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Abstract
In this paper, we study the rational synthesis problem for turn-

based multiplayer non zero-sum games played on finite graphs for

omega-regular objectives. Rationality is formalized by the concept

of Nash equilibrium (NE). Contrary to previous works, we consider

here the more general and more practically relevant case where

players are imperfectly informed. In sharp contrast with the perfect

information case, NE are not guaranteed to exist in this more gen-

eral setting. This motivates the study of the NE existence problem.

We show that this problem is ExpTime-C for parity objectives in the

two-player case (even if both players are imperfectly informed) and

undecidable for more than 2 players. We then study the rational

synthesis problem and show that the problem is also ExpTime-C for

two imperfectly informed players and undecidable for more than

3 players. As the rational synthesis problem considers a system

(Player 0) playing against a rational environment (composed of k
players), we also consider the natural case where only Player 0 is

imperfectly informed about the state of the environment (and the

environment is considered as perfectly informed). In this case, we

show that the ExpTime-C result holds when k is arbitrary but fixed.

We also analyse the complexity when k is part of the input.

1 Introduction
Context Reactive synthesis aims at producing automatically a

correct reactive system from a specification and a model of the

environment that interacts with the system. The system should

enforce its specification no matter how the environment behaves.

Two-player zero-sum games played on graphs is the classical math-

ematical model proposed to formalize the reactive synthesis prob-

lem [32] and the main solution concept for those games is the

notion of winning strategy. This model is appropriate to model

the situation where a monolithic controller has to be designed to

interact with a monolithic and fully antagonistic environment.

A fully antagonistic environment is often a bold abstraction as

the environment usually has its own goal which, in general, is not
the negation of the specification of the reactive system. Neverthe-

less, it is a popular abstraction because it is simple and sound: a

winning strategy against an antagonistic environment is clearly
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winning against an environment that strives for its own objective.

However this abstraction may fail to find a winning strategy even if

solutions exist when the objective of the environment is taken into

account. As a consequence, several more recent works consider the

more general model of non zero-sum games played on graphs in

order to overcome the weakness of the simpler zero-sum model,

see e.g. [5, 7, 8, 12, 14, 15, 18, 19, 23, 33].

Rational synthesis under imperfect information In this pa-

per, we build on the notion of rational synthesis that has been

introduced in [19] and [23]. In rational synthesis, the synthesis

algorithm takes into account that the system is executed within an

environment that is assumed to be rational, and not fully antago-

nistic as in the classical two player zero-sum setting. Rationality

of the environment is modeled by assuming that the components

behave according to a Nash equilibrium (NE). More precisely, in the

(non-cooperative) rational synthesis problem [23], the components

of the environment may follow any strategy, provided it is a NE:

we search for a strategy σ0 for the system winning against all the

possible strategy profiles that include σ0 for Player 0 and which

are NE. In all previous works on rational synthesis, including [17],

players are assumed to be perfectly informed. We lift this impor-

tant restriction here as we consider the more general and more

practically relevant case where players are imperfectly informed.
This generalization has important consequences: in sharp contrast

with the perfect information case, NE are not guaranteed to exist

in this more general setting. So in addition to the study of the (non-

cooperative) rational synthesis problem, this motivates the study

of the NE existence problem for games with imperfect information.

Contributions We show that the decision problem of the ex-

istence of a Nash equilibrium is ExpTime-C for omega-regular

objectives defined by parity conditions in the two-player case (The-

orem 3.9), even if both players are imperfectly informed, and un-

decidable for 3 and more players (Theorem 3.11), even if only two

players are imperfectly informed. We then study the rational syn-

thesis problem and show that the problem is also solvable for two

imperfectly informed players and ExpTime-C (Theorem 4.2), while

we establish undecidability for more than 3 players (Theorem 4.7).

As the rational synthesis problem considers a system (Player 0)

playing against a rational environment composed of k players, we

also consider the natural case where only Player 0 is imperfectly

informed about the state of the environment and the environment is

considered to be omniscient. In this case, we show that the ExpTime-

C result holds when k is arbitrary but fixed (Theorem 4.6). This

parametric analysis makes sense as the number of players can be

expected to be low and much smaller than the number of states

in the game arena. When k is not fixed, we provide a 2ExpTime

solution together with an ExpSpace lower bound for omega-regular

objectives defined by Rabin conditions (Theorem 5.4). To establish

this last result, we show that the universality problem for nonde-

terministic Multi-Rabin automata on infinite words is ExpSpace-C

(Theorem 5.3), this result strengthens a result by Safra and Vardi
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in [31] for Muller acceptance conditions expressed as Emerson-Lei

formulas.

Two-player imperfect information zero-sum games are classi-

cally solved by reduction to the perfect information setting, via a

knowledge construction [28]. In the multiplayer setting, and even in

the case where only Player 0 is imperfectly informed, it is not clear

whether a reduction to multiplayer perfect information rational

synthesis exists. Instead, we provide a reduction to a two-player im-

perfect information zero-sum game, where the protagonist (Prover)

wants to exhibit a solution (a strategy for Player 0) to the rational

synthesis problem while the adversary tries to prove that such a

strategy does not exist. To prove that there exists a solution, Prover

chooses actions for Player 0 and Challenger actions for the environ-

ment players. The objective of Prover is to construct a play which

is either winning for Player 0, or which is not the outcome of any

NE. To check the latter, Prover may also declare, along the play,

that some players have profitable deviations. The additional role of

Challenger is also to force Prover to show that those players had

indeed a good deviation, by taking the role of the coalition of all

players against the deviating player (controlled by Prover). This

results in a complex winning objective for Prover which we analyse

carefully to get our complexity results.

Related works Non-zero games for synthesis have attracted a

large attention recently, see e.g. [5] for a survey. Secure equilibria
were introduced in [15] and their use for synthesis was established

in [14]. Secure equilibria are refinement of NE [33]. Subgame perfect

equilibria, that also refines NE, were first studied in [33, 34] and

more recently in [9, 10]. To model rationality of players, the notion

of admissible strategy is used in [2, 18] instead of the notion of NE,

and computational aspects are studied in [8], potential for synthesis

is studied in [7]. Rational synthesis was introduced first in [19, 23]

and only LTL objectives were studied. More recently, we have study

the complexity of all the classical winning conditions in [17]. In

all those works, in contrast to this paper, the players have perfect

information about the game.

Games played on graphs with imperfect information were stud-

ied in e.g. [3, 13, 24, 27–29]. All those works consider zero-sum

games only. More recently, some works have started the study of

non zero-sum games with imperfect information. In [20], Gutier-

rez et al. study the existence problem for NE in concurrent games

with imperfect information, and LTL objectives. First, they show

that, similarly to the constrained existence problem [26, 27], the un-

constrained existence problem is undecidable for N -player games.

Their undecidability result can be applied to our setting (see The-

orem 3.11). Second, they show that the (unconstrained) existence

problem is decidable for two players and 2ExpTime-C for LTL ob-

jectives. As we consider parity objectives, our ExpTime-C results

for the constrained and unconstrained existence problem for NE in

the two player setting is not a consequence of their result. Finally,

they do not study the rational synthesis problem which is our main

contribution.

The notion of admissible strategy was studied for observation-

based strategies in [6], and Doomsday equilibria, that are an exten-

sion of secure equilibria to thek player case [12], are also considered

for imperfect information. In [1], Berthon et al. study an extension

of strategy logic [16, 25] in which quantification over strategies can

be restricted to observation-based strategies. This opens the possi-
bility to reason on strategies in games with imperfect information.

The model-checking of the Strategy Logic with imperfect informa-

tion is undecidable in general and the authors have identified a

fragment of the logic that has a decidable model-checking problem

but they do not provide complexity results. Their fragment does

not cover the positive results that we have for the two-player case

where both players are imperfectly informed, while their fragment

can be used to show the decidability (but not the complexity bound)

of the case where only the system is imperfectly informed. In [4],

Bouyer studies the existence of NE in multi-player games where

the information of the player is imperfect but symmetric: all the

players receive the same information provided by public signals.
This model with public signals is incomparable to our setting in

which every player has his own imperfect view of the system state.

In general, the NE existence problem is undecidable in the setting

of public signals and the author identifies sub-cases that can be

solved algorithmically.

Structure of the paper In Sec. 2, we define the necessary prelimi-

naries. In Sec. 3, we study the existence problem for Nash equilibria.

In Sec. 4, we study the rational synthesis problem. In Sec. 5, we

provide an additional discussion of lower-bounds for our problems.

2 Preliminaries and Notation
2.1 Multiplayer Games with Imperfect Information
Definition 2.1 (Multiplayer Arena with Imperfect Information).
Given k ∈ N, a multiplayer arena with k + 1 players is a tuple

A = ⟨Ω,V ,v0, (Vi )i ∈Ω, (Acti )i ∈Ω, (δi )i ∈Ω, (∼i )i ∈Ω⟩, where:

• Ω = {0, 1, ...,k } is the finite set of players,
• V is a finite set of states and v0 ∈ V is the initial state,

• (Vi )i ∈Ω is a partition of V where Vi is the set of states con-
trolled by Player i ∈ Ω,
• for every i ∈ Ω, Acti is the set of actions of Player i ,
• for every i ∈ Ω, δi : (Vi ×Acti ) → V is a transition function

specifying the next state in the game,

• for every i ∈ Ω, ∼i is an equivalence relation onV such that

{[v]∼i | v ∈ V } refines (Vi )i ∈Ω i.e. players observe the turns,

but have imperfect information on the actual state of the

game, this is assumed w.l.o.g. If ∀j ∈ Ω ·∀v,v ′ ∈ Vj : v ∼i v
′
,

we say that Player i is blind.

A play in a (k + 1)-players arena A starts in the the initial state

v0 and proceeds in rounds. At each round, the player controlling the

current state v ∈ Vi , i.e. Player i , who can observe his turn and the

equivalence class [v]∼i but not the actual state v ∈ Vi of the game,

chooses the next action a ∈ Acti to play, and δi determines the next

state of the play v ′ = δi (v ). Formally, a play π = v0a0v1a1 . . . is

an infinite sequence of states and actions such that for all positions

j ≥ 0, vj+1 = δi (vj ,aj ) where vj ∈ Vi and aj ∈ Acti , and where v0

is the initial state of the game arena. We note πv [j] the state vj in
position j along π and πa[j] the action aj in position j along π .

Let π = v0a0v1a1 . . . be a play, a prefix α of π is a finite sequence

α = v0a0v1a1 . . .vnan or α = v0a0v1a1 . . .vn . We denote by αv [j]
the state vj in position j within α , and by αa[j] the action aj in
position j within α . Sometimes, we do not need explicit references

to actions in plays and prefixes, then we consider that plays or

prefixes are simply sequences of states. We reflect this into our

notations as follows:

• Plays(A) and Prefs(A) denote the set of plays and the set of
prefixes where the actions are omitted. If π = v0v1 . . .vn . . .
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is a play where action have been omitted, we write π [j] for
πv [j], and α[j] for αv [j], and π [: n] for the sequence of states

in π up to position n, i.e. π [: n] = v0v1 . . .vn .

• PlaysAct (A) and PrefsAct (A) denote the set of plays and the
set of prefixes where the actions are not omitted.

We omit the reference toA in those notations when it is clear from

the context. For every i ∈ Ω, we extend the equivalence relation ∼i
from V to prefixes and plays as follows:

• when actions are omitted: let α , β ∈ Prefs (resp. π ,π ′ ∈
Plays) are said equivalent for Player i , denoted α ∼i β (resp.

π ∼i π
′
) if and only if they have the same length n and for

every 0 ≤ m ≤ n, α[m] ∼i β[m] (resp. for every 0 ≤ m,

π [m] ∼i π
′
[m]).

• when actions are not omitted: letα , β ∈ PrefsAct (resp.π ,π ′ ∈
PlaysAct) are said action equivalent for Player i , denoted
α ∼ai β (resp. π ∼ai π ′) if and only if they have the same

length n and for every 0 ≤ m ≤ n, αv [m] ∼i βv [m], and

additionally if vm ∈ Vi then αa[m] = βa[m] (resp. for

every 0 ≤ m, πv [m] ∼i π ′v [m] and if πv [m] ∈ Vi then
πa[m] = π ′a[m]). So, when defining the equivalence for pre-

fixes (resp. plays) with actions, we require that the actions

played by Player i are the same in both prefixes (resp. plays).

Given a play π ∈ PlaysAct, we write [π ]
a
∼i

for all the plays π that

are action equivalent to π for Player i . Similarly, given a prefix

of play α , we write [α]
a
∼i for the set of prefixes β that are action

equivalent to α for Player i .
A strategy for Player i ∈ Ω in a (k + 1)-players arena A is a

total function σi : Prefs · Vi 7→ Acti. A play π is consistent with
σi if π [n + 1] = δi (π [n],σi (π [:n])) for all n ≥ 0 s.t. π [n] ∈ Vi .
The outcome of σi is the set of plays out (σi ) ⊆ Plays(A) that are
consistent with σi . A strategy σi for Player i is an observation-based
strategy if for every α , β ∈ Prefs ·Vi , if α ∼i β , then σi (α ) = σi (β ).

We denote by Σi (resp. Σ
obs
i ) the set of strategies (resp. observation-

based strategies) of Player i . Given a prefix α = v0v1 . . .vn , the
observation of α by Player i is the sequence [v0]∼i [v1]∼i . . . [vn]∼i ,

i.e. the sequence of observations that Player i receives along α .
A (observation-based) strategy profile in a (k + 1)-players arena

A is a tuple σ̄ = ⟨σ0, . . . ,σk ⟩ of (observation-based) strategies, one
for each of the k + 1 involved players. The outcome of a strategy

profile σ̄ is the unique play that is consistent with all the strategies

of the strategy profile. This play is denoted by out (σ̄ ).
A winning objective (or just objective) is a set O ⊆ Vω

. We say

that an objective is observable by Player i if for each pair of plays

π ,π ′, if π ∼i π
′
, then π ∈ O if and only if π ′ ∈ O. In this paper, we

consider (omega-regular) objectives defined by parity conditions.

For a play π , we note inf (π ) the set of statesv that appear infinitely

many times along π . A parity mapping is a function p:V→N that

assigns a color (also called priority) to each state in the arena.

Given a parity mapping p, we define the associated objective as

Parity(p)={π∈Vω | min{p (v ) |v ∈ inf (π )} is even}. We define the

complement of p, noted p : V→N, as p (v ) = p (v ) + 1 for all v ∈ V ,

and we have that Parity(p) = Parity(p). A strategy σi for Player i
is winning1 for objective O if out (σi )⊆O.

1
Here we implicitly consider a two-player zero-sum game in which Player i has
objective O and plays against all the other players in Ω \ {i } who have objective O.

A multiplayer parity game with imperfect information is a pair

G = ⟨A, (Oi )i ∈Ω⟩ where A is an imperfect information multi-

player arena and (Oi )i ∈Ω are parity objectives for each Player i∈Ω.
The notations Plays and Prefs carries over to G by considering its

underlying arena. We often directly write G = ⟨A, (pi )i ∈Ω⟩, when
the objective (Oi )i ∈Ω are given by parity conditions.

2.2 Nash Equilibria and Rational Synthesis
Given a strategy profile σ̄ in a multiplayer game G = ⟨A, (Oi )i ∈Ω⟩
and a strategy τ for Player i , wewrite (σ̄−i ,τ ) for the strategy profile
obtained by replacing σi with τ in σ̄ . Given winning objectives

(Oi )i ∈Ω for each player, the payoff of a strategy profile σ̄ is the

vector pay (σ̄ ) ∈ {0, 1}k+1
defined by pay (σ̄ )[i] = 1 iff out (σ̄ ) ∈

Oi . We write payi (σ̄ ) for Player i’s payoff in pay (σ̄ ). Payoffs are
compared by the pairwise natural order on their bits, denoted by ≤,

i.e. pay (σ̄ ) ≤ pay ( ¯β ) if payi (σ̄ ) ≤ payi ( ¯β ) for all i ∈ Ω. If a profile
of strategy σ̄ is a NE with payoff

¯b, then we say that σ̄ is a
¯b−NE.

A Nash equilibrium (NE) for an imperfect information game G =

⟨A, (Oi )i ∈Ω⟩ is an observation-based strategy profile σ̄ = (σi )i ∈Ω
for G such that no player can improve his payoff by (unilaterally)

switching to a different observation-based strategy: σ̄ is a NE if for

all players i ∈ Ω and all observation-based strategies τ of Player i ,
pay (σ̄−i ,τ ) ≤ pay (σ̄ ). We say that σ̄ is a 0-fixed Nash equilibrium

(0NE) if pay (σ̄−i ,τ ) ≤ pay (σ̄ ) for all players i ∈ Ω \ {0} and all

observation-based strategies τ of i . In other words, it is a Nash

equilibrium in which Player 0 is not allowed to deviate. Any NE is

0-fixed, but the converse may not hold.

Rational synthesis aims at finding an observation-based strategy

for the system (Player 0) that is winning for the objective of Player 0

whenever the environment composed of several components (Play-

ers 1 to k) plays rationally. Rationality of the environment is mod-

eled by NE. The formal definition of the rational synthesis problem,

RS for short, is as follows. Given a multi-player game G with im-

perfect information, the observation-based strategy σ0 for Player 0

is a solution to the rational synthesis problem if for all 0-fixed Nash

equilibria σ̄ = ⟨σ0, . . . ,σk ⟩, we have pay0 (σ̄ ) = 1. We study in the

rest of the paper the existence problems for NE and RS.

3 Nash Equilibria
In this section, we study the existence problem for NE for omega-

regular objectives defined by parity conditions. First, we show that

in sharp contrast to the perfect information sub-case, NE need not

to exist in the imperfect information setting and so this provides

motivations for the study of the existence problem for NE. Sec-

ond, as a main result for this subsection, we provide an ExpTime

algorithm to solve the existence decision problem together with

a matching lower-bound for the two-player case. On the way to

obtain our solution, we show that we can also solve the existence

of constrained NE with the same upper bound. We close the section

by showing that the problem of determining the existence of a NE
is undecidable for games with more than 2 players.

3.1 Games without NE
The next proposition establishes thatNE needs not to exist in games

with imperfect information. The example used in the proof will be

used in several other proofs in the paper.

Proposition 3.1. There exists a 2-player imperfect information game
which does not admit a Nash equilibrium.
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Figure 1. Imperfect information 2-player game where no NE exists.

This game is called the gameH . The parity function of Player □
is p (v ) = 1 for v ∈ {1, 2, 3, 4}, and p (v ) = 0 for v = 5. The parity

function for Player ⃝ is p, the complement of p. It is easy to see

that Player □ wants to reach 5 while Player ⃝ wants to avoid it.

States 3 and 4 are indistinguishable for Player □, i.e. 3 ∼□ 4.

Proof. Consider the 2-player game of Fig. 1. The parity objective of

Player square is equivalent to the reachability objective "reach state

5", while the parity objective of the circle player is the complement

and so it is equivalent to the safety objective "stay forever in the set

of states {1, 2, 3, 4}. Suppose there exists a NE σ = ⟨σ⃝,σ□⟩. We

consider two cases:

• if out (σ ) reaches 5, then knowing the strategy σ□, Player

⃝ can avoid reaching 5 by changing his strategy into σ ′
⃝

as

follows: take a history h which ends up in state 2, then, what-

ever Player ⃝ does, Player □ does not see it, and gets the

observation {3, 4}. Now, if σ□ (h{3, 4}) = a, set σ ′
⃝
(h) = b,

otherwise set σ ′
⃝
(h) = a. Clearly, out (⟨σ ′

⃝
,σ□⟩) is winning

for Player ⃝, hence Player ⃝ by deviating gets a better

payoff. Contradiction.

• if out (σ ) does not reach 5, then Player □ has a spoiling

strategy σ ′
□
with strictly better payoff: leth{3, 4} be a history,

then set σ ′
□
(h{3, 4}) = σ⃝ (h). Contradiction.

□

The main property we have exploited in the proof of Prop. 3.1 is

a weak form of determinacy: the existence of spoiling observation-

based strategy profiles as stated in the following lemma.

Lemma 3.2. Let α ∈ Prefs(A), if a strategy σi is not winning from
α for parity objective pi then there exists a profile of observation-
based strategies σ̄−i for the other players such that the only outcome
compatible with both σi and σ̄−i and that starts in α satisfies pi .

3.2 The NE existence problem for 2 player games
For the rest of this section, we fix a two-player gameG = ⟨A,p0,p1⟩

with parity objectives, and let i ∈ {0, 1}. To introduce our solutions,

we need the following additional notions and intermediary results.

Lemma3.3. Letσi be an observation-based strategy, letπ ∈ PlaysAct (A)

be a play that is compatible with σi . For all π ′ ∈ PlaysAct (A) such
that π ′ ∼ai π , we have that:

1. π ′ is compatible with the strategy σi
2. there exists an observation-based strategy σ1−i for Player 1− i

s.t. π ′ is the only outcome compatible with both σi and σ1−i .

Let α ∈ PrefsAct (A), we define K∼i (α ) as the set of states

{last (β ) | β ∈ [α]
a
∼i and β ∈ Prefs(A)}, i.e. the set of states that

can be reached in A while Player i observes a sequence which is

∼ai -equivalent to α . This set is called the knowledge of Player i after
prefix α . We write α <a

∼i
π when there exists π ′ ∼ai π and α < π ′,

i.e. when α is a prefix which Player i cannot distinguish from π .

The following lemma tells us that all the states of K∼i (α ) are
reachable when Player i plays an observation-based strategy σi that
is compatible with α by choosing an adequate observation-based

strategy for Player 1 − i .

Lemma 3.4. Let α ∈ PrefsAct (A) be a prefix compatible with strat-
egy σi of Player i . For all states v ∈ K∼i (α ), there is a observation-
based strategy σ1−i of Player 1 − i and there is a prefix β ∈ [α]

a
∼i

compatible with both σi and σ1−i and such that last (β ) = v .

A play π is an outcome of a NE if no player has an incentive

to deviate along π . To avoid deviation of Player i , Player 1 − i
must be in position to threaten Player i of retaliation. A prefix

α ∈ PrefsAct (A) is good for retaliation for Player i if there is an
observation-based strategy σi of Player i such σi wins the objective
p1−i from α . Note that as parity objectives are prefix independent,

this is equivalent to say that Player i has a strategy to force an

outcome that falsifies the objective of the other player, for all the

states in K∼i (α ).
We are now equipped to establish the correctness of a lemma

that identifies a necessary and sufficient condition for the existence

of a (1, 0) − NE, i.e. a NE where Player 0 wins and Player 1 fails to

win. We then show that this condition can be decided in ExpTime.

Lemma 3.5. There exists a (1, 0)−NE in A for parity objectives p0

and p1 iff there exists π ∈ Plays(A) s.t. the following properties hold:
(P1) π |= p0 and for all π ′ ∼a

0
π , π ′ ̸ |= p1,

(P2) for all prefixes α <a
∼0

π , α is good for retaliation for Player 0.
The existence of such a play π can be decided in ExpTime.

Proof. Let us first assume that there exists a (1, 0) − NE and let us

establish the existence of a play with properties (P1) and (P2). Let
σ̄ = (σ0,σ1) be such a (1, 0) − NE, and let π = out (σ̄ ). Let us show
that π satisfies the two properties.

We start with property (P1). As π is the outcome of σ̄ that is

a (1, 0) − NE, then we know that π |= p0 and π ̸ |= p1. Let us

establish that for all π ′ ∼a
0
π , we have also that π ′ ̸ |= p1. For that

let us consider an observation-based strategy σ ′
1
of Player 1 such

that the unique outcome of (σ0,σ
′
1
) is π ′. The existence of σ ′

1
is

guaranteed by lemma 3.3. Now assume for the sake of contradiction

that π ′ |= p1. If so, then σ ′
1
would be a profitable deviation for

Player 1. But as σ̄ is a NE, this cannot be the case and so we need

to conclude that π ′ ̸ |= p1, and so (P1) is satisfied.
We establish the property (P2) by contradiction. Assume that

there is a prefix α <a
∼0

π , that is not good for retaliation for Player 0.

This implies that there exists a state v ∈ K∼0 (α ) from which σ0 is

not winning for p1. As a consequence, by lemmas 3.2, there is an

observation-based Player 1 strategy σ ′
1
such the unique play that

is compatible with both σ0 and σ ′
1
satisfies p1 from state v . From

σ ′
1
, we construct the observation-based strategy σ ′′

1
for Player 1 as

follows. The strategy σ ′′
1
is chosen such that when played against

σ0 in A, we reach state v . Such a strategy is guaranteed to exist

according to lemma 3.4. Now, when v is reached (Player 1 knows it

as he only needs to count the number of turns that he plays against

σ0 to determine when he reaches v), σ ′′
1
behaves as σ ′

1
from state

v . As parity objectives are prefix independent, we know that the

unique outcome compatible with σ0 and σ
′′
1
satisfies p1. This shows

that Player 1 has a profitable deviation from the profile σ̄ and so this

profile cannot be a NE, and so we have obtained our contradiction.

Let us now consider the other direction. Let π be an infinite

path from v0 that satisfies properties (P1) and (P2). From π , we

4
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design a (1, 0)−NE as follows. We first define the observation-based

strategy σ1 of Player 1. This strategy σ1 simply follows the actions

as prescribed by π for all prefixes α <a
∼1

π . For all histories β such

that β aa∼1

π , σ1 plays arbitrarily. The strategy σ0 of Player 0 is

defined as follows. It plays according to π on all prefixes α such that

α <a
∼0

π , otherwise Player 0 observes a deviation from π and plays

according to an observation-based strategy that enforces p1, i.e. the

complement of objective p1. Such a strategy is guaranteed to exist

thanks for property (P2). Now, let us show that this strategy profile

σ̄ = (σ0,σ1) witnesses the existence of a (1, 0) − NE. Indeed, we
first note that if both players follows their strategies in σ̄ then the

outcome of the game is π , and π satisfies p0 and falsifies p1. Second,

we note that as π satisfies p0, Player 0 has no incentive to deviate,

and we only need to consider deviations of Player 1. Assume that

Player 1 plays an observation-based strategy σ ′
1
instead of σ1. Let

the outcome of the profile (σ0,σ
′
1
) be π ′. Then there are two cases to

consider. First, assume that π ∼a
0
π ′, then in that case, by condition

(P1), we know that π ′ ̸ |= p1 and so the deviation is not profitable

to Player 1. Second, let us consider the case π ′ ≁a
0
π ′. Let α the the

longest prefix such that α <a
∼i

π and α <a
∼i

π ′. By condition (P2),
we know that α is good for retaliation, and by construction of σ0,

when the next observation is given to Player 0, he observes a prefix

β that is such that β aa∼0

π and so he switches to its retaliation

strategy. This ensure that the outcome falsifies p1. So, again the

deviation is not profitable to Player 1.

Now that we have established the correctness and completeness

of properties (P1) and (P2), let us show that we can check them in

ExpTime. To test the existence of π with the good properties, we

proceed as follows:

•We construct two nondeterministic parity automata Ap0
and

Ap1

that accept exactly all the sequences of observations for Player 0

such that all the underlying plays are satisfying p0 and p1, respec-

tively. This can be done in linear time by a construction given in

Sect.3 of [11]. By taking the product of the two automata Ap0
and

Ap
1

, we obtain a nondeterministic Streett automaton B that accepts

exactly all observation sequences of paths that satisfy condition

(P1).
•We determine the set of knowledges K ⊆ V of Player 0 from

which Player 0 has a winning observation-based strategy for the

objectivep1, we denote this set R . This can be done in ExpTime [28].

From this set it is now easy to define a deterministic safety automa-

ton, that we note R, that keeps tracks of all sequences of observa-
tions that are good for retaliation as we simply have to make sure

that we never leave the set of knowledge in R.

Taking the product of B with R, we get an exponentially large

nondeterministic Street automaton whose language is non-empty

iff there exists a play π that respects properties (P1) and (P2). Check-
ing emptiness of nondeterministic Street automata can be done in

PTime [21]. All this gives us the claimed ExpTime procedure. □

As our games are symmetric and we can exchange the role of

Player 0 and Player 1 in the previous lemma, we obtain that:

Corollary 3.6. Given a two-player imperfect information game
(A,p0,p1) with parity objectives p0 and p1, we can decide in Ex-

pTime is there exists a (1, 0) − NE, and we can decide in ExpTime is
there exists a (0, 1) − NE.

Now, we turn our attention to the (0, 0)−NE case.

Gadget 1

s1

(1, 1)

Player 0

s2

(1, 1)

Player 1

Copy of the

zero-sum game

G

(p,p)

Gadget 2

s

Player 0

Copy of the

NE-less zero-

sum game H

(p,p)

Copy of the

zero-sum game

G

(p,p)

Figure 2. Two gadgets for the hardness of deciding the existence

of NE and constrained NE.

Lemma3.7. Given a two-player imperfect information game (A,p0,p1)
with parity objectives p0 and p1, we can decide in ExpTime if there
exists a (0, 0) − NE equilibrium.

Proof. By inspecting the proof of lemma 3.5, it is not difficult to

see that, to establish the existence of a (0, 0) − NE equilibrium, we

need to determine the existence of a path π that falsifies both p0

and p1, and in which both players can retaliate in case of deviation

from the expected sequence of observations. This is expressed by

the following four properties:

• (P0a ) π ̸ |= p0 and for all π ′ ∼0 π , π ′ ̸ |= p1,

• (P
0b ) π ̸ |= p1 and for all π ′ ∼1 π , π ′ ̸ |= p0,

• (P1a ) for all prefixes α <∼0
π , α is good for retaliation for

Player 0.

• (P
1b ) for all prefixes α <∼1

π , α is good for retaliation for

Player 1.

Such properties can be verified in ExpTime using a construction

similar to the one used in the proof of lemma 3.5. □

We finish by the (1, 1)−NE case, which is the simplest case.

Lemma3.8. Given a 2-player imperfect information game (A,p0,p1)
for parity objectives p0 and p1, we can decide in PTime if there exists
a (1, 1)−NE equilibrium.

Proof. This case is easy as we simply need to determine if there

is a play π in the arena such that π |= p0 ∧ p1. Indeed, in such

a π , no player has an incentive to deviate. As the conjunction of

two parity conditions can be seen as a Streett condition, solving

our problem reduces to the emptiness problem of nondeterministic

Street automata, which in turn can be solved in PTime [21]. □

The following theorem summarizes the complexity of checking

the existence of NE in two-player non-zero sum imperfect informa-

tion games with parity objectives, and provides a matching lower

bound for the problems that need exponential time to be solved.

Theorem3.9. Given a 2-player imperfect information game (A,p0,p1)
with parity objectives p0 and p1, the problems of deciding the exis-
tence of a NE, of a (1, 0)−NE, of a (0, 1)−NE, and of (0, 0)−NE are
ExpTime-C, and the problem of deciding the existence a (1, 1)−NE
can be solved in PTime.

Proof. First, we note that there exists a NE in (A,p0,p1) if and
only if there exists (0, 0)−NE, (1, 0)−NE, (0, 1)−NE, or (1, 1)−NE.

5
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As all four cases can be checked in ExpTime or PTime, we then

conclude that our decision problem is solvable in ExpTime. Second,

we prove completeness for ExpTime for NE, (0, 0)−NE, (1, 0)−NE,
and (0, 1)−NE. Those results are obtained as follows.

For (1, 0)NE, and (0, 1)−NE, this is a direct consequence of the
ExpTime completeness of determining if Player 0 (or Player 1)

has a winning strategy in a game graph of imperfect information

with parity objectives are ExpTime-C as established in [28]. Let

G = (A,p,p) be such a zero sum game. Deciding the existence

of a (1, 0) − NE in G is equivalent to decide the existence of an

observation-based winning strategy for Player 0 in that game.

Let us now consider the case (0, 0) − NE. To show the hardness,

we use the reduction from the problem of deciding the existence

of a wining strategy in G to our problem. This is done with the

gadget of Fig. 2 (gadget 1). This game contains a copy of the zero

sum game G and two additional states s1 and s2. The game can loop

between those two states or Player 1 can decide to move the game

to the copy of G. The parity colors of the states s1 and s2 are bad

for both player and in the copy of G, each play π is either winning

for Player 0 (satisfying p) or for Player 1 (satisfying p) as in G, i.e.
the winning condition is zero-sum. So the only possibility for the

existence of a (0, 0) − NE is the strategy of Player 1 that loops for

ever between states s1 and s2. But clearly Player 1 has no incentive

to deviate only if Player 0 does have a winning observation-based

strategy in G. Indeed, if Player 0 does not have such a strategy, then

deviating from the loop is profitable for Player 1 as the strategy of

Player 0 being fixed and not winning in G, then by lemma 3.2, we

know that Player 1 can design an observation-based strategy to win

p against the strategy of Player 0. On the contrary, if Player 0 has

an observation-based strategy to win p in G, then he should play

this strategy to retaliate if Player 1 deviates from the loop implying

that Player 1 has no incentive to deviate. So in that case, the pair of

strategies that loop forever is a (0, 0) − NE.
Let us now consider the hardness of the only remaining case:

the problem of deciding the existence of a (unconstrained) NE. Our
proof relies also on a reduction from the problem of deciding the

existence of an observation-based winning strategy in the zero sum

case but we need another gadget which is depicted in Fig. 2 (gadget

2). This gadget is composed of a state s , a copy of G and a copy of

a game H that is zero-sum and for which we know that there is

no equilibrium. The example in the proof of Proposition 3.1 and

given in Fig. 1 can be used for that. Let us now establish that the

game defined by the gadget has a NE if and only if Player 0 has a

winning strategy in the game G.

First, we consider the case where Player 0 has a winning strategy

in G. In that case, let σ̄ = (σ0,σ1) be any profile of strategies such

that σ0 decides in s to go to the copy of G and then behaves there by

playing a winning observation-based strategy σ ′
0
for Player 0 in G

which exists by hypothesis. The outcome of this profile of strategies

is π and π |= p. As σ ′
0
is winning for Player 0 in G, Player 1 has no

way to deviate profitably from σ1, and so σ̄ is a NE.
Second, we consider the case where Player 0 has no winning

strategy in G. We need to consider the following possible scenarios:

1. Assume that Player 0 decides in s to enter G. Let σ̄ = (σ0,σ1)
be such a profile. Let us show that σ̄ is not a NE. For that we
examine the following two sub-cases:

a. assume that the outcome π of σ̄ is such that π |= p, i.e. it is
winning for Player 1, and so losing for Player 0. In that case,

init

Own by Player 0

Player 0 always wins

G¬NE G
l r

Figure 3. Reduction of (1, 1, 0)-NE existence to NE existence.

there is a profitable deviation for Player 0. Indeed, as σ1 is

fixed and is not winning inH as none of the players have a

winning strategy inH otherwise there would exist a NE in

H , then by lemma 3.2, there is an observation-based strategy

σ ′
0
that inH wins against σ1. So the profitable deviation for

Player 0 is to go to subgameH and play σ ′
0
.

b. assume that the outcome π of σ̄ is such that π |= p, i.e. it is
winning for Player 0, and so losing for Player 1. In that case,

there is a profitable deviation for Player 1. Indeed, as Player 0

does not have an observation-based winning strategy in G,

this means that, by lemma 3.2, there is an observation-based

strategy σ ′
1
that in G wins against σ0, and so σ

′
1
is a profitable

deviation for Player 1.

2. Assume that Player 0 decides in s to enter H . Let (σ0,σ1) be
such a profile. We consider the following two sub-cases:

a. assume that the outcome π of σ̄ is such that π |= p. In
that case, let us show that there is a profitable deviation

for Player 1. As inH , Player 0 does not have a winning strat-

egy then by lemma 3.2, Player 1 has a strategy σ ′
1
such that

(σ0,σ
′
1
) is such that π |= p and thus a profitable deviation.

b. assume that the outcome π of (σ0,σ1) is such that π |= p.
Symmetrically, Player 0 has a profitable deviation from σ0.

So, determining the existence of a NE is ExpTime-Hard. □

3.3 More than 2 players
The existence of constrained NE was already known to be undecid-

able by a reduction from the distributed synthesis problem [27]:

Theorem 3.10. [Folklore result [26, 27]] The problem of checking the
existence of a (1, 1, 0)-NE in a given 3-player imperfect information
game with objectives (O,O,Vω \ O) is undecidable.

The unconstrained existence problem was considered in [20]:

Theorem 3.11. [Undecidability of NE [20]] The problem of check-
ing the existence of a NE in a given k-player game with imperfect
information and parity objectives is undecidable for k ≥ 3.

4 Rational Synthesis
In this section we consider the rational synthesis problem. We start

with the two-player case and provide an ExpTime solution together

with a matching lower bound. Then, we show that the decidability

also holds for the k-player case if only the system (Player 0) is

imperfectly informed. Finally, we show the undecidability of the

general case.

4.1 The case of 2 players
We provide a two steps solution. The first step, developed in Lemma

4.1 below, shows that RS on 2-player games can be reduced to the

same problem over a game arena in which only Player 0 (the system)

has imperfect information. Let G = ⟨A,Oi ∈{0,1}⟩ be a 2-player

6
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game where both players have imperfect information. We denote

by G∼1/id
the game G where the equivalence relation ∼1 over V ,

defining the observations for player 1, is replaced by the identity

relation over V (i.e. Player 1 has perfect information).

Lemma 4.1. The two-player game G = ⟨A,Oi ∈{0,1}⟩ admits a
solution to the RS problem if and only if G∼1/id admits a solution to
the RS problem.

Proof. (⇐) Let σ̂obs
0
∈ Σobs

0
be a solution to the RS on G∼1/id

. By

definition of RS and 0-fixed NE, the following holds for any strategy

in Σ1, and in particular any strategy in Σobs
1

:

∀σobs
1
∈ Σobs

1
: out (σ̂obs

0
,σobs

1
) ∈ O0∨

(out (σ̂obs
0
,σobs

1
) < O1 ∧ ∃ϱ1 ∈ Σ1 (out (σ̂

obs
0
, ϱ1) ∈ O1)) (1)

Let σobs
1
∈ Σobs

1
such that out (σ̂obs

0
,σobs

1
) < (O0 ∪ O1). We show

how to use the strategy ϱ1 ∈ Σ1 such that out (σ̂obs
0
, ϱ1) ∈ O1 (ex-

isting by Equation 1) to define an observation based strategy ϱobs
1

:

[V ]
∗
∼1

[V1]∼1
→ Act1 for Player 1 such that out (σ̂obs

0
, ϱobs

1
) ∈ O1.

Givenα = [v0]∼1
. . . [vn]∼1

∈ [V ]
∗
∼1

[V1]∼1
, ifvi ∼1 out (σ̂

obs
0
, ϱ1)[i]

(the ith states of out (σ̂obs
0
, ϱ1)) for all 0 ≤ i ≤ n, then ϱobs

1
(α ) =

a ∈ Act1 such that the action a satisfies δ1 (out (σ̂
obs
0
, ϱ1)[n],a) =

out (σ̂obs
0
, ϱ1)[n + 1]. Otherwise ϱobs

1
(α ) = a ∈ Act1, where a is the

first action in Act1 (assumed to be arbitrarily ordered).

Using Equation 1 and the previous transformation of strategies ϱ1

into observation-based strategies ϱobs
1

, we obtain that σ̂obs
0
∈ Σobs

0

is a solution to the RS problem for G = ⟨A,Oi ∈{0,1}⟩, i.e.

∀σobs
1
∈ Σobs

1
: out (σ̂obs

0
,σobs

1
) ∈ O0∨

(out (σ̂obs
0
,σobs

1
)<O1 ∧ ∃ϱ

obs
1
∈Σobs

1
(out (σ̂obs

0
, ϱobs

1
) ∈ O1)) (2)

(⇒) Let σ̂obs
0
∈ Σobs

0
be a solution to the RS problem on G =

⟨A,Oi ∈{0,1}⟩, i.e. an observation based strategy for Player 0 satis-

fying Equation 2. Since Σobs
1
⊆ Σ1, we get

∀σobs
1
∈ Σobs

1
: out (σ̂obs

0
,σobs

1
) ∈ O0∨

(out (σ̂obs
0
,σobs

1
) < O1 ∧ ∃ϱ1 ∈ Σ1 (out (σ̂

obs
0
, ϱ1) ∈ O1)) (3)

By contradiction, suppose there exists σ1 ∈ Σ1 \ Σ
obs
1

such that

out (σ̂obs
0
,σ1) < O0 and such that out (σ̂obs

0
,σ1) ∈ O1 ∨ ∀ϱ1 ∈

Σ1 (out (σ̂
obs
0
, ϱ1) < O1). Using the same technique adopted in the

other direction of this proof, we can use out (σ̂obs
0
,σ1) to build

an observation-based strategy σobs
1

for which Equation 4 holds,

contradicting Equation 3.

out (σ̂obs
0
,σobs

1
) < O0∧

(out (σ̂obs
0
,σobs

1
) ∈ O1 ∨ ∀ϱ1 ∈ Σ1 (out (σ̂

obs
0
, ϱ1) < O1)) (4)

□

The second step is based on the results developed in Subsection

4.2, where we provide a general decidability procedure for the RS

problem on multiplayer games in which only Player 0 is imperfectly

informed. Such a procedure is ExpTime when the number of players

is a fixed constant k . Therefore, we get:

Theorem 4.2. The RS problem on imperfect information 2-players
parity games is ExpTime-c (even if only Player 0 is partially informed).

Proof. The upper bound is a direct corollary of Theorem 4.6 (see

below) and Lemma 4.1. To prove the lower-bound, it is known that

deciding the winner in a two-player zero-sum parity games where

Player 0 is partially informed is ExpTime-c [28]. Take such a game,

and modify objective of Player 1 to an objective which is never

fulfilled, by taking the parity p1 (v ) = 1 for all states v for instance.

Then, there is a solution to the RS problem in this new (2-player)

game iff Player 0 has a winning strategy in the original game. □

4.2 RS on multiplayer games where only Player 0 is
imperfectly informed

Our solution to the RS problem on a multiplayer game G where

Player 0 is the only imperfectly informed player goes via a reduction

to a 0-sum imperfect information 2-player game, denoted GRS, such

that there is a solution to the RS problem in G if and only if the

protagonist ofGRS, called Prover, has an observation-based winning
strategy against all strategies of the antagonist, called Challenger.

The role of Prover is to show the existence of a solution to RS,

while Challenger tries to disprove it. Prover controls the actions
of Player 0, and has the same partial information as Player 0 in

the original game. Along the game, Prover builds a path in the

arena of the original game G. The path that has been constructed

must be winning for Player 0 in the original game G or at least

one other player is losing and has a profitable deviation along this

path. In order to check the latter property, Prover has, along the

play, the possibility to declare that some players have a profitable

deviation, i.e. a winning strategy against all other players. These

declarations are stored in a subset D ⊆ Ω, i.e. i ∈ D iff Player i has
been declared along the play to have a profitable deviation. When

Prover makes such a declaration, Challenger also has the possibility
to check whether Prover has not cheated, i.e. that Player i has indeed
a winning deviation. To do so, Challenger can also choose actions

for all the players j , i and Prover chooses Player i’s actions. At
any point of the game, there might also be a set of players for which

Prover has to prove they have a winning strategy, against all other

players. These players are stored in a subsetW ⊆ Ω.
More precisely, the set of states of GRS are triples (v,W ,D),

wherev ∈ V is a state of G andW ,D ⊆ Ω \ {0}. A state (v,W ,D) is
equivalent for Prover to a state (v ′,W ′,D ′) in GRS if v and v ′ are
equivalent for Player 0 in G. The actions of Prover in GRS are the
following. In each state (v ∈ V0,W ,D) Prover can play an action

a ∈ Act0 to develop a strategy for Player 0 that is a solution to the RS

problem on G. The game then evolves deterministically to the next

state in G, lettingW and D unchanged. On the other hand, in each

state (v ∈ Vi ,W ,D) for i , 0, Prover chooses an action which is a

function ζ assigning to every triple (v ′,W ′,D ′) such that v ′ ∈ Vi ,
either an action ∗ or an action ⟨win,b ∈ Acti ⟩. Intuitively, each
mapping (v ′,W ′,D ′) 7→ ⟨win,b ∈ Acti ⟩ is used by Prover to claim

that, if the game was actually in position (v ′,W ′,D ′), then if player

i plays b fromv ′ ∈ Vi in G, then he ends up in a subgame where he

has a winning strategy against all the strategies of the other players

(since Player 0 has only partial information, unlike the other players,

Prover must also provide actions for other possible states). In other

words, (v ′,W ′,D ′) 7→ ⟨win,b ∈ Acti ⟩ is used by Prover to claim

that v ′ is a profitable deviation point for Player i . If Prover does
not want to make any claim concerning the existence of profitable

deviations from (v ′,W ′,D ′), then he will map (v ′,W ′,D ′) to the
special symbol ∗.

7
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If the current node of the play is (v ∈ Vi ,W ,D) and Prover
chooses an action ζ such that ζ ((v,W ,D)) = ⟨win,b ∈ Acti ⟩, then
the play proceeds either into the successor state (v ′ = δi (v,b),W ∪
{i},D) (i is put inW to indicate that Player i is now checked for

having a winning strategy against all other players), or in any

successor state (v ′′ = δi (v, c ),W ,D ∪ {i}) such that v ′′ , v ′ (i
is put in D to remember that i has been declared to have a good

deviation). It is up to Challenger (who has perfect information of

the game) to choose any of these successor states. As a matter

of fact, the two-player game we construct is a game where the

transition relation is not deterministic over the actions, and it is up

to Challenger to resolve non-determinism. This view is equivalent

to the deterministic setting of the Preliminary section, modulo

putting intermediate states controlled by Challenger, but it eases

the notations. We now formally define the game arenaARS
of GRS.

Definition 4.3 (Two Player Game Arena ARS
). Given a k + 1-

players gameG = ⟨A, (Oi ∈Ω )⟩ over the arenaA = ⟨Ω,V ,v0, (Vi )i ∈Ω,
(Acti )i ∈Ω, (δi )i ∈Ω,∼0⟩, the 2-player game arena ARS

is given by

ARS = ({Prover ,Challenдer },Q,q0,Act
RS
Prover ,E,∼

RS
Prover ), where:

• Q =
⋃k
i=0

Qi where Qi = Vi × 2
Ω × 2

Ω
, and q0 = (v0,∅,∅)

• ActRS
Prover

= Act0 ∪
⋃k
i=1

({⟨win,b⟩ | b ∈ Acti } ∪ {∗})
Qi

.

• ((v,W ,D), ζ , (v ′,W ′,D ′)) ∈ E ⊆ Q ×ActRSProver ×Q if and

only if one of the following conditions applies:

1. v ∈ V0, v
′ = δ0 (v, ζ ∈ Act0), D = D ′, andW =W ′.

2. v ∈ Vi , i ∈ W , ζ (v,W ,D) = ∗, ∃a ∈ Acti : v ′ = δi (v,a),
W =W ′, and D = D ′.

3. v ∈ Vi , i ∈W ∩ D, ζ (v,W ,D) = ⟨win,a ∈ Acti ⟩, and
a. either v ′ = δi (v,a),W =W ∪ {i}, D

′ = D,
b. or v ′ = δi (v,b) , δi (v,a),W =W , D ′ = D ∪ {i}.

4. v ∈ Vi , i ∈W ∩ D, ζ (v,W ,D) = ⟨win,a ∈ Acti ⟩, and
a. either v ′ = δi (v,a),W

′ =W , D ′ = D,
b. or v ′ = δi (v,b) , δi (v,a),W =W \ {i}, D

′ = D ∪ {i}.
• (v,W ,D) ∼RSProver (v ′,W ′,D ′) if and only if v ∼0 v

′
.

Given a play ϱ ∈ (V × 2
Ω × 2

Ω )ω over the arena ARS
G
, we

denote by ϱ |V , ϱ |W and ϱ |D its V -projection, W -projection and

D-projection, respectively. We can easily prove that each play ϱ
over the arenaARS

G
have some monotonicity property with respect

to the D- andW -components. Indeed, the D-components of the

states can only increase (Players can only be added), while forW ,

Players can be added (and possibly removed fromW ) only once.

This guarantees that along each play ϱ the D- andW -components

eventually stabilize to sets that we denote by limD (ϱ) and limW (ϱ),
respectively.

We are now ready to define the winning condition for the two-

player zero-sum game between Prover and Challenger. Informally, a

play ϱ is winning for Prover if either it satisfies Player 0’s objective in

G, or some Player i ∈ limD (ϱ) loses in G (i.e. Player i has profitable
deviation). Moreover, each player in limW (ϱ) (i.e. claimed to be

winning along ϱ |V ) needs to be indeed winning in G. Formally:

ORS
G

= {ϱ | ϱ |V ∈ O0 ∨
∨k
i=1

(ϱ |V < Oi ∧ i ∈ limD (ϱ))}∩

∩{ϱ |
∧
i ∈l imW (ϱ ) (ϱV ∈ Oi )}

We let GRS be the two-player imperfect information zero-sum game

on the arena ARS
with objective ORS

G
for Prover. The following

theorem states the correctness of our reduction.

Theorem 4.4. Let G be a k + 1-player games where player 0 is the
only player with imperfect information. G admits a solution to the
RS problem if and only if Prover has an observation-based winning
strategy on GRS.

To solve GRS, we reduce it to a 0-sum perfect information game

G∗ where the protagonist has objective P∗ we now define. Let [Q]

be the quotient of the set of states Q in GRS by ∼RSProver and let

µ : Qω 7→ [Q]
ω
be the morphism defined by mapping each state

s ∈ Q to the equivalence class of s by ∼RSProver . Then:

P∗ = {ϱ ∈ [Q] | ∀s̄ ∈ Qω
: µ (s ) = ϱ → s̄ ∈ ORS

G
}

Lemma 4.5. P∗ is recognizable by a deterministic parity word au-
tomaton with a number of states exponential in the number of states
of G and doubly exponential in the number of players k , and a num-
ber of priorities that is polynomial in the number of states of G and
exponential in number of players k .

Based on the previous lemma, we can establish the complexity

of RS for a fixed number of players.

Theorem 4.6. The RS problem for a fixed number k of players where
only player 0 is imperfectly informed is ExpTime-complete.

Proof. Let P be the DPW built in Lemma 4.5, recognizing P∗. We ap-

ply a knowledge construction to the arenaARS
, where we gather all

the possible states ofARS
in which Prover can be. This is a standard

operation in imperfect information games, see for instance [28].

This results in a perfect information game arena K , with which

we take a product with P , to obtain a perfect information zero-sum

2-player parity game G∗. The number of states of G∗ is doubly

exponential in k and exponential in |V |, and its number of priorities

is polynomial in |V | and exponential in k . The latter can be solved

in time polynomial w.r.t. the number of states and exponential w.r.t.

the number of priorities [22], leading to our upper bound. The lower

bound comes from the lower bound of Theorem 4.2 (2 players). □

We conclude this section with an undecidability result.

Theorem 4.7. The RS problem is undecidable for imperfect infor-
mation games (with at least 4 players).

Proof. This comes from the undecidability of NE existence in 3

players imperfect information games (Theorem 3.11). Given such

a game G with 3 players, we construct a game G ′ with 4 players.

The game arena is the same as G, with the only difference that

Player i in G ′ controls the states of Player i − 1 in G, for i = 1, 2, 3.

The objectives of Player 1, 2, 3 are unchanged, and the objective of

Player 0 is false. Hence, Player 0 can never win. By definition of

the RS, there is a solution iff there is no NE inG ′, iff there is no NE

in G, and thus we get undecidability. □

5 Complexity Results for an Unfixed Number
of Players

In this section, we analyse the complexity of the RS when the

number of players is not fixed, and only Player 0 is imperfectly

informed. We also show the robustness of the upper bound we

obtain in the case of parity objectives, by showing that it does not

change for other classical objectives, such as Rabin objectives.

8
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5.1 Upper bound
As shown in the proof of Theorem 4.6, The RS problem for any

k-players parity games with n states reduces to a two-player zero-

sum perfect information parity game with a number of states which

is doubly exponential in k and exponential in n, and a number of

priorities exponential in k and polynomial in n. Overall, this gives
a 2ExpTime upper bound, because two-player parity games can be

solved in time polynomial in the number of states and exponential

in the number of priorities [22]. A natural question is whether this

upper bound is robust to other classical objectives such as safety,

reachability, Büchi, co-Büchi, Rabin, Streett and Emerson-Lei (EL).

We do not define all these objectives, and rather refer the reader

to [17]. Nevertheless, since we use them later on, we define Rabin

and EL objectives.

Let Γ be some finite set. An EL condition over Γ is a Boolean

formula φ over variables {xγ | γ ∈ Γ}. Such a formula defines a set

JφK ⊆ 2
Γ
, defined by Γ′ ∈ JφK iff putting all variables xγ , γ ∈ Γ′

to true and all variables xγ , γ < Γ
′
to false, satisfies φ. An infinite

sequenceu ∈ Γω satisfies an EL condition φ if inf(u) ∈ JφK. A Rabin
constraint over Γ is a set of n pairs R = {(F1, I1), . . . , (Fn , In )} such
that Fi , Ii ⊆ Γ for all i . A sequence u ∈ Γω satisfies R iff it satisfies

the formula

∨
(F , I )∈R (

∧
γ ∈F ¬xγ )∧ (

∨
γ ∈I xγ ), i.e., u visits finitely

often the elements of Fi and infinitely often some element of Ii , for
some i . The complexity bound given in the next theorem can be

derived from Thm 4.6 for parity objectives. The other objectives

can be reduced to the latter, using known translations.

Theorem 5.1. The RS problem for multiplayer games where only
Player 0 is imperfectly informed, and where the players have either
safety, reachability, Büchi, coBüchi, parity, Streett, Rabin or EL objec-
tives is in 2ExpTime.

5.2 Lower bound
By Theorem 4.6, the RS problem for a fixed number of players

(and only Player 0 partially informed) is ExpTime-hard for parity

objectives, and so we also get this lower bound in the case of an

unfixed number of players. This is shown by reducing two-player

zero-sum imperfect information parity games (with only Player 0

uninformed) to RS. This reduction is generic and carries over to the

classical types of objectives in reachability, safety, Büchi, coBüchi,

parity, Rabin, Street and Muller. Since deciding the winner in a two-

player zero-sum imperfect information games with such objectives

is as well ExpTime-hard, we also get the same lower bound for RS

problem and all the classical objectives. According to Theorem 5.1,

this leaves an exponential gap between the lower and upper bound.

In this section, we reduce this gap for Rabin objectives, by showing

an ExpSpace-hardness lower bound. This lower bound is shown

by reducing the universality problem for non-deterministic multi-
Rabin word automata, a model that we now introduce. We believe

this class of automata has also its own interest.

5.2.1 Multi-Rabin Word Automata
A non-deterministic multi-Rabin automaton (NMRA) is a tuple A =
(Σ,Q,Q0,∆,k,R1, . . . ,Rk ) where Σ is a finite alphabet, Q a finite

set of states with initial states Q0 ⊆ Q , ∆ ⊆ Q × Σ ×Q a transition

function, k ∈ N and R1, . . . ,Rk are Rabin constraints over Q .
A run ofA on a wordw = w1w2 · · · ∈ Σ

ω
is a word r = r0r1 · · · ∈

Qω
such that r0 ∈ Q0 and for all i ≥ 0, (ri ,wi+1, ri+1) ∈ ∆. It is

accepting if for all i ∈ {1, . . . ,k }, r satisfies the Rabin constraint

Ri . The language L(A) accepted by A is the set of wordsw which

admits an accepting run. The emptiness problem askswhether, given

an NMRA, L(A) = ∅ and the universality problem asks, whether

L(A) = Σω .

Proposition 5.2. The emptiness problem for NMRA is NP-complete.

In contrast, the universality problem is much harder. NMRA are

a particular case of Emerson-Lei automata (modulo polynomial

translation). The universality problem for EL-automata has been

shown to be in ExpSpace-c [30]. The following result strengthen
this ExpSpace-hardness result to NMRA universality. To prove

the following result, we reduce the word problem of an ExpSpace

Turing machine.

Theorem 5.3. The universality problem is ExpSpace-c for NMRA.

5.2.2 Lower bound for the RS problem with Rabin
objectives, and only Player 0 imperfectly informed

Theorem 5.4. The rational synthesis problem for k players all per-
fectly informed but Player 0 (who is blind), and Rabin objectives for
each player, is ExpSpace-hard.

Proof. We reduce the universality problem of non-deterministic

multi-Rabin automata, which is ExpSpace-hard by Theorem 5.3.

Let A = (Σ,Q,Q0,α ,R1, . . . ,Rα ) be some NMRA. We construct a

gameG with α+2 players P0, P1, . . . , Pα , Pα+1 and Rabin objectives

R′
0
,R′

1
, . . . ,R′α ,R

′
α+1

such that G has a solution to the RSP iff A is

not universal.

The gameG has a main partGA which simulates the automaton

A, and α sink states denoted by s1, . . . , sα . Player 0 is blind in this

game, i.e. ∼0= V ×V where V are the states of G. In the part GA,

the actions of Player 0 are symbols in Σ, while the actions of player
Pα+1 are states. Hence, Player 0 chooses some word and Player

Pα+1 chooses a run. When both these players have played one

round each, the players 1 to α play in turn. Player i ∈ {1, . . . ,α }
can decide to either stay in the part GA (action C) or to leave it for

its sink state si (action L) where both Player i and 0 win. The game

G is depicted on Fig. 4. Formally, the set of states V of the game

is VA ∪ {s1, . . . , sk } where VA = Q × {0, 1, . . . ,α } ∪Q × Σ (Player i
controls any state (q, i ) while Player α +1 controls the states (q,σ )).
From a state (q, 0), Player 0 can choose an action σ ∈ Σ and move

to state (q,σ ). Then, Player α + 1 can choose an action q′ ∈ Q
such that (q,σ ,q′) ∈ ∆ and move to state (q′, 1). From a state (q, i ),
Player i has two possible actions, either “stay” or “leave”. If it stays,

then the game move to state (q, (i + 1)%α + 1). If it leaves, the game

move to state si , on which there is only a self loop.

The winning objectives O0,O1, . . . ,Oα ,Oα+1 are the following:

• if the game stay forever inGA then Player 0 loses, otherwise

he wins: O0 = {(VA, {s1, . . . , sα })},
• Player Prun always loses: Oα+1 = {(∅,∅)},
• Player i ∈ {1, . . . ,α } either satisfy the Rabin constraint Ri in
GA or goes to the sink si , i.e.Oi = R′i∪{(∅, {si })}whereR

′
i =

{(F × ({0, 1, . . . ,α }∪Σ),G× ({0, 1, . . . ,α }∪Σ)) | (F ,G ) ∈ Ri }.

Intuitively, Player 0 wants to eventually leave GA and for this,

some player i ∈ {1, . . . ,α } has to lose if the game stays in GA,

forcing her to deviate to her sink state. Therefore, Player 0 has to

choose a sequence of σ -symbols, i.e. a word, such that whatever run

is chosen by Player α + 1, it falsifies the condition of some player.

If the automaton is not universal, then such a word exists. □
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1
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...
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1

...

qk

1

qj

2

. . . qj

α

qj

0

. . .σ

q1

qj

qk

C C C C

GA, losing for Player 0 ∆(q,σ ) = {q1, . . . ,qk }

,1,,0 ,2,,0 ,α ,,0

L L

L

Figure 4. Reduction from NMRA to RS. The game GA simulates the automaton A.

Remark A similar reduction to that of Thm 5.4 can be used to

show that the RS problem for 2 players where only Player 0 is

partially informed (and blind) and has an EL-objective is ExpSpace-

hard, by reducing the universality problem of EL-automata, which

is ExpSpace-c [30]. Player 0 chooses a word and Player 1 a run

(which is invisible to Player 0). Player 0’s objective is the formula

¬φ, where φ is the EL-formula of the automaton, and Player 1’s

objective is always false. Clearly in this game, any strategy profile

is a 0-fixed NE since Player 1 always loses. Hence, there exists a

solution to the RS problem iff there exists a strategy for Player 0

winning against all strategies of Player 1, iff there exists a word such

that all runs are non-accepting, iff the automaton is not universal.

Paper Conclusion We have studied the existence of NE and of

solutions to the rational synthesis problem for games played on

graphs with non-zero sum ω-regular objectives and with imper-

fect information. In sharp contrast with the perfect information

case, Nash equilibria need not to exist in games with imperfect

information, and we have studied their existence problem. While

this problem is ExpTime-C for two-player games and parity objec-

tives (even if both players are imperfectly informed), it becomes

undecidable for 3 and more players (even if only two players are

imperfectly informed). We have obtained similar results for the

rational synthesis problem: it is decidable for two players and unde-

cidable in general. We have also identified an other interesting case:

when only Player 0 is imperfectly informed, the problem remains

decidable in the general case of k players. When this k is fixed,

the problem remains ExpTime-C and we have shown a 2ExpTime

upper bound when k is not fixed. In the later case, we leave open

the exact complexity of the problem as we have only established

an ExpSpace lower bound for Rabin objectives.
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