ′

2
)

bv cn+1 ⇓ v ′

b injiv cn+1 ⇓ injiv ′

bγ cn+1 ⇓ γ ′ e;γ ′ ⇓n+1 v

b box(e){γ } cn+1 ⇓ v

bv cp(n+1) ⇓ v ′

bw(p,v) cn+1 ⇓ w(p,v ′)

bv c0 ⇓ stop bv cω ⇓ v

Figure 4. Truncation of Values

3.1 Values and Environments
The judgment v : τ @ n expresses that a value v is a pre�x of some

in�nite object of type τ at n ∈ ω + 1. Its rules are given in Figure 3.

For instance, if τ is of the form Stream τ ′, the number of elements

of type τ ′ contained in v is exactly n.
Closures, pairs, and injections are unremarkable. Stream pre-

�xesv1 ::v2 can only be well-typed at some n > 0, in which casev2
is well-typed at n − 1. The dummy value stop inhabits all types but

only at 0. Thunks box(e){γ } inhabit types only atω. Finally, warped
values w(p,v) inhabit the warping modality, marking that v has

been computed at p(n).
An environment γ has type Γ at n if all its constituent values

have types at n matching those prescribed by Γ.

3.2 Evaluation Judgment
The evaluation relation depends on several auxiliary judgments,

which depend on evaluation themselves. They are all parameterized

by a step n ∈ ω + 1. Several of these judgments have to be extended

from values to environments pointwise; since this extension is

always completely unremarkable, we omit the corresponding rules.

Truncation The value typing judgment is not monotonic, in the

sense that v : τ @ n + 1 does not entail v : τ @ n in general. This

choice makes value typing more precise, making sure that the result

of a program of type Stream Int at n is exactly a list containing n
elements. However, evaluation sometimes needs to turn a value atm
into a value at n < m in order to mediate between di�erent steps.

Thus, we introduce a truncation judgment bv cn ⇓ v ′
expressing

that removing all information pertaining to steps greater than n
from the value v gives a value v ′

. Its rules are given in Figure 4.

Most rules apply when v is to be truncated to a step of the

form n + 1. Scalars contain the same amount of information at all

�nite steps, and thus remain themselves. The tail v2 of a stream
constructor v1 ::v2 is truncated to n, ensuring that the �nal stream

containsn+1 elements. Closures, pairs, and injections are truncated

structurally; for closures, we truncate the environment. To truncate

a thunk to a positive �nite step is to evaluate it, obtaining a �nite

result; this is why truncation depends on evaluation, de�ned below.

To truncate a value warped by p at n, truncate it at p(n).
Finally, truncation to 0 and truncation to ω are symmetric. Trun-

cation to 0 erases the value completely, leaving only stop. Trunca-
tion to ω keeps the value completely intact.

CoercionApplication The judgmentα[v] ⇓n v ′
expresses thatv ′

is the result of coercing v by α . Its rules are given in Figure 5.

As for truncation, most rules here deal with �nite positive n.
The identity coercion does nothing, α1;α2 �rst applies α1 then α2.
The remaining composite coercions apply coercions in depth, as ex-

pected; note that ∗p α applies α at p(n+1). The wrapping (resp. un-
wrapping) coercion adds (resp. removes) a constructor w(id,−).

The coercions concatp,q and dist× implement the transformations

and commutations corresponding to their types, but have to deal

with the cases where p(n + 1) = 0 or p(n + 1) = ω explicitly. The

coercions decatp,q and fact× are similar but simpler. In�ation cre-

ates a dummy thunk around a scalar; this is type safe since scalars

are well-typed at any �nite n. A delay coercion delayp,q receives

an input at p(n + 1) and truncates it to q(n + 1), which is smaller or

equal to p(n + 1) if delayp,q is well-typed.

Evaluating a coercion at 0 immediately returns stop, as for trun-
cation. On the other hand, a coercion applied at ω is necessarily

applied to a thunk, and must be delayed itself. We accomplish this

by pushing the coercion inside the thunk.

We have elided the context-coercion application judgment, which

simply lifts coercion application componentwise to environments.

Evaluation The evaluation judgment is given in Figure 6.

Again, most of the work is done at 0 < n < ω, so we begin by

decribing the corresponding rules. The rules for variables, functions,

application, pairs, projections, injections, pattern-matching, and

scalars are the standard ones of call-by-value λ-calculus. We will

explain recursion shortly. To evaluate e by p at n + 1, evaluate e
at p(n + 1). Its result should be wrapped in w(p,−) to mark its

provenance, and symmetrically the environmentγ should be purged

of a layer of w(p,−) value formers. The latter operation is denoted

by purge(γ); it is unde�ned if γ contains values that are not of the

form w(p,v). Coercions rely on the coercion application judgment

and its lifting to context coercions.

All terms evaluate to stop at 0. The evaluation of a term e at ω
suspends its execution, building a thunk box(e){γ } pairing it with

the current environment γ .

Recursion and Iteration Rule ERec depends on the iteration

judgment x ; e;γ ;v ⇑nm v ′
. To explain this judgment informally,

let us write f for fun (x : _).e and assume thatm ≤ n. Then, this
judgment computes v ′ = f n−m (v). Its use in rule ERec withm =
0 and v = stop ensures that v = f n (stop). Thus iteration can

be viewed as an operational approximation of Kleene’s �xpoint

theorem if one identi�es stop with ⊥ from domain theory.

5

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Adrien Gua�o

α[v] ⇓n v ′

ECId

id[v] ⇓n+1 v

ECSeq

α1[v1] ⇓n+1 v2 α2[v2] ⇓n+1 v3

(α1;α2)[v1] ⇓n+1 v3

ECStream

α[v1] ⇓n+1 v
′
1

Stream α[v2] ⇓n v ′
2

(Stream α)[(v1 ::v2)] ⇓n+1 (v
′
1
::v ′

2
)

ECFun

(α1 → α2)[(x .e){γ }] ⇓n+1 (x .(e (x ;α1));α2){γ }

ECProd

α1[v1] ⇓n+1 v
′
1

α2[v2] ⇓n+1 v
′
2

(α1 × α2)[(v1,v2)] ⇓n+1 (v
′
1
,v ′

2
)

ECSum

αi [v] ⇓n+1 v
′

(α1 + α2)[injiv] ⇓n+1 injiv ′

ECWarp

α[v] ⇓p(n+1) v
′

(∗p α)[w(p,v)] ⇓n+1 w(p,v ′)

ECWrap

wrap[v] ⇓n+1 w(id,v)

ECUnwrap

unwrap[w(id,v)] ⇓n+1 v

ECConcat

concatp,q [w(p,w(q,v))] ⇓n+1 w(p ∗q,v)

ECConcatStop

concatp,q [w(p, stop)] ⇓n+1 w(p ∗q, stop)

ECConcatBox

concatp,q [w(p, box(e){γ })] ⇓n+1 w(p ∗q, box(e){γ })

ECDecat

decatp,q [w(p ∗q,v)] ⇓n+1 w(p,w(q,v))

ECDist

dist×[w(p, (v1,v2))] ⇓n+1 (w(p,v1),w(p,v2))

ECDistStop

dist×[w(p, stop)] ⇓n+1 (w(p, stop),w(p, stop))

ECDistBox

dist×[w(p, box(e){γ })] ⇓n+1 (w(p, box(e){γ }),w(p, box(e){γ }))

ECFact

fact×[(w(p,v1),w(p,v2))] ⇓n+1 w(p, (v1,v2))

ECInfl

in�ate[c] ⇓n+1 w(ω, box(c){∅})

ECDelay

bv cq(n+1) ⇓ v ′

delayp,q [v] ⇓n+1 v ′

ECZero

α[v] ⇓0 stop

ECOmega

α[box(e){γ }] ⇓ω box(e;α){γ }

Figure 5. Coercion Application Judgment

e;γ ⇓n v

EVar

x ;γ ⇓n+1 γ (x)

EFun

fun (x : τ).e;γ ⇓n+1 (x .e){γ }

EApp

e1;γ ⇓n+1 (x .e){γ
′} e2;γ ⇓n+1 v e;γ ′[x 7→ v] ⇓n+1 v

′

e1 e2;γ ⇓n+1 v
′

EPair

e1;γ ⇓n+1 v1 e2;γ ⇓n+1 v2

(e1, e2);γ ⇓n+1 (v1,v2)

EProji∈{1,2}

e;γ ⇓n+1 (v1,v2)

proji e;γ ⇓n+1 vi

EInji∈{1,2}

e;γ ⇓n+1 v

injτi e;γ ⇓n+1 injiv

ECasei∈{1,2}

e;γ ⇓n+1 injiv ei ;γ [xi 7→ v] ⇓n+1 v
′

case e of{inj
1
x1.e1 | inj

2
x2.e2};γ ⇓n+1 v

′

EConst

c;γ ⇓n+1 c

ERec

x ; e;γ ; stop ⇑n+1
0

v

rec (x : τ).e;γ ⇓n+1 v

EBy

e; purge(γ) ⇓p(n+1) v

e by p;γ ⇓n+1 w(p,v)

EHead

e;γ ⇓n+1 v1 ::v2

head e;γ ⇓n+1 v1

ETail

e;γ ⇓n+1 v1 ::v2

tail e;γ ⇓n+1 w(−1,v2)

ECons

e1;γ ⇓n+1 v1 e2;γ ⇓n+1 w(−1,v2)

e1 :: e2;γ ⇓n+1 v1 ::v2

ECoeR

e;γ ⇓n+1 v α[v] ⇓n+1 v
′

e;α ;γ ⇓n+1 v
′

ECoeL

β[γ] ⇓n+1 γ
′ e;γ ′ ⇓n+1 v

(β ; e);γ ⇓n+1 v

EZero

e;γ ⇓0 stop

EOmega

e;γ ⇓ω box(e){γ }

Figure 6. Evaluation Judgment

x ; e ;γ ;v ⇑nm v′

IFinish

x ; e;γ ;v ⇑nn v

IStep

m < n bγ cm+1 ⇓ γ ′

e;γ ′[x 7→ v] ⇓m v ′

x ; e;γ ;v ′ ⇑nm+1 v
′′

x ; e;γ ;v ⇑nm v ′′

Figure 7. Iteration Judgment

Rule IFinish terminates the iteration sequence when m = n.
Rule IStep computes f (fm (stop)) = fm+1(stop) if m < n. The
environment γ is well-typed at n and so must be truncated tom + 1.

3.3 Metatheoretical Results
Our evaluation judgments represent runtime errors by the absence

of a result, as is common in big-step semantics. Thus, our judg-

ments de�ne partial functions: there is at most one value v such

that e;γ ⇓n v , and similarly for all the other judgments.

Type Safety The following basic type safety result ensures that

if a closed program of type τ evaluates to a value v at n, then v
is of type τ at n. Given the typing rules for values, this ensure in

particular that streams have the length described by their types.

Theorem 3.1 (Type Safety). If Γ ` e : τ , γ : Γ @ n, and e;γ ⇓n v ,
then v : τ @ n.

Since the evaluation judgment depends on the truncation, coer-

cion application, and iteration judgments and vice-versa, the proof

must proceed by mutual induction, using the relevant type safety

lemmas for auxiliary judgments.

Lemma 3.2 (Type Safety, Truncation). Ifv : τ @m and bv cn ⇓ v ′

with n ≤ m, then v ′
: τ @ n.

Lemma 3.3 (Type Safety, Coercion Application). If α : τ <: τ ′, v :

τ @ n, and α[v] ⇓n v ′
, then v ′

: τ ′ @ n.

Lemma 3.4 (Type Safety, Iteration). If Γ,x : ∗−1 τ ` e : τ , γ : Γ @

n, v : τ @m and x ; e;γ ;v ⇑nm v ′
, then v : τ @ n.

Totality In addition to the usual type errors, in our setting par-

tiality may also arise from time-related operations. For instance,

a term might try to truncate a value at n to m > n, or to evalu-

ate e by p in an environment which contains values that are not of

the form w(p,−). The following theorem asserts that this cannot

occur with well-typed terms.

Theorem 3.5 (Totality). If Γ ` e : τ and γ : Γ @ n, then there

exists v such that e;γ ⇓n v .

The proof uses a realizability predicate, as explained in the ap-

pendix. It also requires the following result, also used in Section 4.

Property 5 (Functoriality of Truncation). If bv cn ⇓ v ′
and bv cm ⇓

v ′′
withm ≤ n, then bv ′ cm ⇓ v ′′

.

6

A Generalized Modality for Recursion LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Monotonicity Finally, we prove that evaluation indeed computes

longer and longer pre�xes of the same object.

Property 6 (Monotonicity). If e;γ ⇓n v and e;γ ′ ⇓m v ′
withm ≤

n and bγ cm ⇓ γ ′, then bv cm ⇓ v ′
.

Coherence We have de�ned evaluation only on explicit terms,

and indeed coercions play a crucial role in determining the result of

a computation. Thus the question of coherence arises: do all re�ners

of the same implicit term having the same type compute the same

results? We give a positive answer to this question in Section 5

using the denotational semantics developed in the next section.

4 Denotational Semantics
4.1 Preliminaries
LetBool denote the categorywith two objects⊥,> and a single non-

identity morphism t : ⊥ → >, equipped with the strict monoidal

structure given by conjunction. Then, preorders are Bool-enriched
categories, and P̂ is isomorphic to Pop → Bool. Let P denote the

strict monoidal functor P : Bool → Set sending ⊥ to ∅ and >

to {∗}. We write P[P] for the degenerate category associated with

a preorder P ; its hom-sets contain at most one morphism.

Given a category C , we denote by Ĉ = C op → Set the category
of contravariant presheaves over C . Note that P̂ di�ers from P̂[P],
hence our unusal choice of to formally distinguish preorders from

ordinary categories.

4.2 The Topos of Trees
In this section we sketch a model of Core λ∗ in the topos of trees.

Birkedal et al. [7] show that this category is a convenient setting

for modeling guarded recursion and synthetic step-indexing. We

follow their terminology and notations.

De�nition 2. The topos of trees, denoted S, is P̂[ω].

Brie�y, an object X in the topos of trees can be described as

a family of sets (X (n))n∈ω , together with a family of restriction

functions (rXn : X (n + 1) → X (n))n∈ω . The set X (n) describes what
can be observed of X at step n, and the restriction functions de�ne

how future observations extend current ones. Morphisms f : X →

Y are collections of functions (fn : X (n) → Y (n))n∈ω commuting

with restriction functions.

As a topos, this category naturally has all the structure required

for interpreting simply-typed λ-calculus with products and sums.

× : S×S → S _+_ : S×S → S (_)(_) : Sop ×S → S

This structure follows from general constructions in presheaf cate-

gories. Products and sums, as limits and colimits, are given point-

wise. Exponentiation can be deduced from the Yoneda lemma.

The later modality is interpreted in S by the functor I such

that (IX)(0) = {∗} and (IX)(n + 1) = X (n). A certain family of

morphisms �xX : XIX → X of S provide �xpoint combinators,

and are used to interpret guarded recursion. We refer to Birkedal

et al. [7] for additional information.

4.3 Interpreting the Warping Modality
In order to interpret the warping modality, we need to equip the

topos of trees with a functor ∗p : S → S for every time warp p.
Intuitively, (∗p X)(n) should contain “p-times” more information

than X (n). Moreover, the family of functors ∗(−) should come

equipped with enough structure to interpret atomic coercions.

Pulling Presheaves along Functions To understand what this

operation should look like, let us �rst consider a restricted class

of time warps. By de�nition, time warps p such that 0 < p(n) <
ω for all 0 < n < ω are in a one-to-one correspondence with

monotonic functions f : ω → ω. In this case, one can simply

de�ne (∗p X)(n) = X (f (n)). Thus, if p happens to be equivalent

to a function ω → ω, the functor ∗p : S → S is simply given

by precomposition with p. From a categorical logic perspective,

computing ∗p X corresponds to pulling X along p.
This special case already captures some examples from the lit-

erature. For instance, Birkedal et al. [7] study the left adjoint J
of I given by (JX)(n) , X (n + 1), which would thus correspond

to∗n 7→n+1. However, most interesting timewarps are notω-valued,
including those corresponding to the later and constant modalities,

and thus cannot be naively precomposed with presheaves from S.

Pulling Presheaves along Distributors A solution to the above

problem is provided by the theory of distributors, which are to

functors what relations are to functions. A distributor P : C −7−→ D
from a category C to a category D is a functor P : Dop ×C → Set.
Distributors form a (bi)category, and enjoy properties that plain

functors lack. We refer to Bénabou [10] for an introduction.

Any presheaf X : C op → Set is by de�nition equivalent to a

distributor 1 −7−→ C , with 1 the category with a single object and

morphism. Postcomposing a distributor M : C −7−→ D with X gives

a presheaf MX : 1 −7−→ D which, intuitively, is X pushed along M .

It is a crucial characteristic of distributors that post-composition

withM always has a right adjoint, which we will write (−)/M . This

right adjoint can be described by the end formula

Y/M ,

∫
d ∈D

Y (d)M (d,−). (2)

The presheaf Y/M is the result of pulling Y along M , as recently

expounded by Melliès and Zeilberger [25].

Pulling Presheaves along Time Warps We can extend the con-

struction given above to time warps by realizing that the latter are

miniature distributors.

It is a consequence of the Yoneda lemma that every distribu-

torC −7−→ D can be seen as a cocontinuous functor Ĉ → D̂ and vice-

versa. A similar result holds for preorders: every cocontinuous func-

tion P̂ → Q̂ corresponds to a monotonic function Qop × P → Bool,
and vice-versa. We call such functions linear systems, adopting the

terminology attributed to Winskel by Hyland [19, §4.1]. Given a

time warp p : ω̂ → ω̂, we refer to the corresponding linear system

as p : ω −7−→ ω. We have (m,n) ∈ p if and only if y(m) ≤ p(y(n)).
Pulling a presheaf along a time warp is now possible since linear

systems are nothing but Bool-enriched distributors. Precomposing

the linear system p with P : Bool → Set, we obtain a standard

distributor Pp : ω −7−→ ω, which we then combine with Equation (2).

De�nition 3 (Warping Functor). Given a time warp p, we de�ne
the warping functor ∗p : S → S as

∗p , (−)/(Pp). (3)

Unfolding and simplifying the above de�nition, we obtain an

explicit formula for the observations of ∗p X at n.

(∗p X)(n) =

(xm) ∈

p(n)∏
m=1

X (m)

������ xm = rXm (xm+1)

 (4)

7

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Adrien Gua�o

The reader may check using the above formula that (∗−1 X)(n)
coincides with IX (n). The same is true for ∗ω and �.

Once the relatively intuitive Equation (4) has been found, it might

seem that the abstract De�nition 3 becomes unnecessary. However,

the abstract approach gives insight into the structure of ∗(−). In

particular, routine categorical considerations imply the following.

Property 7. Warping de�nes a strong monoidal functor

∗(−) : W
op(0,1) → End(S).

Here W and End(S) are considered as monoidal categories

whose objects are respectively time warps and endofunctors of S,

and where the monoidal structure is given by composition in both

cases. The categoryW is preordered. Property 7 entails the exis-

tence of the following structure.

∗p≥q : ∗p → ∗q ϵ : ∗1 � Id µp,q : ∗p∗q � ∗p∗q
Moreover, every functor∗p is a right adjoint, hence limit-preserving.

4.4 The Interpretation
Ground types are interpreted using the functor ∆ : Set → S map-

ping every set to a constant presheaf. The interpretation of Stream τ
is characterized by JStream τ K(n) =

∏n
m=1Jτ K(m). We have already

given the interpretation of all other types. Typing contexts are

interpreted as cartesian products.

Coercions α : τ <: τ ′ give rise to morphisms JαK : Jτ K → Jτ ′K.
Composite coercions are interpreted by the functorial actions of

type constructors, plus plain composition. Atomic coercions take

advantage of the structure arising from Property 7. For example,

Jconcatp,q : ∗p ∗q τ <: ∗p ∗q τ K = µ
p,q
Jτ K and Jdelayp,q : ∗p τ <:

∗q τ K = (∗p≥q)Jτ K. The in�ate coercion is interpreted by the gen-

eral isomorphism between ∆(S) and ∗ω ∆(S). The dist× and fact×
coercions are interpreted by the natural isomorphisms arising from

the limit-preservation property of ∗p .
Since the type system of Figure 1 is not exactly syntax-directed,

we will interpret typing derivations rather than terms. Guarded

recursion is interpreted using the �xJτ K morphisms. We interpret

structure maps σ ∈ Σ(Γ; Γ′) as morphisms JσK : JΓ′K → JΓK
and rule Struct by precomposition. Other cases are standard [22].

Property 8 (Coherence for Explicit Terms). Any two derivations

of Γ ` e : τ are interpreted by the same morphism in S.

The proof shows that the interpretation of any derivation of e is
equal to the interpretation of the canonical derivation for e built
in Property 3. Since this canonical derivation is unique, this entails

the coherence of the interpretation for explicit terms.

4.5 Adequacy
The interpretation re�ects operational equivalence, which inCore λ∗

consists in observing scalars at the �rst step.

Theorem 4.1. If JΓ ` e : τ K = JΓ ` e ′ : τ K then Γ ` e �ctx e ′ : τ .

To prove the result, we remark that the values described in Sec-

tion 3 can be organized as an object of S, using results such as Prop-

erty 6. The details can be found in the appendix.

5 Algorithmic Type Checking
The abstract type-checking algorithm we present in this section

builds an explicit term from an implicit one in a canonical way. This

involves two main challenges: deciding the subtyping judgment,

and dealing with the context restriction arising in rule Warp.

5.1 Deciding Subtyping
To decide subtyping, we start with the observation that most atomic

coercions α : τ <: τ ′ from Figure 2 come in pairs, in the sense

that there exists α−1 such that α−1 : τ ′ <: τ . This is even true

for in�ate, since we can take in�ate−1 to be delayω, id ; unwrap.
The only atomic coercion for which this is not the case is delayp,q

when q < p. This suggests dealing with delays separately.

Normalizing Types To deal with invertible coercions, we de�ne

a function τ mapping each type to an equivalent but simpler form.

Such normal types τn obey the following grammar.

τ n F ∗p τ r | τ n × τ n τ r F ν | Stream τ n | τ n → τ n | τ n + τ n

In other words, normal types feature exactly one warping modality

immediately above every non-product type former.

The total function HτI returns the normalized form of τ . It is
de�ned by recursion on τ in Figure 8-A. For every τ , there are

coercions (HτIin, HτIout) : τ ≡ HτI, de�ned in the appendix.

Deciding Precedence We now decide subtyping in the special

case where the only atomic coercions allowed are delays, a case

we call precedence. The corresponding partial computable func-

tion Prec(−;−), when de�ned, builds a coercion Prec(τ ;τ ′) : τ <: τ ′.
It is given in Figure 8-B. In the absence of concatp,q and decatp,q

coercions, it is enough to traverse τ and τ ′ in lockstep, checking

whether p ≥ q holds when comparing ∗p τ and ∗q τ ′.

Pu�ing it all together We decide subtyping in the general case

by combining precedence with normalization:

Coe(τ ;τ ′) , HτIin; Prec(HτI; Hτ ′I); Hτ ′Iout.

We write Coe(Γ; Γ′) for the pointwise extension to contexts.

5.2 Adjoint Typing Contexts
Consider the type-checking problem for t by p in a given context Γ.
If every type τ = Γ(x), with x a free variable of t , is of the form∗p τ ′,
we may apply rule Warp. Otherwise, we have to �nd a type τ ′

such that τ <: ∗p τ ′. There are several choices for τ ′, and they are

far from equivalent. For instance, taking τ ′ , ∗0 τ would work

since τ <: ∗0 τ <: ∗p ∗0 τ always holds, but will in general impose

arti�cial constraints on the type of t . For τ ′ to be a canonical choice,

τ <: ∗p τ ′′ ⇔ τ ′ <: τ ′′ (5)

needs to hold for any type τ ′′. Now, assume that τ and τ ′′ are
normalized types which are not products, and thus necessarily start

with a warping modality. Equivalence (5) becomes

∗q τ <: ∗p ∗r τ ′′ ⇔ τ ′ <: ∗r τ ′′. (6)

Then, a solution satisfying (5) is given by τ ′ = ∗q \p τ , with q \p a

hypothetical time warp such that

r ◦ p ≤ q ⇔ r ≤ q \p. (7)

We are thus looking for an operation (−) \p right adjoint to pre-

composition (−) ◦ p. Right adjoints to precomposition (and post-

composition, cf. Section 4) always exist for distributors [10, §4],

and thus linear systems. The general formula, specialized to linear

systems and time warps, gives

(q \p)(n) = p(min{m ∈ ω + 1 | n ≤ q(m)}). (8)

8

A Generalized Modality for Recursion LICS ’18, July 9–12, 2018, Oxford, United Kingdom

HνI = ∗ω ν
HStream τ I = ∗id

Stream Hτ I
Hτ1 → τ2I = ∗id

(Hτ1I → Hτ2I)
Hτ1 × τ2I = Hτ1I × Hτ2I

Hτ1 + τ2I = ∗id
(Hτ1I + Hτ2I)

H∗p (τ1 × τ2)I = H∗p τ1I × H∗p τ2I
H∗p τ I = ∗p ∗q τ ′ where τ , (_ × _)

and ∗q τ ′ = Hτ I

(A) Type Normalization

Prec(ν ; ν) = id
Prec(Stream τ1; Stream τ2) = Stream Prec(τ1; τ2)

Prec(τ ′
1
→ τ ′′

1
; τ ′

2
→ τ ′′

2
) = Prec(τ ′

2
; τ ′

1
) → Prec(τ ′′

1
; τ ′′

2
)

Prec(τ ′
1
× τ ′′

1
; τ ′

2
× τ ′′

2
) = Prec(τ ′

1
; τ ′

2
) × Prec(τ ′′

1
; τ ′′

2
)

Prec(τ ′
1
+ τ ′′

1
; τ ′

2
+ τ ′′

2
) = Prec(τ ′

1
; τ ′

2
) + Prec(τ ′′

1
; τ ′′

2
)

Prec(∗p τ1;∗q τ2) = delayp,q ;∗q Prec(τ1; τ2) if p ≥ q

(B) Type Precedence

Figure 8. Type Normalization and Precedence

Thus, we de�ne normal-type division as

(τ1 × τ2) \n p = (τ1 \n p) × (τ2 \n p) and (∗q τ) \n p = ∗q \p τ

and general type division as τ \p , HτI \n p.

5.3 The Algorithm
The partial computable function Elab(Γ; t) returns a pair (τ , e)
with e < t such that Γ ` e : τ holds. Its de�nition is given

in Figure 9. It uses the algorithmic subtyping judgment when type-

checking destructors, and the context division judgment when

applying rule Warp. The case of pattern-matching relies on the

existence of type suprema, which are easy to compute structurally

for normal types; see the appendix.

5.4 Metatheoretical Results
Lemma 5.1. If α : τ <: τ ′ then Coe(τ ;τ ′) is de�ned and

Jα : τ <: τ ′K = JCoe(τ ;τ ′) : τ <: τ ′K.

Theorem 5.2 (Completeness of Algorithmic Typing). If Γ ` e : τ ,
there is em ,τm ,αm with (τm , em) = Elab(Γ; t), αm : τm <: τ , and

JΓ ` e : τ K = JΓ ` e : τmK; Jα : τm <: τ K.

The fact that algorithmic subtyping is deterministic together

with Lemma 5.1 and Theorem 5.2 immediately entails coherence.

Corollary 1 (Denotational Coherence). For any e1, e2 < t such
that Γ ` e1 : τ and Γ ` e2 : τ , we have JΓ ` e1 : τ K = JΓ ` e2 : τ K.

Corollary 2 (Operational Coherence). For any e1, e2 < t such

that Γ ` e1 : τ and Γ ` e2 : τ , we have Γ ` e1 �ctx e2 : τ .

6 Discussion and Related Work
6.1 Guarded Type Theories
Expressiveness On the one hand, Core λ∗ captures �ner-grained
temporal information than existing guarded type theories, and also

recasts their modalities in a uniform setting. We illustrate this point

by comparing Core λ∗ to the gλ-calculus [13], since they are rel-

atively close. The later and constant modality correspond respec-

tively to ∗−1 and ∗ω . The gλ-calculus operations next : τ → I τ

and unbox : �τ → τ correspond to the coercionswrap; delayid,−1

and delayω, id ; unwrap. Erasing later modalities in the gλ-calculus
happens via the term former prev, which restricts the context to

be constant (essentially, under �); in Core λ∗, this would arise from
the implicit type equivalence ∗ω ∗−1 τ ≡ ∗ω ∗−1 τ = ∗ω τ . Ad-
ditionally, the introduction rule for � in the gλ-calculus is more

restrictive than rule Warp for t by ω, since the latter allows the
free variables of t to have types ∗p τ where p is constant but not

necessarily ω. The gλ-calculus makes I into an “applicative func-

tor” [23], implementing only the left-to-right direction of the type

isomorphism ∗−1 (τ1 → τ2) � ∗−1 τ1 → ∗−1 τ2. In Core λ∗, both
directions are de�nable, the right-to-left one as

fun (f : ∗−1 τ1 → ∗−1 τ2).((fun (x : τ1).(f x) by +1) by −1)

where +1 is is the time warp which is left adjoint to −1 (J in [7]).

On the other hand Core λ∗ lacks many features present in other

guarded type theories (including the gλ-calculus). It would be useful,
for instance, to replace the �xed stream type with general guarded

recursive types [7, 13]; this requires designing a guardedness crite-

rion in the presence of the warping modality. Clock variables [3]

would allow types to express that unrelated program pieces may

operate within disjoint time scales. Core λ∗ enjoys decidable type-
checking, but not type inference; in contrast, type inference for

the later modality has been studied by Severi [31]. Finally, Core λ∗

might be di�cult to extend to dependent types, since it is inher-

ently call-by-value, whereas several dependent type theories with

later have been proposed [6, 8].

Metatheory Core λ∗ also stands out among guarded type theo-

ries by the design of its metatheory. First, as mentioned above, its

semantics �xes a call-by-value evaluation strategy, in contrast with

actual calculi enjoying unrestricted β-reduction. We believe that

this is natural since t by p is in essence an e�ectful term which

modi�es the current time step.

Second, the context restriction in rule Warp is perhaps contro-

versial from a technical perspective. This kind of rule, acting on

the left of the turnstile, is normally avoided in natural-deduction

presentations as it is known to cause “anomalies” [28], e.g., break-

ing substitution lemmas. Since Core λ∗ is call-by-value, we do not

need subtitution to hold for arbitrary terms. We do not expect dif-

�culties in proving a substitution lemma for values in a variant

of Core λ∗ where they have been made a subclass of expressions,

de�ning (t by p)[x\v] to be t[x\purge(v)] by p, with purge(v) de-
�ned as in Section 3.

Third, Core λ∗ uses subtyping, which has been eschewed by

guarded type theories after Nakano’s original proposal. Yet, the

context restriction of rule Warp makes subtyping extremely use-

ful in practice. In its absence, terms would have to massage the

typing context before introducing the warping modality. Guarded

recursion would also be more di�cult to use without the ability to

reason up to time warp composition.

6.2 Synchronous Programming Languages
Core λ∗ is a relative of synchronous programming languages in the

vein of Lustre [11, 12, 14, 17, 18, . . .]. Such languages use “clocks” (not

to be confused with clock variables) to describe stream growth;

9

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Adrien Gua�o

Elab(Γ; x) = (Γ(x), x)
Elab(Γ; fun (x : τ).t) = (τ → τ ′, fun (x : τ).e) where (τ ′, e) = Elab(Γ, x : τ ; t)

Elab(Γ; t1 t2) = (τ ′′
1
, (e1;Coe(τ1; τ ′

1
→ τ ′′

1
)) (e2;Coe(τ2; τ ′

1
)))

where (τi , ei) = Elab(Γ; ti) and ∗− (τ ′
1
→ τ ′′

1
) = Hτ1I

Elab(Γ; (t1, t2)) = (τ1 × τ2, (e1, e2)) where (τi , ei) = Elab(Γ; ti)
Elab(Γ; proji t) = (τi , proji (e ;Coe(τ ; τ1 × τ2))) where (τ , e) = Elab(Γ; t) and τ1 × τ2 = Hτ I

Elab(Γ; injτ2−i
1+i t) = (τ1 + τ2, inj

τ2−i
1+i e) where (τ1+i , e) = Elab(Γ; t)

Elab(Γ; case t of {inj
1
x1 .t1 | inj

2
x2 .t2 }) = (τ ′

1
t τ ′

2
, case e ;Coe(τ ; τ1 + τ2) of {inj

1
x1 .e1;Coe(τ ′

1
; τ ′

1
t τ ′

2
) | inj

2
x2 .e2;Coe(τ ′

2
; τ ′

1
t τ ′

2
)})

where (τ , e) = Elab(Γ; t) and ∗− (τ1 + τ2) = Hτ I and (τ ′i , ei) = Elab(Γ, x : τi ; ti)
Elab(Γ; s) = (ν, s) where s ∈ Sν

Elab(Γ; rec (x : τ).t) = (τ , rec (x : τ).(e ;Coe(τ ′; τ))) where (τ ′, e) = Elab(Γ, x : ∗−1 τ ; t)
Elab(Γ; t by p) = (∗p τ , Coe(Γ;∗p (Γ \p)); e by p) where (τ , e) = Elab(Γ \p ; t)
Elab(Γ; head t) = (τ ′, head (e ;Coe(τ ; Stream τ ′))) where (τ , e) = Elab(Γ; t) and ∗− Stream τ ′ = Hτ I
Elab(Γ; tail t) = (∗−1 Stream τ ′, tail (e ;Coe(τ ; Stream τ ′))) where (τ , e) = Elab(Γ; t) and ∗− Stream τ ′ = Hτ I
Elab(Γ; t1 :: t2) = (Stream (τ1 t τ ′

2
), (e1;Coe(τ1; τ1 t τ ′

2
)) :: (e2;Coe(τ2;∗−1 Stream (τ1 t τ ′

2
))))

where (τi , ei) = Elab(Γ; ti) and ∗− Stream τ ′
2
= Hτ2I

Figure 9. Elaboration

such a clock is a time warp whose image forms a downward-closed

subset of ω (except in [18]). Synchronous languages are generally

�rst-order (with exceptions [18, 30]) and separate clock analysis

from productivity checking. As a result, Core λ∗ is both more �ex-

ible and simpler from a metatheoretical standpoint. However, it

does not enforce bounds on space usage, in contrast with synchro-

nous languages or the work of Krishnaswami [20, 21].

Acknowledgements This work has bene�ted from conversations

with many researchers, including Albert Cohen, Louis Mandel, Paul-

André Melliès, and Marc Pouzet. It owes an especially great deal to

Paul-André Melliès, who introduced the author to the topos of trees

and distributors. This work was partially supported by the German

Research Council (DFG) under Grant No. ME14271/6-2.

References
[1] Nada Amin and Tiark Rompf. 2017. Type Soundness Proofs with De�nitional

Interpreters. Principles of Programming Languages (POPL’17).

[2] Robert Atkey. 2006. Substructural Simple Type Theories for Separation and In-place

Update. Ph.D. Dissertation. University of Edinburgh.

[3] Robert Atkey and Conor McBride. 2013. Productive Coprogramming with

Guarded Recursion. In International Conference on Functional Programming (ICFP

2013). ACM.

[4] Patrick Bahr, Hans Bugge Grathwohl, and Rasmus Ejlers Møgelberg. 2017. The

Clocks Are Ticking: No More Delays! Reduction Semantics for Type Theory with

Guarded Recursion. In Logic in Computer Science (LICS’17). Springer.

[5] Gavin Bierman and Valeria de Paiva. 2000. On an Intuitionistic Modal Logic.

Studia Logica 65, 3 (2000), 383–416.

[6] Lars Birkedal, Ales Bizjak, Ranald Clouston, Hans Bugge Grathwohl, Bas Spitters,

and Andrea Vezzosi. 2016. Guarded Cubical Type Theory: Path Equality for

Guarded Recursion. In Computer Science Logic (CSL’16).

[7] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian

Støvring. 2012. First steps in synthetic guarded domain theory: step-indexing in

the topos of trees. Logical Methods in Computer Science 8, 4 (2012).

[8] Ale Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus E. Møgelberg,

and Lars Birkedal. 2016. Guarded Dependent Type Theory with Coinductive

Types. In Foundations of Software Science and Computation Structures (FoSSaCS’16).

Springer.

[9] Val Breazu-Tannen, Thierry Coquand, Carl A. Gunther, and Andre Scedrov. 1991.

Inheritance as Implicit Coercion. Information and Computation (1991).

[10] Jean Bénabou. 2000. Distributors at Work. (2000).

[11] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. 1987. LUSTRE:

A declarative language for programming synchronous systems. In Principles of

Programming Languages (POPL’87).

[12] Paul Caspi and Marc Pouzet. 1996. Synchronous Kahn Networks. In International

Conference on Functional Programming (ICFP’96). ACM.

[13] Ranald Clouston, Ales Bizjak, Hans Bugge Grathwohl, and Lars Birkedal. 2016.

The Guarded Lambda-Calculus: Programming and Reasoning with Guarded

Recursion for Coinductive Types. Logical Methods in Computer Science (2016).

[14] Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti, Florence

Plateau, and Marc Pouzet. 2006. N -synchronous Kahn networks: a relaxed

model of synchrony for real-time systems. In Principles of Programming Lan-

guages (POPL’06).

[15] Pierre-Louis Curien, Marcelo Fiore, and Guillaume Munch-Maccagnoni. 2016. A

Theory of E�ects and Resources: Adjunction Models and Polarised Calculi. In

Principles of Programming Languages (POPL’16). ACM.

[16] Pierre-Louis Curien and Giorgio Ghelli. 1990. Coherence of subsumption. In

Colloquium on Trees in Algebra and Programming (CAAP’90). Springer.

[17] Julien Forget, Fréderic Boniol, Daniel Lesens, and Claire Pagetti. 2008. A Multi-

Periodic Synchronous Data-Flow Language. In High-Assurance Systems Engineer-

ing (HASE’08). IEEE.

[18] Adrien Guatto. 2016. A Synchronous Functional Language with Integer Clocks.

Ph.D. Dissertation. École normale supérieure.

[19] Martin Hyland. 2010. Some Reasons for Generalising Domain Theory. Mathe-

matical Structures in Computer Science 20, 02 (Mar 2010), 239.

[20] Neelakantan R Krishnaswami. 2013. Higher-Order Functional Reactive Pro-

gramming without Spacetime Leaks. In International Conference on Functional

Programming (ICFP’13). ACM.

[21] Neelakantan R. Krishnaswami and Nick Benton. 2011. Ultrametric Semantics of

Reactive Programs. In Logic in Computer Science (LICS’11). IEEE.

[22] Joachim Lambek and Philip J. Scott. 1986. Introduction to Higher-Order Categorical

Logic. Cambridge University Press.

[23] Conor McBride and Ross Paterson. 2008. Applicative Programming with E�ects.

Journal of Functional Programming 18, 1 (2008), 1–13.

[24] Paul-André Melliès and Noam Zeilberger. 2015. Functors Are Type Re�nement

Systems. In Principles of Programming Languages (POPL’15). ACM.

[25] Paul-André Melliès and Noam Zeilberger. 2016. A bi�brational reconstruction of

Lawveres presheaf hyperdoctrine. In Logic in Computer Science (LICS’16). IEEE.

[26] Rasmus Ejlers Møgelberg. 2014. A type theory for productive coprogramming

with guarded recursion. In Logic in Computer Science (LICS’14). IEEE.

[27] Hiroshi Nakano. 2000. A Modality for Recursion. In Logic in Computer Science

(LICS’00). IEEE.

[28] Frank Pfenning and Rowan Davies. 2001. A Judgmental Reconstruction of Modal

Logic. Mathematical Structures in Computer Science 11, 04 (Jul 2001).

[29] Florence Plateau. 2010. Modèle n-synchrone pour la programmation de réseaux de

Kahn à mémoire bornée. Ph.D. Dissertation. Université Paris-Sud.

[30] Marc Pouzet. 2006. Lucid Synchrone, version 3. Tutorial and reference manual.

Université Paris-Sud, LRI.

[31] Paula Severi. 2017. A Light Modality for Recursion. In Foundations of Software

Science and Computation Structures (FoSSaCS’17). Springer.

10

	Abstract
	1 Introduction
	2 The Calculus
	2.1 Time Warps
	2.2 Syntax and Declarative Type System
	2.3 Type-Checking Explicit Terms
	2.4 Examples

	3 Operational Semantics
	3.1 Values and Environments
	3.2 Evaluation Judgment
	3.3 Metatheoretical Results

	4 Denotational Semantics
	4.1 Preliminaries
	4.2 The Topos of Trees
	4.3 Interpreting the Warping Modality
	4.4 The Interpretation
	4.5 Adequacy

	5 Algorithmic Type Checking
	5.1 Deciding Subtyping
	5.2 Adjoint Typing Contexts
	5.3 The Algorithm
	5.4 Metatheoretical Results

	6 Discussion and Related Work
	6.1 Guarded Type Theories
	6.2 Synchronous Programming Languages

	References

