
The State Complexity of Alternating Automata∗

Nathanaël Fijalkow

CNRS, LaBRI, Bordeaux

Alan Turing Institute, London

University of Warwick

Abstract
This paper studies the complexity of languages of finite words us-

ing automata theory. To go beyond the class of regular languages,

we consider infinite automata and the notion of state complexity

defined by Karp. We look at alternating automata as introduced

by Chandra, Kozen and Stockmeyer: such machines run indepen-

dent computations on the word and gather their answers through

boolean combinations.

We devise a lower bound technique relying on boundedly gener-

ated lattices of languages, and give two applications of this tech-

nique. The first is a hierarchy theorem, stating that there are lan-

guages of arbitrarily high polynomial alternating state complexity,

and the second is a linear lower bound on the alternating state

complexity of the prime numbers written in binary. This second re-

sult strengthens a result of Hartmanis and Shank from 1968, which

implies an exponentially worse lower bound for the same model.

Keywords Automata Theory, Alternating Automata, State Com-

plexity, Lower Bounds, Hierarchy Theorem, Prime Numbers

ACM Reference Format:
Nathanaël Fijalkow. 2018. The State Complexity of Alternating Automata. In

LICS ’18: LICS ’18: 33rd Annual ACM/IEEE Symposium on Logic in Computer

Science, July 9–12, 2018, Oxford, United Kingdom. ACM, New York, NY, USA,

8 pages. https://doi.org/10.1145/3209108.3209167

1 Introduction
The seminal paper of Karp [15] defines the state complexity of an

(infinite) automaton as a function associating with n the number

of states reachable by reading a word of length at most n. For a
function f : N → N, a language L ⊆ A∗ has state complexity f
if there exists an automaton recognising L of state complexity at

most f .

For the case of deterministic automata, state complexity is fully

characterised by the celebrated Myhill-Nerode theorem [19], which

states the existence of a canonical minimal (potentially infinite) au-

tomaton for a given language based on the notion of left quotients.

Nevertheless, it is sometimes complicated to understand the struc-

ture of this automaton, as demonstrated by the case of the language

∗
This project has received funding from the Alan Turing Institute under EPSRC grant

EP/N510129/1, the DeLTA project (ANR-16-CE40-0007), and the ASP project (ANR

PEPS JCJC).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00

https://doi.org/10.1145/3209108.3209167

of prime numbers written in binary: a series of papers culminates

in a result of Hartmanis and Shank [14] showing that this language

has asymptotically maximal (i.e., exponential) deterministic state

complexity.

In this paper, we initiate the study of alternating state complexity,

which uses Karp’s definition instantiated with (infinite) alternating

automata. We first motivate the model with some examples and

later discuss its relevance. Formal definitions are given in the next

section; we stick to intuitive explanations in this introduction.

Consider the language

CountEq
3
=
{
w ∈ {a,b, c}∗ | |w |a = |w |b = |w |c

}
,

consisting of words having the same number of a’s, b’s and c’s. (We

let |w |a denote the number of letters a inw .) This language is not

regular, but we claim that it is recognised by a deterministic automa-

ton of quadratic state complexity. Indeed, we construct an automa-

ton whose set of states is Z2, interpreted as two counters. They are

initialised to 0 each and maintain the value (|w |a−|w |b , |w |a−|w |c).
To this end, the letter a acts as (+1,+1), the letter b as (−1, 0), the
letter c as (0,−1). The only accepting state is (0, 0). This automa-

ton is of quadratic state complexity: after reading the wordw the

automaton is in the state (|w |a − |w |b , |w |a − |w |c), which means

that the set of states reachable by words of length at most n has

size (2n + 1)2.

Consider now the language

NotEq =
{
u♯v | u,v ∈ {0, 1}∗ ,u , v

}
,

consisting of two words u,v over the alphabet {0, 1} separated by

the letter ♯ such that u is different from v . One can easily see that

this language does not have subexponential deterministic state

complexity: after reading two different words u and u ′, any deter-

ministic automaton recognising NotEq must be in two different

states.

However, it is recognised by a non-deterministic automaton of

linear state complexity. Note that there are three ways to have

u , v: either v is longer than u, or v is shorter than u, or there
exists a position at which they differ. At the beginning the automa-

ton guesses which of these three situations occur. We focus on

the third possibility for the informal explanation. The automaton

guesses a position in the first word, stores in the state the position

p together with the letter a at this position, and checks whether

the corresponding position in the second word indeed differs. To

this end, after reading the letter ♯, it decrements the position until

reaching 1, and checks whether the letter is indeed different than

the letter stored in the state.

Our third example is the language

Lexicographic =
{
u♯v | u,v ∈ {0, 1}∗ ,u <

lex
v
}
,

https://doi.org/10.1145/3209108.3209167
https://doi.org/10.1145/3209108.3209167

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Nathanaël Fijalkow

consisting of two words u,v over the alphabet {0, 1} separated

by the letter ♯ such that u is lexicographically smaller than v .
One can see that this language does not have subexponential non-

deterministic state complexity (we do not substantiate this claim

here). However, we claim that it is recognised by an alternating

automaton of linear state complexity.

The notion of alternating (Turing) machines was introduced by

Chandra, Kozen and Stockmeyer [5, 6, 16]. A non-deterministic

automaton makes guesses about the word, and the computation

is accepting if there exists a sequence of correct guesses. In other

words, these guesses are disjunctive choices; the alternating model

restores the symmetry by introducing disjunctive and conjunctive

choices. Whenever the automaton makes a choice, we say that it

creates independent copies of itself, one for each alternatives; if

the choice was disjunctive, the computation is accepted if some

copy accepts, and if the choice was conjunctive, the computation is

accepted if all copies accept.

We illustrate this notion by constructing an alternating automa-

ton for Lexicographic. We unravel the inductive definition of the

lexicographic order: u <
lex

v if and only if

(u (0) = 0 ∧v (0) = 1) ∨ (u (0) = v (0) ∧ u (≥ 1) <
lex

v (≥ 1)) .

Here u (0) is the first letter of u, and u (≥ 1) is the word u stripped

of its first letter. Upon reading the first letter u (0), the automaton

makes a disjunctive guess corresponding to the disjunction in the

definition: either both u (0) = 0 and v (0) = 1, or both u (0) = v (0)
and u (≥ 1) <

lex
v (≥ 1). In the latter case, the automaton makes a

further choice, conjunctive this time, checking with one copy that

u (0) = v (0) and with another that u (≥ 1) <
lex

v (≥ 1).

Alternating automata are succinct. It is well-known that fi-

nite deterministic, non-deterministic and alternating automata are

equivalent. As hinted by the examples discussed above, for infi-

nite automata we do not have such an equivalence. Some classical

constructions still apply, for instance the powerset construction to

determinise automata, which increases the state complexity expo-

nentially. Similarly one can transform alternating automata into

deterministic ones, increasing the state complexity by a two-fold

exponential. Hence one can see alternating automata as a class of

succinctly represented deterministic automata, whose inner boolean

structure is made explicit.

Alternating automata are distributed. Another appeal of al-
ternating automata is as a model of distributed computation. Indeed,

in the course of its computation, an alternating automaton produces

copies of itself that can be run independently on a distributed archi-

tecture. The final output is then computed by boolean combinations

of the answers of each copy. This point of view echoes the recent

work of Reiter [22], which combines ideas from distributed algo-

rithms and alternating automata.

Applications. The notion of state complexity is used as a com-

plexity measure to evaluate how complicated some operations on

languages are. We refer to the surveys [10, 27, 28] for more details

on this long line of work. The other natural use of state complexity

is as a tool for separating models of computations. For instance,

the paper of Dawar and Kreutzer [7] generalises the notion of au-

tomaticity (see related works) to relational structures and uses it

for separating several modal and non-modal fixed-point logics.

Contributions of the paper.We study alternating state com-

plexity, i.e., the number of states required to recognise a given

language using an alternating automaton. We devise a generic

lower bound technique based on boundedly generated lattices of

languages.

We give the basic definitions and show some examples in Sec-

tion 2. We discuss related works in Section 3. We describe our lower

bound technique in Section 4, and give two applications:

• Hierarchy theorem: in Section 5, we prove a hierarchy

theorem: for each natural number ℓ greater than or equal to

2, there exists a language having alternating state complexity

nℓ but not nℓ−ε for any ε > 0.

• Prime numbers: in Section 6, we look at the language of

prime numbers written in binary. The works of Hartma-

nis and Shank culminated in showing that it does not have

subexponential deterministic state complexity [14]. We con-

sider the stronger model of alternating automata, and first

observe that Hartmanis and Shank’s techniques imply a loga-

rithmic lower bound on the alternating state complexity. Our

contribution is to strengthen this result by showing a linear

lower bound, which is thus an exponential improvement.

2 Definitions
We fix an alphabet A, which is a finite set of letters. A word is a

finite sequence of lettersw = w (0)w (1) · · ·w (n−1), where thew (i)
are letters from the alphabet A, i.e., w (i) ∈ A. We say that w has

length n, and write |w | for the length of w . The empty word is ε .
We let A∗ denote the set of all words and A≤n the set of words of

length at most n. A language, typically denoted by L, is a set of

words.

For a set E, we let B+ (E) denote the set of boolean formulae

over E, i.e., using conjunctions and disjunctions. Throughout the

paper we only consider positive boolean combinations. For instance,

if E =
{
p,q, r

}
, an element of B+ (E) is p ∧ (q ∨ r). A conjunctive

formula uses only conjunctions, and a disjunctive formula only

disjunctions. For δ ∈ B+ (E) and X ⊆ E, we write X |= δ if δ is true

when setting the elements of X to true and the others to false.

Definition 2.1 (Alternating Automata [5, 6, 16]). An alternating

automaton is given by a (potentially infinite) set Q of states, an

initial state q0 ∈ Q , a transition function δ : Q ×A→ B+ (Q) and a

set of accepting states F ⊆ Q .

We use acceptance games to define the semantics of alternating

automata. Consider an alternating automaton A and an word w ,

we define the acceptance game GA,w as follows: it has two players,

Eve and Adam. Eve claims that the wordw should be accepted, and

Adam challenges this claim.

The game starts from the initial state q0, and with each letter of

w read from left to right, a state is chosen through the interaction of

the two players. If in a state q and reading a letter a, Eve and Adam
look at the boolean formula δ (q,a); Eve chooses which clause is

satisfied in a disjunction, and Adam does the same for conjunctions.

This leads to a new state p, from which the computation continues.

A play is won by Eve if it ends up in an accepting state.

The wordw is accepted by A if Eve has a winning strategy in

the acceptance game GA,w . The language recognised by A is the

set of words accepted by A.

As special cases, an automaton is

The State Complexity of Alternating Automata LICS ’18, July 9–12, 2018, Oxford, United Kingdom

• non-deterministic if for all q in Q , a in A, δ (q,a) is a disjunc-
tive formula,

• universal if for all q in Q , a in A, δ (q,a) is a conjunctive

formula,

• deterministic if for all q in Q , a in A, δ (q,a) is an atomic

formula, i.e., if δ : Q ×A→ Q .

Definition 2.2 (State Complexity Classes [15]). Fix a function f :

N→ N. The language L is in Alt (f) if there exists an alternating

automaton recognising L and a constant C such that for all n in N:

���
{
q ∈ Q | ∃w ∈ A≤n , it is possible to reach q in GA,w

}���
≤ C · f (n).

Similarly, we define NonDet (f) for non-deterministic automata

and Det (f) for deterministic automata.

For the sake of succinctness, the acronym SC will be used in lieu

of state complexity. We write f (n) for the function f : n 7→ f (n), so
for instance Alt (n) is the class of languages having linear alternat-

ing SC. We say that L has sublinear (respectively subexponential)

alternating SC if it is recognised by an alternating automaton of

state complexity at most f , where f = o(n) (respectively f = 2
o (n)

).

We let Reg denote the class of regular languages, i.e., those recog-

nised by finite automata. Then

Det (1) = NonDet (1) = Alt (1) = Reg,

i.e., a language has constant SC if and only if it is regular.

We remark that Det (|A|n) is the class of all languages. Indeed,
consider a language L, we construct a deterministic automaton

recognising L of exponential state complexity. Its set of states is

A∗, the initial state is ε and the transition function is defined by

δ (w,a) = wa. The set of accepting states is simply L itself. The

number of different states reachable by all words of length at most

n is the number of words of length at most n, i.e., |A |
n+1−1
|A |−1 .

It follows that the maximal SC of a language is exponential, and

the state complexity classes are relevant for functions smaller than

exponential.

3 Related Works
The definition of SC is due to Karp [15], and the first result proved

in that paper is that non-regular languages have at least linear

deterministic SC. Hartmanis and Shank considered the language

of prime numbers written in binary, and showed in [14] that it

does not have subexponential deterministic SC. We pursue this

question in this paper by considering the alternating SC of the

prime numbers. Recently, we investigated the SC of probabilistic

automata; we substantiated a claim by Rabin [21], by exhibiting

a probabilistic automaton which does not have subexponential

deterministic SC [9].

Automaticity was defined by Shallit and Breitbart and studied in

depth in a series of four papers [11, 20, 25, 26].

Definition 3.1. The automaticity of a language L is the function

Aut(L) : N → N which associates with n the size of the smallest

deterministic automaton which agrees with L on all words of length
at most n.

The conceptual difference is that automaticity is a non-uniform

notion, since there is a finite automaton for each n, whereas state

complexity is uniform, since it considers one infinite automaton.

For this reason, the two measures behave completely differently.

For instance, consider the language

L
log
=

{
w ∈
{
a,b, ♯

}∗ ����� w = uv · ♯ · u,u,v ∈ {a,b}∗ , |u | = ⌊log(|w |)⌋

}
.

In words: the prefix ofw of length ⌊log(|w |)⌋ repeats just after the
unique letter ♯.

The automaticity of this language is linear, i.e., rather small:

Aut(L
log

) (n) = O (n). Indeed, given n, the automatonAn stores the

prefix up to ⌊log(n)⌋, waits for the letter ♯, and compares it to the

word starting after ♯.

On the other hand, the deterministic SC of L
log

is maximal, mean-

ing exponential: indeed, since the automaton has no information on

how long the prefix to be repeated may be, it has to store the whole

word. More formally, for any two words u , v , any deterministic

automaton recognising L
log

must be in two different states after

reading u and after reading v .
Note that replacing log by a very slow growing function yields

examples showing that the gap between automaticity and deter-

ministic SC is arbitrarily large.

Another interesting point to make here is the difference between

finite and infinite automata. Indeed, studying the SC of finite alter-

nating automata can be reduced to the SC of finite deterministic

automata by reversing the words. The notation uR stands for the

reverse of u:

uR = u (n − 1) · · ·u (0).

We extend it to languages: LR =
{
uR | u ∈ L

}
. The following result

is a variant of Brzozowski’s minimization by reversal technique [4],

and a classical result in automata theory.

Lemma 3.2 ([8, 24]).
• If L is recognised by an alternating automaton with n states,

then LR is recognised by a deterministic automaton with 2
n

states.

• If L is recognised by a deterministic automaton with 2
n
states,

then LR is recognised by an alternating automaton with n
states.

In other words, the number of states of the smallest finite deter-

ministic automaton recognising L is (almost) exactly 2
n
, where n is

the number of states of the smallest finite alternating automaton

recognising LR .
This result does not extend to SC for infinite automata: indeed,

since every language has exponential deterministic SC, this would

imply that every language also has linear alternating SC. That does

not hold: we exhibit in Subsection 4.3 a language which does not

have subexponential alternating SC.

Two notions share some features with alternating SC.

The first is boolean circuits; as explained in [9], the resemblance

is only superficial, as circuits do not process the input from left

to right. For instance, one can observe that the language Parity,

which is hard to compute with a circuit (not in AC
0
for instance),

is actually a regular language, so trivial with respect to SC.

The second notion is alternating communication complexity,

developed by Babai, Frankl and Simon [3]. In this setting, Alice has

an input x in A, Bob an input y in B, and they want to determine

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Nathanaël Fijalkow

h(x ,y) for a given boolean function h : A × B → {0, 1} known
by all. Alice and Bob are referees in a discussion involving two

individuals, Eve and Adam. Eve tries to convince Alice and Bob

that h(x ,y) = 1, and Adam aims at the opposite. A protocol of

exchanging messages depending on the inputs is agreed upon by

everyone beforehand. Then the input x is revealed to Alice and y
to Bob. Eve and Adam both know the two inputs and exchange

messages whose conformity to the inputs is checked by Alice and

Bob. The cost of the protocol is the number of bits exchanged.

The main difference between communication complexity and

state complexity is that protocols do not have to extract information

from the inputs sequentially as an automaton does. For instance,

swapping the inputs of Alice and Bob does not make any difference

for communication complexity but can completely change the state

complexity.

As an example, consider the following language studied in Sub-

section 4.3.

L =

{
u♯u1♯u2♯ · · · ♯uk

�����
u,u1, . . . ,uk ∈ {0, 1}

∗ ,

∃j ∈ {1, . . . ,k } ,u = uj

}
.

Alice receives u of length n and Bob receives u1♯u2♯ · · · ♯uk , and
they want to check whether there exists j ∈ {1, . . . ,k } such that

u = uj . A simple protocol is for Eve to send j, and then for Adam

to send i ∈ {1, . . . ,n} together with the letter u (i), to which Eve

answers with the letter uj (i). If the two letters match the exchange

is a success, otherwise it is a failure.

An alternating automaton cannot simulate this protocol, because

it would need to choose j ∈ {1, . . . ,k } at the beginning, even before

reading u. The formal proof of this intuition is that this language

does not have subexponential alternating complexity, as proved in

Subsection 4.3.

However, if we swap the two inputs, i.e., the automaton reads

u1♯u2♯ · · · ♯uk before u, then it can simulate the protocol: when

reading uj it non-deterministically decides to store uj , and later

checks using universal guesses that uj = u.
This example shows that using alternating communication com-

plexity would not yield strong lower bounds for alternating state

complexity. Building on the ideas behind the language L one can

obtain arbitrary gaps between the two notions.

4 A Lower Bound Technique
In this section, we develop a generic lower bound technique for

alternating state complexity. It is based on the size of generating

families for some lattices of languages; we describe it in Subsec-

tion 4.1, and a concrete approach to use it, based on query tables,

is developed in Subsection 4.2. We apply it to an example in Sub-

section 4.3.

4.1 Boundedly Generated Lattices of Languages
Let L be a language andu a word. The left quotient of Lwith respect
to u is

u−1L = {v | uv ∈ L} .

If u has length at most n, we say that u−1L is a left quotient of L of

order n.
The notion of left quotients stems from the notion of left Myhill-

Nerode equivalence relation [19], which allows us to define a canon-

ical minimal deterministic automaton. We use the notion of left

quotients to derive lower bounds for alternating automata.

A lattice of languages is a set of languages closed under union

and intersection. Given a family of languages, the lattice it generates

is the smallest lattice containing this family.

Theorem 4.1. If L is in Alt (f), then there exists a constant C such

that for all n ∈ N, there exists a family of at most C · f (n) languages
whose generated lattice contains all the left quotients of L of order n.

To some extent, Theorem 4.1 draws from the classical Myhill-

Nerode theorem [19]. However, since there is no notion of minimal

alternating automaton, the situation is more complicated here. In

particular, this suggests that the converse of Theorem 4.1 may not

hold.

Theorem 4.1 reduces the question of finding lower bounds for

alternating state complexity to the following one: given a finite

lattice of languages, what is the size of the smallest set of generators

for this lattice?

Proof. Let A be an alternating automaton recognising L of state

complexity at most f .
Fix n. Let Qn denote the set of states reachable by some word of

length at most n; by assumption |Qn | is at most C · f (n) for some

constant C . For q in Qn , let L(q) be the language recognised by A

taking q as initial state, and Ln the family of these languages.

We prove by induction over n that all left quotients of L of order

n can be obtained as boolean combinations of languages in Ln .

The case n = 0 is clear, since ε−1L = L = L(q0).
Consider a word w of length n + 1, write w = ua. We are in-

terested inw−1L = a−1 (u−1L), so let us start by considering u−1L.
By the induction hypothesis, u−1L can be obtained as a boolean

combination of languages in Ln : write u
−1L = ϕ (Ln), meaning

that ϕ is a boolean formula whose atoms are languages in Ln .

Now considera−1ϕ (Ln). Observe that the left quotient operation
respects both unions and intersections, i.e.,

a−1 (L1 ∪ L2) = a−1L1 ∪ a
−1L2,

and

a−1 (L1 ∩ L2) = a−1L1 ∩ a
−1L2.

It follows that w−1L = a−1 (ϕ (Ln)) = ϕ (a−1Ln); this notation
means that the atoms are languages of the form a−1M forM in Ln ,

i.e., a−1L(q) for q in Sn .
To finish the proof, we remark that a−1L(q) can be obtained

as a boolean combination of the languages L(p), where p are the

states that appear in δ (q,a). To be more precise, we introduce the

notationψ (L(·)), on an example: ifψ = p ∧ (r ∨ s), thenψ (L(·)) =
L(p) ∧ (L(r) ∨ L(s)). With this notation, a−1L(q) = δ (a,q) (L(·)).
Thus, forq inQn , we have that a

−1L(q) can be obtained as a boolean
combination of languages in Ln+1.

Putting everything together, it implies thatw−1L can be obtained
as a boolean combination of languages in Ln+1, finishing the in-

ductive proof. □

4.2 The Query Table Method
Thanks to Theorem 4.1, we are now looking at the size of the

smallest set of generators for a given finite lattice of languages. To

study this quantity we define the notion of query tables.

Definition 4.2 (Query Table). Consider a family of languages L.

Given a wordw , its profile with respect to L, or L-profile, is the

boolean vector stating whetherw belongs to L, for each L in L. The

The State Complexity of Alternating Automata LICS ’18, July 9–12, 2018, Oxford, United Kingdom

size of the query table of L is the number of different L-profiles,

when considering all words.

For a language L, its query table of order n is the query table of

the left quotients of L of order n.

The name query table comes from the following image, illus-

trated in Figure 1: the query table of L is the infinite table whose

columns are indexed by languages in L and rows by words (so,

there are infinitely many rows). The cell corresponding to a word

w and a language L in L is the boolean indicating whether w is

in L. Thus the L-profile ofw is the row corresponding tow in the

query table of L.

Figure 1. The query table of L.

Lemma 4.3. Consider a lattice of languages L generated by k lan-

guages. The query table of L has size at most 2
k
.

Indeed, there are at most 2
k
different profiles with respect to L.

Theorem 4.4. Let L in Alt (f). There exists a constant C such that

for all n ∈ N, the query table of L of order n has size at most 2
C ·f (n)

.

The proof of Theorem 4.4 relies on the following lemma.

Lemma 4.5. Consider two families of languages L andM. IfM ⊆

L, then the size of the query table ofM is smaller than or equal to

the size of the query table of L.

Proof. It suffices to observe that the query table ofM is “included”

in the query table of L. More formally, consider in the query table

of L the sub-table which consists of columns corresponding to

languages in M: this is the query table of M. This implies the

claim. □

We now prove Theorem 4.4. Thanks to Theorem 4.1, the family

of left quotients of L of order n is contained in a lattice generated

by a family of size at most C · f (n). It follows from Lemma 4.5 that

the size of the query table of L of order n is smaller than or equal to

the size of the query table of a lattice generated by at mostC · f (n)

languages, which by Lemma 4.3 is at most 2
C ·f (n)

.

Our lower bound apparatus is now complete: thanks to Theo-

rem 4.4, to prove a lower bound on the alternating SC of a language

L, it is sufficient to prove lower bounds on the size of the query

tables of L.

4.3 A First Application of the Query Table Method
As a first application of our technique, we exhibit a language which

has maximal (i.e., exponential) alternating SC. Surprisingly, this

language is simple in the sense that it is context-free and definable

in Presburger arithmetic, i.e., in first-order logic with the addition

predicate.

Recall that L has subexponential alternating SC if L ∈ Alt (f) for
some f such that f = o(Cn) for all C > 1. Thanks to Theorem 4.4,

to prove that L does not have subexponential alternating SC, it is

enough to exhibit a constant C > 1 such that for infinitely many n,
the query table of the left quotients of L of order n has size at least

2
Cn

.

Theorem 4.6. There exists a language which does not have subex-

ponential alternating SC, yet is both context-free and definable in

Presburger arithmetic.

Proof. Let

L =

{
u♯u1♯u2♯ · · · ♯uk

�����
u,u1, . . . ,uk ∈ {0, 1}

∗ ,

∃j ∈ {1, . . . ,k } ,u = uRj

}
.

Recall that the notation uR stands for the reverse of u defined by

uR = u (n − 1) · · ·u (0). Note, and this is very important here, the

number of words u1, . . . ,uk is not bounded: k is arbitrary.

It is easy to see that L is both context-free and definable in

Presburger arithmetic, i.e., in first-order logic with the addition

predicate (the use of reversed words in the definition of L is only

there to make L context-free).

We show that L does not have subexponential alternating SC.

We prove that for all n, the query table of the left quotients of L of

order n has size at least 2
2
n
. Thanks to Theorem 4.4, this implies

the result.

Fix n. LetU be the set of all words u in {0, 1}n . It has cardinality

2
n
. Consider a subset S of U . We argue that there exists a wordw

such that if u is inU , then the following equivalence holds:

w ∈ u−1L ⇐⇒ u ∈ S .

This shows the existence of 2
2
n
different profiles with respect to

the left quotients of order n, as claimed.

Let u1, . . . ,u |S | be the words in S . Consider

w = ♯uR
1
♯uR

2
♯ · · · ♯uR

|S | .

The wordw clearly satisfies the claim above. □

5 A Hierarchy Theorem for Languages of
Polynomial Alternating State Complexity

Theorem 5.1. For each ℓ ≥ 2, there exists a language Lℓ such that:

• Lℓ is in Alt

(
nℓ
)
,

• Lℓ is not in Alt

(
nℓ−ε
)
for any ε > 0.

Consider the alphabet {0, 1} ∪
{
♢, ♯
}
.

Let ℓ ≥ 2, and

Lℓ =

{
♢pu♯u1♯u2♯ · · · ♯uk

�����
u,u1, . . . ,uk ∈ {0, 1}

∗ ,

k ≤ pℓ ,∃j ≤ k, u = uj

}
.

We note that unlike the language used for proving Theorem 4.6,

the value of k is here bounded by pℓ .

Proof. We construct an alternating automaton of state complexity

O (nℓ). The automaton has three consecutive phases:

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Nathanaël Fijalkow

1. First, a non-deterministic guessing phase while reading ♢p ,

which passes onto the second phase a number j in
{
1, . . . ,pℓ

}
.

Formally, the set of states for this phase is N, the initial state
is 0 and the transitions are

δ (0, ♢) = 1

δ (kℓ , ♢) =
∨
j ∈{1, ..., (k+1)ℓ } j

δ (p, ♢) = p.

The automaton for this phase has state complexity nℓ .
2. Second, a universal phase while reading u. For each i in
{1, . . . , |u |}, the automaton launches one copy storing the

position i , the letter u (i) and the number j guessed in the

first phase.

Formally, the set of states for this phase is

N × ({0, 1} ∪ {⊥}) × N.

The first component is the length of the word read so far

(in this phase), the second component stores the letter read,

where the letter ⊥ stands for undeclared, and the last com-

ponent is the number j.
The initial state is (0,⊥, j). The transitions are

δ ((q,⊥, j),a) = (q + 1,⊥, j) ∧ (q,a, j)
δ ((q,a, j),b) = (q,a, j).

The automaton for this phase has quadratic state complexity.

3. Third, a deterministic phase while reading

♯u1♯u2♯ · · · ♯uk .

It starts from a state of the form (q,a, j). It checks whether
uj (q) = a. Localising uj is achieved by decrementing the

number j by one each time a letter ♯ is read. In the corre-

sponding uj localising the position q is achieved by decre-

menting the first component by one at a time.

The automaton for this phase has quadratic state complexity.

We now prove the lower bound.

We prove that for all n, the size of the query table of Lℓ of order

n + 2
n
ℓ is at least 2

2
n
. Thanks to Theorem 4.4, this implies that Lℓ

is not in Alt

(
nℓ−ε
)
for any ε > 0.

Fix n. LetU be the set of all words u in {0, 1}n . It has cardinality

2
n
.

Observe that ♢2
n
ℓ u♯u1♯u2♯ · · · ♯u2n belongs to Lℓ if and only if

there exists j in {1, . . . , 2n } such that u = uj .
Consider any subset S of U , we argue that there exists a word

w which satisfies that if u is in U , then the following equivalence

holds:

w ∈
(
♢2

n
ℓ
u
)−1

L ⇐⇒ u ∈ S .

This shows the existence of 2
2
n
different profiles with respect to

the left quotients of order n + 2
n
ℓ , as claimed.

Let u1, . . . ,u |S | be the words in S . Consider

w = ♯u1♯u2♯ · · · ♯u |S | .

The wordw clearly satisfies the claim above. □

6 The Alternating State Complexity of Prime
Numbers

In this section, we give lower bounds on the alternating state com-

plexity of the language of prime numbers written in binary:

Primes =
{
u ∈ {0, 1}∗ | bin(u) is prime

}
.

By definition bin(w) =
∑
i ∈{0, ...,n−1}w (i)2i ; note that the least

significant digit is on the left.

The complexity of this language has long been investigated;

many efforts have been put in finding upper and lower bounds. In

1976, Miller gave a first conditional polynomial time algorithm, as-

suming the generalised Riemann hypothesis [18]. In 2002, Agrawal,

Kayal and Saxena obtained the same results, but non-conditional,

i.e., not predicated on unproven number-theoretic conjectures [1].

The first lower bounds were obtained by Hartmanis and Shank

in 1968, who proved that checking primality requires at least loga-

rithmic deterministic space [13], conditional on number-theoretic

assumptions. It was shown by Hartmanis and Berman in 1976 that

if the number is presented in unary, then logarithmic deterministic

space is necessary and sufficient [12]. The best lower bound from

circuit complexity is due to Allender, Saks and Shparlinski: they

proved unconditionally in 2001 that Primes is not in AC
0
[p] for

any prime p [2].

The results above are incomparable to our setting, as we are

here interested in state complexity. The first and only result to date

about the SC of Primes is due to Hartmanis and Shank in 1969:

Theorem 6.1 ([14]). The set of prime numbers written in binary

does not have subexponential deterministic state complexity.

Their result is unconditional, and makes use of Dirichlet’s theo-

rem on arithmetic progressions of prime numbers. A related and

stronger result has been proved by Shallit [25], which says that the

deterministic automaticity of the prime numbers is not subexpo-

nential.

Hartmanis and Shank proved the following result.

Lemma 6.2 ([14]). Fix n > 1, and consider u and v two different

words of length n starting with a 1. Then the left quotients u−1Primes
and v−1Primes are different.

Lemma 6.2 directly implies Theorem 6.1 [14]. It also yields a

lower bound of n − 1 on the size of the query table of Primes of

order n. Thus, together with Theorem 4.4, this proves that Primes

does not have sublogarithmic alternating SC.

Corollary 6.3. The set of prime numbers written in binary does not

have sublogarithmic alternating state complexity.

Our contribution in this section is to extend this result by show-

ing that Primes does not have sublinear alternating SC, which is

an exponential improvement.

Theorem 6.4. The set of prime numbers written in binary does not

have sublinear alternating state complexity.

Our result is unconditional, but it relies on the following ad-

vanced theorem from number theory, which can be derived from

the results obtained by Maier and Pomerance [17]. Note that their

results are more general; we state a corollary fitting our needs.

Simply put, this result says that in any (reasonable) arithmetic

The State Complexity of Alternating Automata LICS ’18, July 9–12, 2018, Oxford, United Kingdom

progression and for any d , there exists a prime number in this

progression at distance at least d from all other prime numbers.

Theorem 6.5 ([17]). For every arithmetic progression a + bN such

that a and b are coprime, for every N , there exists a number k such

that p = a + b · k is the only prime number in [p − N ,p + N].

We proceed to the proof of Theorem 6.4.

Proof. We show that for all n > 1, the query table of Primes of

order n has size at least 2
n−1

. Thanks to Theorem 4.4, this implies

the result.

Fix n > 1. Let U be the set of all words u of length n starting

with a 1. Equivalently, we seeU as a set of numbers; it contains all

the odd numbers smaller than 2
n
. It has cardinality 2

n−1
.

We argue that for all u inU , there exists a wordw such that for

allv inU ,w is inv−1Primes if and only ifu = v . In other words the

profile ofw is 0 everywhere but on the column u−1Primes. Let u in

U ; write a = bin(u). Consider the arithmetic progression a + 2nN;
note that a and 2

n
are coprime. Thanks to Theorem 6.5, for N = 2

n
,

there exists a number k such that p = a + 2n · k is the only prime

number in [p − N ,p + N]. Let w be a word such that bin(w) = k .
We show that for all v in U , we have the following equivalence:w
is in v−1Primes if and only if u = v .

Indeed, bin(vw) = bin(v) + 2n · bin(w). Observe that

|bin(vw) − bin(uw) | = |bin(v) − bin(u) | < 2
n .

Since p is the only prime number in [p−2n ,p+2n], the equivalence
follows.

We constructed 2
n−1

words each having a different profile, im-

plying the claimed lower bound. □

Theorem 6.4 proves a linear lower bound on the alternating SC

of Primes. We do not know of any non-trivial upper bound, and

believe that there are none, meaning that Primes does not have

subexponential alternating SC.

An evidence for this is the following probabilistic argument.

Consider the distribution of languages over {0, 1}∗ such that a word

u in thrown into the language with probability
1

|u | . It is a common

(yet flawed) assumption that the prime numbers satisfy this distri-

bution, as witnessed for instance by the prime number theorem.

One can show that with high probability such a language does

not have subexponential alternating SC, the reason being that two

different words are very likely to induce different profiles in the

query table. Thus it is reasonable to expect that Primes does not

have subexponential alternating SC.

We dwell on the possibility of proving stronger lower bounds for

the alternating SC of Primes. Theorem 6.5 fleshes out the sparsity

of prime numbers: it constructs isolated prime numbers in any

arithmetic progression, and allows us to show that the query table

of Primes contains all profiles with all but one boolean value set to

false.

To populate the query table of Primes further, one needs results

witnessing the density of prime numbers, i.e., to prove the existence

of clusters of prime numbers. This is in essence the contents of the

Twin Prime conjecture, or more generally of Dickson’s conjecture,

which are both long-standing open problems in number theory,

suggesting that proving better lower bounds is a very challeng-

ing objective. Dickson’s conjecture reads (we use the equivalent

statement given by Ribenboim in [23], called D1):

Conjecture 6.6 (Dickson’s Conjecture). Fix b and

S = {1 ≤ a1 < · · · < as < b}

such that there exists no prime number p which divides∏
a∈S

(b · k + a)

for every k in N. Then there exists a number k such that

b · k + a1,b · k + a2, . . . ,b · k + as

are consecutive prime numbers.

Theorem 6.7. Assuming Conjecture 6.6 holds true, the set of prime

numbers written in binary does not have subexponential alternating

state complexity.

Proof. We show that for infinitely many n > 1, the query table

of Primes of order n has size doubly-exponential in n. Thanks to
Theorem 4.4, this implies the result.

Fix n > 1. As above, let U be the set of all words u of length n
starting with a 1, i.e., odd numbers. For a subset

S = {1 ≤ a1 < · · · < as < b}

ofU , let (♢) denote the property that there exists no prime numberp
which divides

∏
a∈S (b · k + a) for every k in N.

Let S be a subset ofU satisfying (♢). Thanks to Conjecture 6.6,
there exists a number k such that for a1 ≤ a ≤ as , the number

2
n · k + a is prime if and only if a is in S . Let w be a word such

that bin(w) = k . It clearly satisfies the condition above. In other

words the profile ofw for the columns between a1 and as is 1 on the
columns corresponding to S , and 0 everywhere else. For each subset
S satisfying (♢) with the same extremal elements (a1 and as) we
constructed a word such that these words have pairwise different

profiles.

To finish the proof, we need to explain why this induces doubly-

exponentially many different profiles. For any n, the set S of odd

numbers a ∈ U such that 2
n + a is a prime number satisfies (♢).

This follows from the remark that no prime number can divide both∏
a∈S a and

∏
a∈S (2

n + a). Thanks to the prime number theorem

estimating the proportion of prime numbers, we know that for

infinitely many n the set S contains a number a1 smaller than 2
n−2

and a number as larger than 2
n − 2n−2. Now, each subset of S gives

rise to a different profile, which yields doubly-exponentially many

of them. □

Conclusion
We have developed a generic lower bound technique for alternating

state complexity, and applied it to two problems. The first result

is to give languages of arbitrary high polynomial alternating state

complexity. The second result is to give lower bounds on the alter-

nating state complexity of the language of prime numbers; we show

that it is not sublinear, which is an exponential improvement over

the previous result. However, the exact complexity is left open; we

conjecture that it is not subexponential, but obtaining this result

might require major advances in number theory.

We leave two questions open, motivating further research:

• Is the converse of Theorem 4.1 true, or in other words does

the size of the query table completely characterise the al-

ternating state complexity (as it does in the deterministic

case)? We believe the answer is “no”, but proving it would

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Nathanaël Fijalkow

require using a stronger lower bound technique to separate

alternating state complexity from size of the query table.

• Can we find a notion of reduction between languages which

respects the alternating state complexity, inducing a defini-

tion of completeness for alternating state complexity classes?

The sequence of languages Lℓ for ℓ ≥ 2 are good candidates

for complete languages in the polynomial hierarchy.

References
[1] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. 2002. Primes is in P. Annals

of Mathematics 2 (2002), 781–793.

[2] Eric Allender, Michael E. Saks, and Igor Shparlinski. 2001. A Lower Bound for

Primality. J. Comput. System Sci. 62, 2 (2001), 356–366.

[3] László Babai, Peter Frankl, and Janos Simon. 1986. Complexity classes in com-

munication complexity theory (preliminary version). In FOCS’86.

[4] Janusz Brzozowski. 1963. Canonical regular expressions andminimal state graphs

for definite events. Symposium on Mathematical Theory of Automata 12 (1963),

529–561.

[5] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. 1981. Alternation.

Journal of the ACM 28, 1 (1981), 114–133.

[6] Ashok K. Chandra and Larry J. Stockmeyer. 1976. Alternation. In FOCS’76.

[7] Anuj Dawar and Stephan Kreutzer. 2007. Generalising automaticity to modal

properties of finite structures. Theoretical Computer Science 379, 1-2 (2007),

266–285.

[8] Abdelaziz Fellah, Helmut Jürgensen, and Sheng Yu. 1990. Constructions for

alternating finite automata. International Journal of Computer Mathematics 35, 1

(1990), 117–132.

[9] Nathanaël Fijalkow. 2016. The Online Space Complexity of Probabilistic Lan-

guages. In LFCS’2016.

[10] Yuan Gao, Nelma Moreira, Rogério Reis, and Sheng Yu. 2017. A Survey on

Operational State Complexity. Journal of Automata, Languages and Combinatorics

21, 4 (2017), 251–310.

[11] Ian Glaister and Jeffrey Shallit. 1998. Automaticity III: Polynomial Automaticity

and Context-Free Languages. Computational Complexity 7, 4 (1998), 371–387.

[12] Juris Hartmanis and Leonard Berman. 1976. On Tape Bounds for Single Letter

Alphabet Language Processing. Theoretical Computer Science 3, 2 (1976), 213–224.

[13] Juris Hartmanis and H. Shank. 1968. On the Recognition of Primes by Automata.

Journal of the ACM 15, 3 (1968), 382–389.

[14] Juris Hartmanis and H. Shank. 1969. Two Memory Bounds for the Recognition

of Primes by Automata. Mathematical Systems Theory 3, 2 (1969).

[15] Richard M. Karp. 1967. Some Bounds on the Storage Requirements of Sequential

Machines and Turing Machines. Journal of the ACM 14, 3 (1967).

[16] Dexter Kozen. 1976. On Parallelism in Turing Machines. In FOCS’76. 89–97.

[17] Helmut Maier and Carl Pomerance. 1990. Unusually Large Gaps between Con-

secutive Primes. Trans. Amer. Math. Soc. 322, 1 (1990), 201–237.

[18] Gary L. Miller. 1976. Riemann’s Hypothesis and Tests for Primality. J. Comput.

System Sci. 13, 3 (1976), 300–317.

[19] Anil Nerode. 1958. Linear Automaton Transformations. Proc. Amer. Math. Soc. 9,

4 (1958), 541–544.

[20] Carl Pomerance, John Michael Robson, and Jeffrey Shallit. 1997. Automaticity II:

Descriptional Complexity in the Unary Case. Theoretical Computer Science 180,

1-2 (1997), 181–201.

[21] Michael O. Rabin. 1963. Probabilistic Automata. Information and Control 6, 3

(1963), 230–245.

[22] Fabian Reiter. 2015. Distributed Graph Automata. In LICS.

[23] Paulo Ribenboim. 1996. The Book of Prime Number Records. Springer-Verlag New

York.

[24] Grzegorz Rozenberg and Arto Salomaa. 1997. Handbook of Formal Languages.

Springer.

[25] Jeffrey Shallit. 1996. Automaticity IV: Sequences, Sets, and Diversity. Journal de

Théorie des Nombres de Bordeaux 8, 2 (1996), 347–367.

[26] Jeffrey Shallit and Yuri Breitbart. 1996. Automaticity I: Properties of a Measure

of Descriptional Complexity. J. Comput. System Sci. 53, 1 (1996), 10–25.

[27] Sheng Yu. 2001. State Complexity of Regular Languages. Journal of Automata,

Languages and Combinatorics 6, 2 (2001), 221.

[28] Sheng Yu. 2002. State Complexity of Finite and Infinite Regular Languages.

Bulletin of the EATCS 76 (2002), 142–152.

	Abstract
	1 Introduction
	2 Definitions
	3 Related Works
	4 A Lower Bound Technique
	4.1 Boundedly Generated Lattices of Languages
	4.2 The Query Table Method
	4.3 A First Application of the Query Table Method

	5 A Hierarchy Theorem for Languages of Polynomial Alternating State Complexity
	6 The Alternating State Complexity of Prime Numbers
	References

