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Abstract
The concept of decomposition in computer science and engi-
neering is considered a fundamental component of computa-
tional thinking and is prevalent in design of algorithms, soft-
ware construction, hardware design, and more. We propose a
simple and natural formalization of sequential decomposition,
in which a task is decomposed into two sequential sub-tasks,
with the first sub-task to be executed out before the second
sub-task is executed. These tasks are specified by means of
input/output relations. We define and study decomposition
problems, which is to decide whether a given specification
can be sequentially decomposed. Our main result is that de-
composition itself is a difficult computational problem. More
specifically, we study decomposition problems in three set-
tings: where the input task is specified explicitly, by means
of Boolean circuits, and by means of automatic relations. We
show that in the first setting decomposition is NP-complete,
in the second setting it is NEXPTIME-complete, and in the
third setting there is evidence to suggest that it is undecidable.
Our results indicate that the intuitive idea of decomposition
as a system-design approach requires further investigation.
In particular, we show that adding human to the loop by
asking for a decomposition hint lowers the complexity of
decomposition problems considerably.

∗Full version of the paper appears in [8].
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1 Introduction
Over the past decade, it became apparent that the conceptual
way of analyzing problems through computer-science tech-
niques can be considered as a general approach to analysis,
design, and problem solving, known as computational think-
ing [30, 31]. A key element of this approach is the taming of
complexity by decomposing a complex problem into simpler
problems. Quoting Wing [30]: “Computational thinking is
using abstraction and decomposition when attacking a large
complex task or designing a large complex system.” While
abstraction helps to tame complexity by simplifying away
irrelevant details of a complex problem, decomposition helps
complexity by breaking down complex problems into simpler
ones. In fact, decomposition is a generic project-management
technique: project managers quite often face challenges that
require decomposition – a large project that is divided among
team members to make the problem less daunting and eas-
ier to solve as a set of smaller tasks, where team members
work on tasks that are in their specific fields of expertise. As
computer scientists and engineers, the concept of decompo-
sition is prevalent in the design of algorithms, in software
construction, in hardware design, and so on. For example,
a classical paper in software engineering studies criteria to
be used in decomposing systems into modules [23]. Yet, in
spite of the centrality of the concept of decomposition in
computational thinking, it has yet to be studied formally in
a general theoretical setting (see related work). Such a study
is the focus of this work.

There are many different types of decomposition that can
be considered. Based on her understanding of the problem,
the decomposer has to make a decision on how to decompose
a given problem, for example, by meeting certain constraints
on the size of the sub-problems, or constraints on the way
that solved sub-problems ought to be recomposed. A simple
and natural way of decomposition is sequential decompo-
sition in which a task is decomposed into two sub-tasks,
where the first sub-task is to be carried out before the sec-
ond sub-task can be executed. A formal model for sequential
decomposition is the subject of this work. We assume that
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the given problem is specified by means of an input/output
relation. It is widely accepted that such relations are the most
general way to specify programs, whether for terminating
programs [12], where input and output should be related
values, or for nonterminating programs [24], where input
and output are streams of values. The decomposition problem
is to decompose a given input/output relation R, between
an input domain I and an output domain O, into two re-
lations R1 and R2, such that R can be reconstructed from
R1 and R2 using relational composition (defined in Section
3). To avoid trivial solutions, where either R1 or R2 is the
identity relation, we assume that the intermediate domain,
that is, the co-domain of R1, which is also the domain of R2,
is specified. Intuitively, specifying the intermediate domain
amounts to constraining the manner in which the first task
can “communicate” with the second task. Such a restriction
can be viewed as a form of information hiding, which is one
of the major criteria for decomposition in [23]. As we show,
sequential decomposition is nontrivial only when the chan-
nel of communication between the first and second task has
a small ”bandwidth”, appropriately defined.
We study sequential decomposition in three settings: ex-

plicit, symbolic, and automatic. In the explicit setting, the
input/output relation R is specified explicitly. In the sym-
bolic setting, the domains and R are finite but too large to
be specified explicitly, so R is specified symbolically as a
Boolean circuit. In the automatic setting, the domains and R
may be infinite, so the domains are specified by means of an
alphabet, over which R is specified by means of a determin-
istic finite-state automaton.

Our general finding is that sequential decomposition, viewed
as a computational problem, is itself a challenging problem.
In the explicit setting, the decomposition problem is NP-
complete. This escalates to NEXPTIME-complete for the
symbolic setting. For the automatic setting the decompo-
sition problem is still open, but we provide evidence and
conjecture that it is undecidable. Specifically, we show that
even a very simple variant of the automatic setting can be
viewed as equivalent to the Positivity Problem, whose de-
cidability is well known to be open [20, 28]. We do show,
however, that a “strategic" variant of the automatic setting,
in which the required relations are described as transducers
is in EXPTIME. These findings, that decomposition is an
intractable problem, can be viewed as a “No-Free-Lunch” re-
sult, as it says that decomposition, which is a tool to combat
complexity, is itself challenged by computational complexity.
This means that while decomposition is an essential tool, the
application of decomposition is an art, rather than science,
and requires human intuition.
As such, we explore decomposition with ”a human in

the loop”, where the role of the human is to offer a hint,
suggesting one of the terms of the decomposition, and the
role of the decomposition algorithm is to check if a valid
decomposition can be found based on the hint. We show that

decomposition with a hint is easier than decomposition with
no hint; it is in PTIME in the explicit setting, in ΠP

3 in the
symbolic setting, and in EXPTIME in the automatic setting.

2 Related work
In this paper we introduce a new framework to study decom-
position of system-level specifications into component-level
specifications. In contrast, most existing approaches in soft-
ware engineering focus on composition, that is, developing
systems from independently developed components, or prov-
ing system-level properties from component-level properties,
for example [7]. This compositional approach is a fundamen-
tal approach in computer science to taming complexity.
A major weakness of composition-based approaches to

system development is that they consider only the prob-
lem of simplifying the implementation work, but ignore the
task of decomposing the often very complex system-level
technical specifications into smaller/simpler ones. For exam-
ple, there is no technique to explain how smaller assump-
tion/guarantee contracts can be obtained from larger ones.
This operation has to be conducted manually by developers
using their intuition and understanding of complex system-
level specification. Thus, our work here on decomposition
complements existing approaches on composition-based de-
velopment. In addition, we believe that our work is also
relevant to architectural design, e.g., as a complement of [3].

A classical paper of Parnas in software engineering studies
criteria for to be used in decomposing systems into modules
[23]. Parnas’s framework, however, assumes that the starting
point for decomposition consists of architectural specifica-
tion of the system, while our starting point is quite more
abstract, as we assume that we are provided with relational
specification. Another related work is that of [26], which
describe an approach for extracting sequential components
from system specification. Unlike, however, our work here,
which starts from a highly abstract relational specification,
the approach of [26] assumes that the system’s specification
is provided by means of interface specification of the com-
ponents. Thus, this approach is of factorization rather then
decomposition.
Decomposition has been studied in the context of linear

algebra. A matrix decomposition or matrix factorization is a
factorization of a matrix into a product of matrices. There
are many different matrix factorizations. Certain Boolean
matrix-factorization problems are known to be NP-complete
[14]. Our NP-completeness result for explicit relations can be
viewed as a special case of Boolean matrix-factorization. In
addition, our formulation for the explicit case can be viewed
as a reformulation of the combinatorial definition of the
nondeterministic communication complexity (see Chapters
1-2 in [18]). In that sense, this paper extends these works to
more general representations of relations.
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3 Preliminaries
3.0.1 Relations
Let A,B,C be finite sets. For a binary relation R ⊆ A × B, let
Dom(R), and Imд(R) be the domain ofR, and the image (some-
times called co-domain) of R, defined as follows. Dom(R) =
{a ∈ A|∃b ∈ B s.t (a,b) ∈ R)}, and Imд(R) = {b ∈ B |∃a ∈

A s.t (a,b) ∈ R)}. For a ∈ A, let ImдR (a) = {b ∈ B |(a,b) ∈ R}.
R is called a function if for every a ∈ A,b,b ′ ∈ B we
have (a,b), (a,b ′) ∈ R =⇒ b = b ′. Given binary rela-
tions R1 ⊆ A × B, and R2 ⊆ B × C , the composition of
R1 and R2 is a binary relation R1 ◦ R2 ⊆ A × C where
R1 ◦ R2 = {(a, c)|∃b ∈ B s.t. (a,b) ∈ R1 and (b, c) ∈ R2}.

3.0.2 Automata
A Nondeterministic Finite Automaton (NFA) is a tuple A =
(Σ,Q,q,δ , F ), where Σ is a finite alphabet, Q is a finite state
set with an initial state q, δ : Q × Σ → 2Q is a transition
function, and F is an accepting-state set. A run of A over
a word w = a1a2 · · ·an for some n is a state sequence r =
q0,q1, · · · ,qn such that qi+1 ∈ δ (qi ,ai ) for i ≥ 0, where
q0 = q is the initial state. A run is accepting if its final state is
accepting. A word is accepted if it has an accepting run. The
language ofA,L(A), is the set of all acceptedwords ofA and
is called a regular language. A language is also regular if and
only if it can be described by a regular expression. We define
the size of the automaton A as |Q | + |Σ| + |δ | and denote
this size by |A|. For NFAsA1 = (Σ1,Q1,q

1,δ1, F1) andA2 =

(Σ2,Q2,q
2,δ2, F2), we define the product automaton of A1

and A2 as an automaton A1 ×A2 = (Σ1 × Σ2,Q1 ×Q2,q
1 ×

q2,δ , F1 × F2) where (p,p ′) ∈ δ ((q,q′), (l , l ′)) iff p ∈ δ1(q, l)
and p ′ ∈ δ2(q

′, l ′). An NFAA is deterministic (called DFA) if
for every state q and letter a, |δ (q,a)| ≤ 1. Every NFA can be
determinized to a DFA that describes the same language by
using the subset construction, possibly with an exponential
blow-up [13]. It is often more convenient for users to specify
regular languages by means of regular expressions, which
can be converted to DFA, possibly with a doubly exponential
blow-up [13]. We assume here that all regular languages are
specified by means of DFAs, as we wish to study the inherent
complexity of decomposition.

Finally a transducer (also called a Moore machine) is a DFA
with no accepting states, but with additional output alphabet
and an additional function from the set of states to the output
alphabet. Transducers describe automatic functions from
input to output.

4 Problem definition
The concept of decompositions that we explore here is related
to systems that can be defined by their given input and
produced output. We model these as an input domain I and
an output domain O, not necessarily finite. Our description
of a system is a specification that associates inputs to outputs,
and is modeled as a relation R ⊆ I × O [12, 24]. In addition

we assume a constraint in form of a domain with a specific
size that directs the decomposition to be more concise and
is given as an intermediate domain B. The objective is to
decompose R into relations R1 ⊆ I × B, and R2 ⊆ B × O

such that the composition R1 ◦R2 has either of the following
properties: (i) no input-output association is added or lost -
this problem is called the Total Decomposition Problem (TDP),
or (ii) a more relaxed version, called the Partial Decomposition
Problem (PDP) in which no input-output association is added,
but we are allowed to lose some of the output as long as each
input can be resolved.

To make the paper more fluent to read we use the notation
TDP/PDP for statements that are valid to the TDP and the
PDP variants respectively. Since the size of the intermediate
domain B can be significantly smaller than the size of the
input or output domains, the problem becomes non-trivial
as some sort of compression is required in order to enable
TDP/PDP. The actual problems of TDP/PDP are appropri-
ately defined for each section as decision problems. We first
define the TDP/PDP conditions as follows.

Definition 4.1. (TDP/PDP conditions) Given binary rela-
tions R ⊆ I × O, R1 ⊆ I × B, and R2 ⊆ B × O for some
domains I,O,B, we say that (R1,R2) meet the TDP con-
dition if Imд(R1) ⊆ Dom(R2) and R1 ◦ R2 = R. We say
that (R1,R2) meet the PDP condition if Imд(R1) ⊆ Dom(R2),
Dom(R1 ◦ R2) = Dom(R), and R1 ◦ R2 ⊆ R.

The decision problem of TDP/PDP, formally defined for
diverse settings, is: given a description of domains and a
relevant relation R, find whether there exist (R1,R2) that
meet the TDP/PDP condition.
Since the type of domains and relations that we explore

varies between an explicit and a more implicit description
of relations, the formal definitions of the problem change
according to these representations, and so are the sought
decomposed relations. It is important to note that the TDP/
PDP conditions are properties of the actual relations, and
not of the description in which the relations are represented.
Note that PDP without the restriction of Dom(R1 ◦ R2) =

Dom(R) becomes trivial, as one can take the empty sets as
R1 and R2. Also note that Imд(R1) ⊆ Dom(R2) implies that
Dom(R1◦R2) = Dom(R1) (see proper claim in [8]), a technical
fact that can help prove TDP/PDP conditions in various
settings. Finally see that the decomposed relations that meet
the TDP conditions, also meet the PDP conditions on the
same input, therefore a positive answer to TDP implies a
positive answer to PDP.

5 Decomposition is hard
Decomposition has been advocated as the first step in the de-
sign of complex systems, with the intuition that it is easier to
design components separately, rather than design a complex
monolithic system. We show in this section several settings
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in which finding a sequential decomposition is computation-
ally hard. This means that while sequential decomposition
could be used to simplify the complexity of the initial speci-
fication, such decomposition itself is intractable, thus can be
viewed as a ”No-Free-Lunch".

5.1 Explicit relations
The simplest case of decomposition is when the domains
I,O and B are finite and given explicitly as a part of the
input, and the relation R is given explicitly as a table in I×O.

Problem 1. (TDP/PDP on explicit relations) We are given
a tuple I = (I,O,B,R) where I,O,B are finite domains
and R ⊆ I × O. The problem is whether there exist relations
R1 ⊆ I × B, and R2 ⊆ B × O such that (R1,R2) meet the
TDP/PDP conditions.

Claim 1. If |B| ≥ |I| or |B| ≥ |O| then TDP has a positive
solution (and therefore PDP as well) and the relations that solve
TDP can be found in a linear time to the size of the input.

Proof. Suppose w.l.o.g. that |B| ≥ |O|. Then we can define
R2 = {(д(o),o)|o ∈ O} where д : O → B is any injection.
Then for TDP, R1 = {(i,b)|(i,o) ∈ R and b = д(o)} is a
relation that satisfies R1 ◦ R2 = R. □

Therefore TDP/PDP become non-trivial when |B| is strictly
smaller than |I | and |O|.

Example 5.1. Let I = {i1, i2},B = {b}, and O = {o1,o2}.
LetR = {(i1,o1), (i2,o2)}. Then the answer to TDP is negative
as every non-empty composition of relations R1 ◦ R2 with
Dom(R1 ◦ R2) = Dom(R), must also include (i1,o2) or (i2,o1).

We next show that even for explicit setting, TDP/PDP are
computationally hard, that is NP-complete. On a positive
note, being in NP, solutions for TDP/PDP can be sought by
various techniques such as reduction to SAT, then using SAT
solvers. We give proof outline, full details appear in [8].

Theorem 5.2. TDP/PDP on explicit relations are NP-complete.

Proof. To see that TDP/PDP is in NP, guess R1,R2 and verify
conditions of TDP/PDP.
For TDP, NP-hardness is shown by a reduction from the

NP-complete problem: Covering by Complete Bipartite Sub-
graphs (CCBS) (Problem GT18 at[11]). In the CCBS we are
given a bipartite graph G and k > 0, and the problem is
whetherG can be covered by k complete bipartite subgraphs.
The idea of the proof is that all the I and O elements that
are related to a specific element b ∈ B via R1 and R2, must
be a part of a bipartite clique in the bipartite (I,O) graph
that R describes.
For PDP where only a part of R needed to be "covered"

although the solution should still cover the domain of R, NP-
hardness follows by a reduction from Set Cover (Problem
SP5 in [11]). □

5.2 Symbolic relations
In Section 5.1, the input relation is described explicitly. In
many cases, however, although finite, the relation is too large
to be described explicitly, and it makesmore sense to describe
it symbolically. Specifically, the domains are given as the set
of all truth assignments over sets of Boolean variables, and
the relation is described symbolically. Such representations
have been studied in the literature, where they are often
referred to as succinct representations, since they allow for
a polynomial-size description of exponential-size domains
and relations. In this section we explore a standard encoding
in which the relation is described as a Boolean circuit, as
in [2, 5]. Other symbolic encodings studied in the literature
are Boolean formulas [29], and BDDs [6].
Let D,D ′ be finite domains of size |D | = 2n , and |D ′ | =

2n′ for some n,n′. A (succinct) circuit description of a re-
lation R ⊆ D × D ′ is a circuit CR of size polynomial in
max(n,n′) with Boolean variables d1, · · ·dn ,d ′

1, · · · ,d
′
n′ such

that CR (d1, · · · ,dn ,d
′
1, · · · ,d

′
n′) = 1 iff

((d1, · · · ,dn), (d
′
1, · · · ,d

′
n′)) ∈ R. For more about succinct cir-

cuit representation, see [2, 10, 22].

Problem 2. (TDP/PDP for symbolic relations) We are given a
tuple I = (nI ,nO ,nB ,CR ) where nI ,nO ,nB are logarithmic
in the size of some domains I,O, B respectively and CR is
a circuit that describes a relation R ⊆ I × O. The problem
is whether there exist circuits CR1 ,CR2 that describe relations
R1 ⊆ I × B, and R2 ⊆ B × O such that (R1,R2) meet the
TDP/PDP conditions.

For TDP/PDP, as in Claim 1, the problem becomes trivial
when nB ≥ min{nI ,nO}. Note that a variant of PDP, in
which the required relations in the solution are functions
can be viewed as an instance of the problem of Boolean
functional synthesis, e.g. [9].
We next show that TDP/PDP are NEXPTIME-complete.

We obtain this result by applying the computational-complexity
theory of succinct-circuit representations for ”logtime” re-
ductions [2] to the NP-hardness reductions described in Sec-
tion 5.1. We describe this in details.

A reduction from languages A ⊆ Σ∗ to B ⊆ Σ∗, for a finite
alphabet Σ, is a function f : A → B such that x ∈ A iff
f (x) ∈ B. The function f is called a logtime reduction if the
i-th symbol of f (x) can be computed in a time logarithmic of
the size of x . This is done by using a so called “direct-input-
access" Turing machine, which has a specific “index" tape in
which a binary index i is written and then the i-th symbol
of the input string x is computed. See [2], which also states
a generalization of the following:

Theorem 5.3. (Balcazar, Lozano, Toran [2]) For every lan-
guage B ⊆ Σ∗, if B is NP-hard under logtime reducibility, then
the circuit representation of B is
NEXPTIME-hard under polynomial-time reducibility.

From Theorem 5.3 we get:
4
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Theorem 5.4. TDP/PDP for symbolic relations are
NEXPTIME-complete.

We give a proof sketch; the full proof appears in [8].
Proof Sketch. For membership in NEXPTIME, we con-

struct the relation R from CR in time exponential in n, then
use the explicit solution (in NP), as in Section 5.1. For NEXP-
TIME hardness we first retrace the chain of log-time reduc-
tions from a Turing machine description of an NP language,
via SAT to either TDP or PDP on explicit relations. Most
of these reductions are found in [11], in addition to Theo-
rem 5.2 from Section 5.1. All these reductions, which are
functions from strings to strings, have the property that only
a few symbols are required from the input string, as well
as a local comparison, in order to determine the identity of
the j’th symbol of the output string: the property that is
required for logtime reductions. Having obtained that these
reductions are logtime, NEXPTIME hardness follows from
the Conversion Lemma from [2] and by using transitivity of
polynomial-time reductions. □

5.3 Automatic relations
In many applications we need to consider input and output
as streams of symbols, with some desired relation between
the input stream and the output stream. The most basic de-
scription for such systems, the one that we explore in this
work, is when the domains are (possibly infinite) sets of finite
words over finite alphabets, and the given relation is a regu-
lar language, given as a deterministic finite automaton (DFA),
over the product alphabet of the input and output domains.
The setting that we consider in this paper is of automatic
relations. Automatic relations provide a context for a rich
theory of automatic structures, cf. [15, 27], with a solvable
decision for first-order logic. We follow here the convention
in regular model checking, cf. [4], where length-preserving
automatic relations, with input and output symbols inter-
leaved, are used as input/output specifications for each step
of reactive systems. (Thus, unlike the definitions in [15, 27],
we do not allow padding.)

Given finite alphabets Σ, Σ′ with domains D ⊆ Σ∗, D ′ ⊆

Σ′∗, and a relation R ⊆ D × D ′, we say that a DFA AR over
alphabet (Σ × Σ′) describes R if: ( ®d, ®d ′) ∈ L(AR ) if and only
if ( ®d, ®d ′) ∈ R . Note the slight abuse of notation as L(AR )

describes words in (Σ × Σ′)∗ while R describes words in
Σ∗×Σ′∗. Thus, we assume that input and output streams have
the same lengths, that is, ( ®d, ®d ′) ∈ R implies that | ®d | = | ®d ′ |.

Problem 3. (TDP/PDP for automatic relations) We are given
a tuple I = (ΣI , ΣB , ΣO ,AR ), where ΣI , ΣB , and ΣO are
finite alphabets, andAR is a DFA that describes a relation R ⊆

Σ∗
I
× Σ∗

O
. The problem is whether there exist DFAs AR1 ,AR2

that describe relations R1 ⊆ Σ∗
I
× Σ∗

B
and R2 ⊆ Σ∗

B
× Σ∗

O
such

that (R1,R2) meet the TDP/PDP conditions.

As in the explicit and symbolic cases, the problem becomes
non trivial for TDP/PDP only when |ΣB | < min{|ΣI |, |ΣO |}.
While TDP/PDP in the symbolic setting can be solved by
reduction to the explicit setting, this cannot be done here as
the domains are possibly infinite. Indeed, automatic-relation
TDP/PDP seems to be a challenging problem. We next con-
jecture that automatic-relation TDP/PDP are undecidable
and explain the motivation for this conjecture and why
an automatic-theoretic approach may not be helpful for
TDP/PDP. We then show that even for the most basic case,
in which the given relation is the equality relation, TDP/PDP
can already be viewed as an algorithmic problem in automata
that is equivalent to the Positivity Problem whose decidabil-
ity is still open [20, 28]. We next show that for intermediate
alphabet that is of exponential size, TDP/PDP on automatic
relations can be reduced to TDP/PDP on binary interme-
diate alphabet. Finally we show by an automata-theoretic
approach that a “strategic" variant of PDP, in which the re-
quired relations are in form of transducers, is decidable, and
in fact is in EXPTIME.

5.3.1 An undecidability conjecture for TDP/PDP
A notable positive result about automatic relations is the de-
cidability of their first-order theories [15, 27]. On the other
hand, most second-order problems over automatic relations
are undecidable; for example, checking the existence of an
Eulerian cycle in an automatic graph is highly undecidable
[19]. TDP/PDP are essentially second-order problems–we
ask for the existence of R1 and R2 under the TDP/PDP con-
ditions. Our conjecture is that this problem is undecidable.
We provide here intuition to justify this conjecture.

We show in Section 6 below that TDP/PDP are decidable
for automatic relations when a hint, in the form of a DFA
for R1 or R2 is given. The idea is that given one component,
say R1, there is a maximal second component R2 that can be
obtained from R1 so that if R1 is the first component of some
proper decomposition, thenR2 is a proper second component.
When R1 is given as a DFA, we can then construct a DFA for
R2. Can we leverage this idea towards solving the problem
in full? That is, can we search for, say, an automaton for R1
that together with the maximal R2 constructed below, forms
a solution for TDP/PDP?

It is tempting to try to use an automata-theoretic approach
similar to the strategic PDP (see Section 5.3.4 below) in which
we consider representing R1 ⊆ (ΣI × ΣB )

∗ as a labeled tree
τ1 : (ΣI × ΣB )

∗ 7→ {0, 1}. Then we can try to define a tree
automaton A1 that accepts a tree τ1 iff it is a correct hint for
the total or partial decomposition of an input/output relation
R ⊆ (ΣI × ΣB )

∗. The difficulty is that such an automaton has
to check two properties of τ1: (1) The domain of R1 has to be
equal to the domain of R. This is essentially a requirement on
the projection of τ1 on ΣI . (2) The composition of R1 with the
maximal R2 is contained in or equal to R. This is essentially a

5
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requirement on the projection of τ1 on ΣB . Known automata-
theoretic techniques exist for dealing with projection of trees,
see for example [16]. We currently, however, have no known
technique to deal with two orthogonal projections, as we
have here.
Of course, this argument only shows that a particular

technique to attack the problem is unlikely to be successful.
To justify the conjecture, we note that the dual-projection
problem is reminiscent to the problem of distributed tem-
poral synthesis, which was shown to be undecidable [25]
(though there is no obvious formal connection between the
decomposition problem and the distributed-synthesis prob-
lem). There we are representing an overall system strategy
as a tree where tree labels correspond to actions of system
components and tree edges correspond to environment ac-
tions. When different systems components are expected to
act independently, without knowledge of actions by other
components, overall systems strategies has to be decom-
posed into separate strategies as projections of the system
strategy. The similarity between the two problems motivates
us to formulate the following conjecture.

Conjecture 5.5. TDP/PDP for automatic relations is unde-
cidable.

5.3.2 Decomposing equality
To support the claim of how non-trivial the decomposition
problem is, we consider a more simple and abstract variant
of automatic TDP. We consider a very simple case in which
the given automatic relation is trivial, and the intermediate
alphabet is binary. We do not even require the decomposed
relation R1,R2 to be realized by automata, although we do
require the length of every matching words in R1 and R2 to
be the same. Specifically, given a regular language L over
Σ∗
I
, let R=L ⊆ ΣI × ΣI be the equality relation over L. i.e.

R = {(w,w)|w ∈ L}. Given L over Σ∗
I
and ΣB = {0, 1}, we

ask whether there are relations (R1,R2) that meet the TDP
properties with respect to R=L .
First see that we can assume wlog that (R1,R2) are func-

tions since existence of such relations leads to existence of
such functions. Next, note that R1 cannot relate two distinct
words in L to the same word in Σ∗

B . This is because otherwise
a word from Σ∗

B has to meet two distinct Σ∗
I
elements, thus

either break the equality property or break the TDP property.
Therefore we have that R1 is an injection from Σ∗

I
to Σ∗

B
. As

such, finding an R1 that is such an injection also gives us
R2 = R−1

1 .
Let Ln be the words in L of size n. Note that if there is

n for which |Ln | > 2n then no such R1 can be found. If,
however, for every n we have |Ln | ≤ 2n then a function R1
can be simply realized by ordering the words in every Ln in
lexicographic order and relating each one to the Σn

B
word

that encodes the index in binary.

Therefore the problem of TDP in this setting is reduced
to the following problem: given a regular language L over a
finite alphabet Σ, where for every n, Ln is the set of words in
L of size n, does |Ln | ≤ 2n for every n? We call this problem
the The Exponential-Bound Problem (EBP). The following the-
orem, however, shows that EBP is equivalent to the problem
of Positivity, described below, whose decidability has been
famously open for decades [20, 28]. Although this is not a
direct reduction to automatic TDP, this relation indicates
to the hardness of solving automatic TDP on even a simple
relation.
A linear recurrence sequence (LRS) is a sequence of in-

tegers ⟨un⟩∞n=0 satisfying a recurrence relation: there exist
constants integers a1,a2, . . . ,ak such that, for all n ≥ 0,
un+k = a1un+k−1 + a2un+k−2 + . . . + akun . If the initial val-
uesu0, . . . ,uk−1 of the sequence are provided, the recurrence
relation defines the rest of the sequence uniquely. Given a lin-
ear recurrence sequence (LRS) ⟨un⟩∞n=0, the Positivity Problem
asks whether all terms of the sequence are non-negative.
Theorem 5.6. EBP is Equivalent to Positivity.
Proof. Wefirst show that Positivity reduces to EBP. Let ⟨un⟩∞n=0
be an LRS; we show how positivity for the sequence ⟨−un⟩∞n=0
can be formulated as an EBP problem. To this end, we invoke
Corollary 4 from [1] to obtain a rational stochastic matrix
M of size c × c (denoted Q̃ in the proof of Proposition 2 from
op. cit., where the value of c is also stated) such that, for all
n ≥ 0,

(M2n+1)1,2 ≤
1
4

iff un ≤ 0 iff − un ≥ 0 , (1)

in other words the positivity of ⟨−un⟩∞n=0 is violated iff there
is some n such that the (1, 2)-th entry of M2n+1 is strictly
larger than 1/4.

In fact, as noted in the comments following Corollary 4 in
[1],M can be chosen so that its entries are dyadic rationals,
i.e., having denominator some power of 2. Let us therefore
assume this to be the case, and let 2p be the largest such
power. Write J = 2pM and N = (2pM)2. Then J and N are
square matrices with non-negative integer coefficients, and
hence there is some DFAA such that (J ·N n)1,2 is the number
of words of length n + 1 accepted by A. More precisely, A
has initial state s , and c further states q1, . . . ,qc . The single
accepting state is q2. To define the transition function, if the
(1, j)-th entry of J is ℓ, then we postulate ℓ transitions going
from state s to state qj , each labelled with a new (fresh) letter.
Likewise, if the (i, j)-th entry of N is ℓ, then we include ℓ
transitions going from qi to qj , again for each one using a
new letter as label. In this way, J and N can be viewed as the
adjacency matrices of the underlying directed multigraph of
A, and (J · N n)1,2 counts the number of paths in A going
from s to q2 in n + 1 steps. Since by construction, different
paths give rise to different words, (J · N n)1,2 does indeed
correspond to the number of words of length n + 1 accepted
by A.
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Writing L(A) = L, Eq. (1) becomes, for all n ≥ 0,

Ln+1 ≤
2p22pn

4
=

22p(n+1)

2p+2
iff − un ≥ 0 . (2)

We now modify automaton A by lengthening every tran-
sition in A by a factor of 2p; more precisely, for every tran-
sition q → q′, create 2p − 1 fresh non-accepting states
r1, . . . , r2p−1 and replace q → q′ by the sequence q → r1 →
r2 → . . . → r2p−1 → q′, all labelled with the same letter
as the original transition. The initial and accepting states
otherwise remain unchanged. Let us call the resulting DFA
A ′, with accepted language L(A ′) = L′. In moving from A

to A ′, the net effect has been to increase the length of every
accepted word by a factor of 2p; note also that ifm is not a
multiple of 2p, then L′m = 0.
Combining the above with Eq. (2), we conclude that the

LRS ⟨−un⟩
∞
n=0 is positive iff for all m ≥ 0, L′m ≤ 2m

2p+2 , i.e.,
2p+2L′m ≤ 2m .
Inflating the alphabet size of A ′ by a factor of 2p+2, we

can easily manufacture a DFA A ′′ with accepted language
L(A ′′) = L′′ having the property that, for allm ≥ 0, L′′m =
2p+2L′m . It therefore follows that the LRS ⟨−un⟩∞n=0 is positive
iff for allm ≥ 0, L′′m ≤ 2m , which completes the reduction of
Positivity to EBP.
Finally, since the series obtained from the number of dis-

tinct words of length n in an automaton makes an LRS [21],
we have that EBP also reduces to Positivity, so that the two
problems are in fact equivalent. □

5.3.3 Reduction to binary alphabet
Since the size of the intermediate alphabet plays a crucial role
in the solution of TDP/PDP, one may ask whether it suffices
to search for solutions for only the binary case. We show that
the answer is positive for intermediate alphabet that is of size
of exponent. Specifically we show by reduction that for every
automatic TDP/PDP instance I = (ΣI , ΣB , ΣO ,AR ), where
|ΣB | = 2m for some m > 0, there is a TDP/PDP instance
I ′ = (ΣI , {0, 1}, ΣO ,AR′) such that I has a solution if and
only if I ′ has a solution. The idea behind the reduction is to
encode every letter in ΣB in binary, and use this encoding for
the construction of I ′.AR′ is therefore constructed fromAR
by replacing every edge labeled (i,o) with a path ofm edges,
each with the same label (i,o). We give below an outline of
the reduction proof; see [8] for details.

Theorem5.7. There is a TDP/PDP solution to I = (ΣI , ΣB , ΣO ,AR )

where |ΣB | = 2m for some m > 0, if and only if there is a
TDP/PDP solution to I ′ = (ΣI , {0, 1}, ΣO ,AR′).

Proof. Let bin be a function in which bin(b) is a binary en-
coding of the letter b ∈ ΣB inm bits, and let binj (b) be the
j’th bit in bin(b). Since ΣB is of size 2m , the function bin is a
bijection. Assume that I has a solution (AR1 ,AR2 ). We first
construct an automatonAR′

1
over alphabet (ΣI×{0, 1}) from

AR1 by replacing every edge labeled (i,b) with anm-edges

path with edge labels (i,bin0(b)), · · · (i,binm−1(b)), thus such
a path describes the word (im ,bin(b)) (where im is the letter
i concatenated m times). Same, we construct an automa-
ton AR′

2
over alphabet ({0, 1} × ΣO) from AR2 by replacing

every edge labeled (b,o) with anm-edges path with edge la-
bels that describes the word (bin(b),om). Then since (R1,R2)

solve TDP/PDP for the instance I , we have that (R′
1,R

′
2) solve

TDP/PDP for the instance I ′.
The other side of the proof is more involved since suppose

we assume (AR′
1
, AR′

2
) solve I ′. Then we cannot guarantee

that these automata have an ”m-path" structure that can
reverse the construction we have just described. Therefore
to reach a solution, we need to reason about the automata
as regular expressions. We give the proof in [8]. □

Theorem 5.7 is stated only for alphabet that are of expo-
nent size. We do not yet know the solution for the general
case. We thus have the following conjecture.

Conjecture 5.8. There is a reduction for TDP/PDP from an
intermediate alphabet of arbitrary size to the binary alphabet.

Corollary 6.8 shows that TDP/PDP on automatic relations
with unary intermediate alphabet is solvable.

5.3.4 Strategic PDP is decidable
A specific version of PDP, that captures essential concepts
in synthesis [9, 17, 25], is when we require the solution to
be strategies. For that, we define Strategic PDP as PDP in
which the required relations R1 and R2 are functions (defined
in Section 3) that are represented by transducers T1 and T2,
respectively.
Strategic PDP can be viewed as a game of incomplete

information. Since the information “flows" in one direction,
however, the key to proving decidability for this problem is
to view the problem as a one-way chain communication of
distributed synthesis from [17] to synthesize the required
transducers.

Theorem 5.9. Strategic PDP is in EXPTIME.

We give a proof outline below. Full proof appears in [8].

Proof. Note that T1 is a finite-state realization of a function
f1 : Σ∗

I
→ ΣB , andT2 is a finite-state realization of a function

f2 : Σ∗
B

→ ΣO . We first consider trees of the form τ1 :
Σ∗
I
→ ΣB × ΣO . Such a tree represents simultaneously both

f1 and f2. A branch of this tree can be viewed as a word
w ∈ (ΣI × ΣB × ΣO )

ω . By running the DFA AR on w we
can check that every prefix ofw is consistent with R. Thus,
we can construct a deterministic automaton At

R on infinite
trees that checks that all prefixes of all branches in τ1 are
consistent with R.
Note, however, that in τ1 the ΣO values depend not only

on the ΣB values but also on the ΣI values, while in f2 the
domain is Σ∗

B
. So now we consider a tree τ2 : Σ∗

B
→ ΣO . We

now simulate At
R on τ2 (cf., [17]). The idea is to match each
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branch of τ1 with a branch of τ2 according to the B-values.
This means that we have several branches of the run of At

R
running on one branch of τ2. We thus obtain an alternating
tree automaton A2, whose size is linear in the size of AR .
We can now check in exponential time non-emptiness ofA2,
to see if a function f2 exists. If A2 is non-empty, then we
obtain a witness transducer T2 whose size is exponential in
AR .
Finally, we consider a tree τ ′1 : Σ

∗
I
→ ΣB that represents

f1. We run both AR and T2 on each branch of τ ′1 , where T2
generates the O-values that were present in τ1 but not in τ ′1 .
Using these values AR checks that each prefix is consistent
with R. We have obtained a deterministic tree automaton
A1, whose size is exponential in AR . We can now check
non-emptiness of A1, and obtain a witness transducer T1.
Thus, we can solve Strategic PDP for automatic relations in
exponential time. □

6 Decomposition with a hint
Our results above indicate that fully automated decomposi-
tion is a hard problem. Can we ameliorate this difficulty by
including a “human in the loop”? Indeed, in some decompo-
sition scenarios, a part of a decomposition is already given,
and the challenge is to find the complementary component.
This can be thought of as a partial solution that is offered
by a human intuition, e.g. a domain expert. In the context of
our framework we have that a candidate to either R1 or R2
is given (in the relevant description formalism) as a “hint".
The question then is whether, given one possible compo-
nent, a complementary component indeed exists, and can
be constructed, such that both relations together meet the
TDP/PDP conditions. To avoid needless repetition, we dis-
cuss below only TDP/PDP problems with a hint R1. Unless
mentioned otherwise, all the statements in this section can
be applied to R2 as a hint by almost identical arguments. The
results that concern R2 being a hint are discussed in [8].

Definition 6.1. In the TDP/PDP problem with a hint R1 we
are given input, output and intermediate domain I,O,B,
relations R ⊆ I × O and R1 ⊆ I × B. The goal is to find
whether there is a relation R2 ⊆ B × O such that (R1,R2)

meet the TDP/PDP conditions.

The exact nature of the domains and relations varies ac-
cording to the problem setting (explicit, etc.). As we see, such
a hint as a partial solution relaxes the computational diffi-
culty of TDP/PDP, shown in previous sections, considerably.
To that end, we show the following maximum property that
is relevant for all TDP/PDP settings. Given a TDP/PDP in-
stance with a hint R1, define a relation R′

2 ⊆ (B × O) to be
R′
2 = {(b,o)|∀i ∈ I((i,b) ∈ R1 → (i,o) ∈ R)}. Note that

Dom(R′
2) can strictly contain Imд(R1).

Lemma 6.2. Every solution for TDP/PDP with a hint R1 is
contained in R′

2 and if there exists such a solution then R′
2 is a

solution as well.

Proof. We prove for TDP, we skip the proof for PDP that
is almost identical. Let R2 be a solution to TDP with a hint
R1. We first see that R2 ⊆ R′

2. Let (b,o) ∈ R2. Suppose there
exists i such that (i,b) ∈ R1 and (i,o) < R. Then we have that
R1 ◦R2 ⊈ R which means R2 is not a solution, a contradiction.
Therefore we have that for all i , if (i,b) ∈ R1 then (i,o) ∈ R,
hence (b,o) ∈ R′

2. To see that R′
2 is a solution, first see that

since R2 is a solution contained in R′
2 then Dom(R1 ◦ R

′
2) =

Dom(R) and Imд(R1) ⊆ Dom(R′
2). Let (i,o) ∈ R1 ◦ R

′
2. Then

there is a b such that (i,b) ∈ R1 and (b,o) ∈ R′
2, which means

that by the definition of R′
2 and since (i,b) ∈ R1, it must be

that (i,o) ∈ R. Finally, assume that (i,o) ∈ R. Then there is
b such that (i,b) ∈ R1, and (b,o) ∈ R′′

2 for some solution R′′
2

contained in R′
2. Therefore (b,o) ∈ R′

2 so (i,o) ∈ R1 ◦ R
′
2. □

FromLemma 6.2we get a simplemethod to solve TDP/PDP
with a hint R1 for the explicit settings as follows: Construct
R′
2 and check that (R1,R

′
2) meet the TDP/PDP conditions.

If R′
2 meets these conditions then (R1,R

′
2) is a solution for

TDP/PDP. Otherwise, there is no solution with R1 as a hint.
We thus obtain:

Theorem 6.3. TDP/PDP with a hint R1 for explicit relations
are in PTIME.

The definition of R′
2 can also solve the symbolic setting

with a hint. Thus the following result allows the use of QBF
solvers for finding solution for R1, see proof in [8].

Theorem 6.4. TDP/PDP with a hint CR1 for symbolic rela-
tions are in ΠP

3 .

For the automatic relation setting we have the following
result for TDP/PDP with a hint R1, where we assume that
R1 is given as a DFA (though users are more likely to use
regular expressions). A similar detailed result for hint R2 is
given in [8].

Theorem 6.5. TDP/PDP with a hint AR1 for automatic rela-
tions are in EXPTIME.

Proof. Assume that AR = (ΣI × ΣO ,Q,q
0,δ , F ) is a DFA

that describes R and AR1 = (ΣI × ΣB ,Q1,q
0
1,δ1, F1) is a

DFA hint. We show how to construct a DFA A2 = (ΣB ×

ΣO ,Q2,q
0
2,δ2, F2) that describes the maximum relation R′

2.
We defineA ′ = (ΣI×ΣB×ΣI×ΣO ,Q1×Q, (q

0
1,q

0),δ1×δ , F
′)

as the product automaton of AR1 and AR . We re-define the
accepting states F ′ = F ×F1 by setting F ′ = {(q,q′)|q ∈ F1 →
q′ ∈ F }. For the transition function, we first extract from
A ′ all the (i,b, i ′,o) edges in which (i , i ′). Next we delete
the alphabets ΣI × ΣI from all the labels in A ′. This re-
sults in a non-deterministic automaton, that we determinize
(with possibly an exponential blow-up) in the standard way
through the subset construction, with the one exception that

8
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we set every super-state (in the subset construction) to be
accepting if and only if all of its elements are accepting states.
This results in a DFA A2 over ΣB × ΣO that describes the
maximum relation R′

2.
Finally, we check that (AR1 ,A2) meet the condition for

TDP/PDP by standard emptiness checks on projections, and
intersections of AR1 and A2; More details are found in [8].

□

For Strategic PDP in the automatic setting, we assume
that the hint is given in the form of a transducer.

Theorem 6.6. Strategic PDP with a hint T1 is in EXPTIME.

Proof. For Strategic PDP with a hint T1 as a transducer we
simplify the construction of Section 5.3.4. We directly con-
struct A2 by taking the product of AR and T1, then solve
non-emptiness for A2 and obtain a witness transducer T2.
Since however the resultingA2 is still an alternating automa-
ton, this construction is still in an exponential time. □

A complete proof appears in [8], where we also show
that Strategic PDP with a hint T2, in which no alternation is
required, can be done in PTIME.

Theorem 6.5 provides an elegant solution for TDP/PDP in
the automatic setting, in case one of the component, say,AR1

is required to be bounded by a given (unary) size k : guess an
automaton AR1 of size k as a hint R1, then use Theorem 6.5.
This gives us the following.

Corollary 6.7. TDP/PDP on automatic relations when one of
the component DFAs is bounded by a given (unary) size is in
NEXPTIME.

As another corollary of Theorem 6.5, we can say the fol-
lowing on unary intermediate alphabet.

Corollary 6.8. TDP/PDP for automatic relations with a unary
intermediate alphabet is in EXPTIME.

Proof. For a unary intermediate alphabet ΣB = {b}, there is a
unique solutionR1 that can be used as a hint. Indeed, since for
a solution R1 we have that Dom(R1) = Dom(R) (see remark
in Section 4 and proof in [8]), then every word of length n in
Dom(R1) must be paired with the word bn . Therefore AR1

is constructed from AR by simply replacing every Σ∗
O
word

in AR with the unique word of the same length over ΣB

(this projection yields an NFA, but determinizing in order
to get a DFA as a hint is not necessary, since the proof of
Theorem 6.5 can work with AR1 given as an NFA as well
without changing the upper bound). □

7 Discussion
We studied here a formal model of sequential decomposi-
tion, a fundamental concept in computational thinking. We
showed that while decomposition is viewed as an approach
to tame design complexity, complexity is not so easily tamed
and decomposition can be quite difficult when viewed as

a computational problem. Human intuition, used to offer
hints to the decomposition algorithm, is therefore necessary
to tame the complexity of the decomposition problem. The
complexity of TDP/PDP in the automatic-relation setting,
conjectured to be undecidable, is still open. It is related to
other decision problems for automatic relations, cf. [19], and
is a subject of future work.
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