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Abstract
We introduce two-player games which build words over in-

finite alphabets, and we study the problem of checking the

existence of winning strategies. These games are played by

two players, who take turns in choosing valuations for vari-

ables ranging over an infinite data domain, thus generating

multi-attributed data words. The winner of the game is speci-

fied by formulas in the Logic of Repeating Values, which can

reason about repetitions of data values in infinite data words.

We prove that it is undecidable to check if one of the play-

ers has a winning strategy, even in very restrictive settings.

However, we prove that if one of the players is restricted

to choose valuations ranging over the Boolean domain, the

games are effectively equivalent to single-sided games on

vector addition systems with states (in which one of the

players can change control states but cannot change counter

values), known to be decidable and effectively equivalent to

energy games.

Previous works have shown that the satisfiability prob-

lem for various variants of the logic of repeating values is

equivalent to the reachability and coverability problems in

vector addition systems. Our results raise this connection

to the level of games, augmenting further the associations

between logics on data words and counter systems.
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1 Introduction
Words over an unbounded domain —known as data words—

is a structure that appears in many scenarios, as abstractions

of timed words, runs of counter automata, runs of concurrent

programs with an unbounded number of processes, traces

of reactive systems, and more broadly as abstractions of any

record of the run of processes handling unbounded resources.

Here, we understand data word as a (possibly infinite) word

in which every position carries a vector of elements from a

possibly infinite domain (e.g., a vector of numbers).

Many specification languages have been proposed to spec-

ify properties of data words, both in terms of automata

[16, 19] and logics [5, 12–14]. One of the most basic mecha-

nisms for expressing properties on these structures is based

on whether a data value at a given position is repeated either

locally (e.g., in the 2
nd

component of the vector at the 4
th

future position), or remotely (e.g., in the 1
st
component of a

vector at some position in the past). This has led to the study

of linear temporal logic extended with these kind of tests,

called Logic of Repeating Values (LRV) [10]. The satisfiabil-

ity problem for LRV is inter-reducible with the reachability

problem for Vector Addition Systems with States (VASS),

and when the logic is restricted to testing remote repetitions

only in the future, it is inter-reducible with the coverability

problem for VASS [10, 11]. These connections also extend to

data trees and branching VASS [3].

Previous works on data words have been centered around

the satisfiability, containment, or model checking problems.

Here, we initiate the study of two-player games on such

structures, motivated by the realizability problem of reac-

tive systems (hardware, operating systems, communication

protocols). A reactive system keeps interacting with the en-

vironment in which it is functioning, and a data word can

be seen as a trace of this interaction. The values of some

variables are decided by the system and some by the environ-

ment. The reactive system has to satisfy a specified property,

given as a logical formula over data words. The realizability

problem asks whether it is possible that there exists a system

that always satisfies the specified property, irrespective of

what the environment does. This can be formalized as the

existence of a winning strategy for a two-player game that

is defined to this end. In this game, there are two sets of

variables. Valuations for one set of variables are decided by

the system player (representing the reactive system) and for
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the other set of variables, valuations are decided by the envi-

ronment player (representing the environment in which the

reactive system is functioning). The two players take turns

giving valuations to their respective variables and build an

infinite sequence of valuations. The system player wins a

game if the resulting sequence satisfies the specified logical

formula. Motivated by the realizability problem of Church

[8], the question of existence of winning strategies in such

games are studied extensively (starting from [17]) for the

case where variables are Boolean and the logic used is propo-

sitional linear temporal logic. To the best of our knowledge

there have been no works on the more general setup of

infinite domains. This work can be seen as a first step to-

wards considering richer structures, this being the case of

an infinite set with an equivalence relation.

Contributions By combining known relations between

satisfiability of (fragments of) LRV and (control state) reach-

ability in VASS [10, 11] with existing knowledge about real-

izability games ([17] and numerous papers expanding on it),

it is not difficult to show that realizability games for LRV are

related to games on VASS. Using known results about unde-

cidability of games on VASS, it is again not difficult to show

that realizability games for LRV are undecidable. Among

others, one way to get decidable games on VASS is to make

the game asymmetric, letting one player only change con-

trol states, while the other player can additionally change

values in counters, resulting in the so called single-sided

VASS games [2]. Our first contribution in this paper is to

identify that the corresponding asymmetry in LRV realiz-

ability is to give only Boolean variables to one of the players

and let the logic test only for remote repetitions in the past

(and disallow testing for remote repetitions in the future).

Once this identification of the fragment is made, the proof of

its inter-reducibility with single-sided VASS games follows

more or less along expected lines by adapting techniques

developed in [10, 11].

To obtain the fragment mentioned in the previous para-

graph, we impose two restrictions; one is to restrict one

of the players to Boolean variables and the other is to dis-

allow testing for remote repetitions in the future. Our next

contributions in this paper is to prove that lifting either of

these restrictions lead to undecidability. A common feature

in similar undecidability proofs (e.g., undecidability of VASS

games [1]) is a reduction from the reachability problem for

2-counter machines (details follow in the next section) in

which one of the players emulates the moves of the counter

machine while the other player catches the first player in

case of cheating. Our first undecidability proof uses a new

technique where the two players cooperate to emulate the

moves of the counter machine and one of the players has

the additional task of detecting cheating. Another common

feature of similar undecidability proofs is that emulating

zero testing transitions of the counter machine is difficult

while emulating incrementing and decrementing transitions

are easy. Our second undecidability proof uses another new

technique in which even emulating decrementing transitions

is difficult and requires specific moves by the two players.

Related works The relations between satisfiability of var-

ious logics over data words and the problem of language

emptiness for automata models have been explored before.

In [5], satisfiability of the two variable fragment of first-

order logic on data words is related to reachability in VASS.

In [12], satisfiability of LTL extended with freeze quantifiers

is related to register automata.

A general framework for games over infinite-state sys-

tems with a well-quasi ordering is introduced in [1] and the

restriction of downward closure is imposed to get decidabil-

ity. In [18], the two players follow different of rules, making

the abilities of the two players asymmetric and leading to de-

cidability. A possibly infinitely branching version of VASS is

studied in [6], where decidability is obtained in the restricted

case when the goal of the game is to reach a configuration

in which one of the counters has the value zero. Games on

VASS with inhibitor arcs are studied in [4] and decidability

is obtained in the case where one of the players can only

increment counters and the other player can not test for zero

value in counters. In [7], energy games are studied, which

are games on counter systems and the goal of the game is

to play for ever without any counter going below zero in

addition to satisfying parity conditions on the control states

that are visited infinitely often. Energy games are further

studied in [2], where they are related to single-sided VASS

games, which restrict one of the players to not make any

changes to the counters. Closely related perfect half-space

games are studied in [9], where it is shown that optimal

complexity upper bounds can be obtained for energy games

by using perfect half space games.

Organization In Section 2we define the logic LRV, counter

machines, and VASS games. In Section 3 we introduce LRV

games. Section 4 shows undecidability results for the frag-

ment of LRV with data repetition tests restricted to past.

Section 5 shows the decidability result of past-looking single-

sided LRV games. Section 6 shows undecidability of future-

looking single-sided LRV games, showing that in some sense

the decidability result is maximal. We conclude in Section 7.

2 Preliminaries
We denote by Z the set of integers and by N the set of non-

negative integers. For any set S , we denote by S∗ (resp. Sω )
the set of all finite (resp. countably infinite) sequences of

elements in S . For a sequence σ ∈ S∗, we denote its length
by |σ |. We denote by P(S) (resp. P+(S)) the set of all subsets
(resp. non-empty subsets) of S .

Logic of repeating values We recall the syntax and se-

mantics of the logic of repeating values from [10, 11]. This
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logic extends the usual propositional linear temporal logic

with the ability to reason about repetitions of data values

from an infinite domain. We let this logic use both Boolean

variables (i.e., propositions) and data variables ranging over

an infinite data domain D. The Boolean variables can be

simulated by data variables. However, we need to consider

fragments of the logic, for which explicitly having Boolean

variables is convenient. Let BVARS = {q, t , . . .} be a count-
ably infinite set of Boolean variables ranging over {⊤,⊥},
and let DVARS = {x ,y, . . .} be a countably infinite set of

‘data’ variables ranging over D. We denote by LRV the logic

whose formulas are defined as follows:
1

φ ::= q | x ≈ Xjy | x ≈ ⟨φ?⟩y | x 0 ⟨φ?⟩y | x ≈ ⟨φ?⟩−1y

| x 0 ⟨φ?⟩−1y | φ ∧ φ | ¬φ | Xφ | φUφ | X−1φ

| φSφ , where q ∈ BVARS, x ,y ∈ DVARS, j ∈ Z

A valuation is the union of a mapping from BVARS to

{⊤,⊥} and a mapping from DVARS to D. A model is a finite

or infinite sequence of valuations. We use σ to denote models

and σ (i) denotes the ith valuation in σ , where i ∈ N\ {0}. For
any model σ and position i ∈ N\{0}, the satisfaction relation
|= is defined inductively as follows. The temporal operators

next (X), previous (X−1), until (U) since (S) and its derived

operators (F, G, F−1, G−1, etc.) and Boolean connectives are

defined in the usual way and are skipped.

σ , i |= q : σ (i)(q) = ⊤

σ , i |= x ≈ Xjy iff 1 ≤ i + j ≤ |σ |, σ (i)(x) = σ (i + j)(y)

σ , i |= x ≈ ⟨φ?⟩y iff ∃j > i s.t. σ (i)(x) = σ (j)(y), σ , j |= φ

σ , i |= x 0 ⟨φ?⟩y iff ∃j > i s.t. σ (i)(x) , σ (j)(y), σ , j |= φ

σ , i |= x ≈ ⟨φ?⟩−1y iff ∃j < i s.t. σ (i)(x) = σ (j)(y), σ , j |= φ

σ , i |= x 0 ⟨φ?⟩−1y iff ∃j < i s.t. σ (i)(x) , σ (j)(y), σ , j |= φ

for q ∈ BVARS, x ,y ∈ DVARS. Intuitively, the formula x ≈
Xjy tests that the data value mapped to the variable x at the

current position repeats in the variable y after j positions.
We use the notation Xix ≈ Xjy as an abbreviation for the for-

mula Xi (x ≈ Xj−iy) (assuming without any loss of generality

that i ≤ j). The formula x ≈ ⟨φ?⟩y tests that the data value

mapped to x now repeats in y at a future position that satis-

fies the nested formula φ. The formula x 0 ⟨φ?⟩y is similar

but tests for disequality of data values instead of equality. If

a model is being built sequentially step by step and these for-

mulas are to be satisfied at a position, they create obligations

(for repeating some data values) to be satisfied in some future

step. The formulas x ≈ ⟨φ?⟩−1y and x 0 ⟨φ?⟩−1y are similar

but test for repetitions of data values in past positions.

We append symbols to LRV for denoting syntactic re-

strictions as shown in the following table. For example,

LRV[⊤,≈,←] denotes the fragment of LRV in which nested

1
In a previous work [11] this logic was denoted by PLRV (LRV + Past).

Symbol Meaning

⊤ φ has to be ⊤ in x ≈ ⟨φ?⟩y (no nested formulas)

≈ disequality constraints (x 0 ⟨φ?⟩y or x 0
⟨φ?⟩−1y) are not allowed

→ past obligations (x ≈ ⟨φ?⟩−1y or x 0 ⟨φ?⟩−1y) are
not allowed

← future obligations (x ≈ ⟨φ?⟩y or x 0 ⟨φ?⟩y) are
not allowed

formulas, disequality constraints and future obligations are

not allowed. For clarity, we replace ⟨⊤?⟩ with ^ in formulas.

E.g., we write x ≈ ⟨⊤?⟩y as simply x ≈ ^y.

Parity games on integer vectors We recall the definition

of games on Vector Addition Systems with States (VASS)

from [2]. The game is played between two players: system
and environment. A VASS game is a tuple (Q,C,T ,π ) where
Q is a finite set of states, C is a finite set of counters, T is

a finite set of transitions and π : Q → {1, . . . ,p}, for some

integer p, is a colouring function that assigns a number to

each state. The set Q is partitioned into two parts Qe
(states

of environment) and Qs
(states of system). A transition in T

is a tuple (q, op,q′) where q,q′ ∈ Q are the origin and target

states and op is an operation of the form x + +, x − − or nop,

where x ∈ C is a counter. We say that a transition of a VASS

game belongs to environment if its origin belongs to environ-
ment; similarly for system. A VASS game is single-sided if

every environment transition is of the form (q, nop,q′). It is
assumed that every state has at least one outgoing transition.

A configuration of the VASS game is an element (q, ®n) of
Q ×NC , consisting of a state q and a valuation ®n for the coun-

ters. A play of the VASS game begins at a designated initial

configuration. The player owning the state of the current

configuration (say (q, ®n)) chooses an outgoing transition (say

(q, op,q′)) and changes the configuration to (q′, ®n′), where ®n′

is obtained from ®n by incrementing (resp. decrementing) the

counter x once, if op is x + + (resp. x − −). If op = nop, then

®n′ = ®n. We denote this update as (q, ®n)
(q,op,q′)
−−−−−−→ (q′, ®n′). The

play is then continued similarly by the owner of the state of

the next configuration. If any player wants to take a transi-

tion that decrements some counter, that counter should have

a non-zero value before the transition. Note that in a single-

sided VASS game, environment cannot change the value of
the counters. The game continues forever and results in an in-

finite sequence of configurations (q0, ®n0)(q1, ®n1) · · · . System
wins the game if the maximum colour occurring infinitely

often in π (q0)π (q1)π (q2) · · · is even. We assume without loss

of generality that from any configuration, at least one tran-

sition is enabled (if this condition is not met, we can add

extra states and transitions to create an infinite loop ensur-

ing that the owner of the deadlocked configuration loses).

In our constructions, we use a generalized form of transi-

tions q
®u
−→ q′ where ®u ∈ ZC , to indicate that each counter
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c should be updated by adding ®u(c). Such VASS games can

be effectively translated into ones of the form defined in the

previous paragraph, preserving winning regions.

A strategy se for environment in a VASS game is a map-

ping se : (Q × NC )∗ · (Qe × NC ) → T such that for all

γ ∈ (Q × NC )∗, all qe ∈ Qe
and all ®n ∈ NC , se(γ · (qe , ®n))

is a transition whose source state is qe . A strategy ss for

system is a mapping ss : (Q ×NC )∗ · (Qs ×NC ) → T satisfy-

ing similar conditions. Environment plays a game according

to a strategy se if the resulting sequence of configurations

(q0, ®n0)(q1, ®n1) · · · is such that for all i ∈ N, qi ∈ Q
e
implies

(qi , ®ni )
se((q0, ®n0)(q1, ®n1)·· ·(qi , ®ni ))
−−−−−−−−−−−−−−−−−−−−→ (qi+1, ®ni+1). The notion is ex-

tended to system player similarly. A strategy ss for system is

winning if system wins all the games that she plays accord-

ing to ss, irrespective of the strategy used by environment. It
was shown in [2] that it is decidable to check whether system
has a winning strategy in a given single-sided VASS game

and an initial configuration. An optimal double exponential

upper bound was shown for this problem in [9].

Counter machines A 2-counter machine is a tuple (Q,δ ),
where Q is a finite set of states and δ is a finite set of transi-

tions. Each transition is a triple of the form (q1,u,q2), where
q1,q2 ∈ Q andu is either ‘ci −−’, ‘ci ++’, or ‘ci = 0?’ for some

i ∈ {1, 2}. The symbols c1, c2 denote counters that the transi-
tions can update. A configuration of the 2-counter machine is

a triple (q,n1,n2)where q ∈ Q and n1,n2 ∈ N. The transition
relation −→ on configurations is defined as follows. We have

(q1,n1,n2) −→ (q
′,n′

1
,n′

2
) iff either: (1) (q, ci + +,q

′) ∈ δ for

i ∈ {1, 2} and n′i = ni + 1, n
′
3−i = n3−i ; (2) (q, ci − −,q

′) ∈ δ
for i ∈ {1, 2} and ni > 0, n′i = ni − 1, n′

3−i = n3−i ; or (3)
(q, ci = 0?,q′) ∈ δ for i ∈ {1, 2} andni = 0, (n′

1
,n′

2
) = (n1,n2).

A counter machine is deterministic if for every configuration

(q,n1,n2) there exists at most one configuration (q′,n′
1
,n′

2
)

so that (q,n1,n2) −→ (q
′,n′

1
,n′

2
). For our undecidability re-

sults we will use deterministic 2-counter machines, hence-

forward just “counter machines”. Given a counter machine

(Q,δ ) and two of its states qinit ,qfin ∈ Q , the reachability

problem is to determine if there is a sequence of transitions

of the 2-counter machine starting from the configuration

(qinit , 0, 0) and ending at the configuration (qfin,n1,n2) for
somen1,n2 ∈ N. It is known that the reachability problem for

2-countermachines is undecidable [15]. To simplify our unde-

cidability results we further assume, without any loss of gen-

erality, that there exists a transition t̂ = (qfin, c1 ++,qfin) ∈ δ .

3 Game of repeating values
The game of repeating values is played between two play-

ers, called environment and system. The set BVARS is parti-

tioned as BVARS
e ,BVARSs , owned by environment and sys-

tem respectively. The set DVARS is partitioned similarly.

Let BΥ
e
(resp. DΥ

e
, BΥ

s
, DΥ

s
) be the set of all mappings

bυe : BVARS
e → {⊤,⊥} (resp., dυe : DVARS

e → D, bυs :

BVARS
s → {⊤,⊥}, dυs : DVARS

s → D). Given two map-

pings υ1 : V1 → D ∪ {⊤,⊥}, υ2 : V2 → D ∪ {⊤,⊥} for
disjoint sets of variables V1,V2, we denote by υ = υ1 ⊕ v2
the mapping defined as υ(x1) = υ1(x1) for all x1 ∈ V1 and
υ(x2) = υ2(x2) for all x2 ∈ V2. Let ϒ

e
(resp., ϒs ) be the

set of mappings {bυe ⊕ dυe | bυe ∈ BΥ
e , dυe ∈ DΥ

e }

(resp. {bυs ⊕dυs | bυs ∈ BΥ
s , dυs ∈ DΥ

s }). The first round of

a game of repeating values is begun by environment choos-
ing a mapping υe

1
∈ ϒe , to which system responds by choos-

ing a mapping υs
1
∈ ϒs . Then environment continues with

the next round by choosing a mapping from ϒe and so on.

The game continues forever and results in an infinite model

σ = (υe
1
⊕ υs

1
)(υe

2
⊕ υs

2
) · · · . The winning condition is given

by a LRV formula φ — system wins iff σ , 1 |= φ.
Let ϒ be the set of all valuations. For anymodelσ and i > 0,

let σ ↾ i denote the valuation sequence σ (1) · · ·σ (i), and σ ↾
0 denote the empty sequence. A strategy for environment is
a mapping te : ϒ∗ → ϒe . A strategy for system is a mapping

ts : ϒ∗ · ϒe → ϒs . We say that environment plays according
to a strategy te if the resulting model (υe

1
⊕ υs

1
)(υe

2
⊕ υs

2
) · · ·

is such that υei = te(σ ↾ (i − 1)) for all positions i ∈ N \ {0}.
System plays according to a strategy ts if the resulting model

is such that υsi = ts(σ ↾ (i − 1) · υei ) for all positions i ∈
N \ {0}. A strategy ts for system is winning if system wins

all games that she plays according to ts, irrespective of the

strategy used by environment. Given a formula φ in (some

fragment of) LRV, we are interested in the decidability of

checking whether system has a winning strategy in the game

of repeating values whose winning condition is φ.
We illustrate the utility of this game with an example. Con-

sider a scenario in which the system is trying to schedule

tasks on processors. The number of tasks can be unbounded

and task identifiers can be data values. Assuming the vari-

able init carries identifiers of tasks that are initialized and

proc carries identifiers of tasks that are processed, the for-

mula G (proc ≈ ^−1init) specifies that all tasks that are
processed must have been initialized beforehand. Assuming

the variable log carries identifiers of tasks that have been

processed and are being logged into an audit table, the for-

mula G (proc ≈ X log) specifies that all processed tasks are

logged into the audit table in the next step. Suppose there

is a Boolean variable lf belonging to the environment. The

formula G (¬lf ⇒ ¬(log ≈ X−1 proc)) specifies that if lf is
false (denoting that the logger is not working), then the log-

ger can not put the task that was processed in the previous

step into the audit table in this step. The combination of the

last two specifications is not realizable by any system since

as soon as the system processes a task, the environment can

make the logger non-functional in the next step. This can be

algorithmically determined by the fact that for the conjunc-

tion of the last two formulas, there is no winning strategy

for system in the game of repeating values.
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4 Undecidability of LRV[⊤, ≈,←] games
Here we establish that determining if system has a winning

strategy in the LRV[⊤,≈,←] game is undecidable. This uses

a fragment of LRV in which there are no future demands, no

disequality demands 0, and every sub-formula x ≈ ⟨φ?⟩−1y
is such that φ = ⊤. Further, this undecidability result holds

even for the case where each player owns only one data

variable, and where the distance of local demands is bounded

by 3, that is, all local demands of the form x ≈ X iy are so that
−3 ≤ i ≤ 3. Simply put, the result shows that bounding the

distance of local demands and the number of data variables

does not help in obtaining decidability.

Theorem 4.1. The winning strategy existence problem for

the LRV[⊤,≈,←] game is undecidable, even when each player

owns only one variable, and the distance of local demands is

bounded by 3.

Aswe shall see in the next section, if we further restrict the

game so that environment does not own any data variable,

we obtain decidability.

Undecidability is shown by reduction from the reachability

problem for counter machines. The reduction will be first

shown for the case where environment owns a data variable
y and system owns a data variable x plus some other Boolean

variables encoding labels. In a second part we show how to

eliminate these Boolean variables.

4.1 Reduction with Boolean variables
Lemma 4.2. The winning strategy existence problem for the

LRV[⊤,≈,←] game is undecidable when environment owns
one data variable and unboundedly many Boolean variables,

and system one (data) variable.

Proof idea. For convenience, we name the counters of the

2-counter machines cx and cy instead of c1 and c2. To simu-

late counters cx and cy , we use the environment variable x
and system variable y. There are a few more Boolean vari-

ables that environment uses for the simulation. We define a

LRV[⊤, ≈,←] formula to force environment and system to

simulate runs of 2-counter machines as follows. Suppose σ is

the concrete model built during a game. The value of counter

cx (resp. cy ) before the i
th
transition is the cardinality of the

set {d ∈ D | ∃j ∈ {1, . . . , i} : σ (j)(x) = d,∀j ′ ∈ {1, . . . , i} :
σ (j ′)(y) , d} (resp. {d ∈ D | ∃j ∈ {1, . . . , i},σ (j)(y) =
d,∀j ′ ∈ {1, . . . , i},σ (j ′)(x) , d}). Intuitively, the value of

counter cx is the number of data values that have appeared

under variable x but not under y. In each round, environ-
ment chooses the transition of the 2-counter machine to be

simulated and sets values for its variables accordingly. If ev-

erything is in order, system cooperates and sets the value of

the variable y to complete the simulation. Otherwise, system
can win immediately by setting the value of y to a value that

certifies that the actions of environment violate the seman-

tics of the 2-counter machine. If any player deviates from

this behavior at any step, the other player wins immediately.

The only other way system can win is by reaching the halt-

ing state and the only other way environment can win is

by properly simulating the 2-counter machine for ever and

never reaching the halting state. □

4.2 Getting rid of Boolean variables
The reduction above makes use of some Boolean variables to

encode transitions of the 2-counter machine. However, one

can modify the reduction above to do the encoding inside

equivalence classes of the variable x . Suppose there arem−1
labels that we want to encode. A data word prefix of the form

label : l1 l2 ln
x : x1 x2 · · · xn
y : y1 y2 yn

where li , xi , yi are, respectively, the label, value of x , and
value of y at position i , is now encoded as

x : d d x1 d d x2 d d d d xn d d
w1 w2 · · · wn

y : d d y1 d d y2 d d d d yn d d

where eachwi is a data word of the form (d1,d1) · · · (dm ,dm);
further the data values of wi are so that d < {d1, . . . ,dm},
and so that every pair of wi ,w j with i , j has disjoint sets
of data values. The purpose of wi is to encode the label li ;
the purpose of the repeated data value (d,d) is to delimit the

boundaries of each encoding of a label, which we will call a

‘block’; the purpose of repeating (d,d) at each occurrence is

to avoid confusing this position with the encoding position

(xi ,yi ) —i.e., a boundary position is one whose data value is

repeated at distance m+3 and at distance 1.

This encoding can be enforced using a LRV formula. Fur-

ther, the encoding of values of counters in the reduction

before is not broken since the additional positions have the

property of having the same data value under x as under y,
and in this the encoding of counter cx —i.e., the number of

data values that have appeared under x but not under y— is

not modified; similarly for counter cy .

Lemma 4.3. The winning strategy existence problem for the

LRV[⊤,≈,←] game is undecidable when system and environ-
ment owns one (data) variable each and no Boolean variables.

Unbounded local tests The previous undecidability use ei-

ther an unbounded number of variables or a bounded number

of variables but an unbounded X-distance of local demands.

However, through a more clever encoding one can avoid

testing whether two positions at distance n have the same

data value by a chained series of tests. This is a standard cod-

ing which does not break the 2-counter machine reduction.

Then we obtain the following, which proves the theorem.

Lemma 4.4. The winning strategy existence problem for the

LRV[⊤,≈,←] game is undecidable when system and environ-
ment own only one variable each, and the distance of local

data repetition demands is bounded by 3.
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5 Decidability of single-sided LRV[⊤,←]
In this section we show that the single-sided LRV[⊤,←]-
game is decidable. We first observe that we do not need to

consider 0 formulas for our decidability argument, since

there is a reduction of the winning strategy existence prob-

lem that removes all sub-formulas of the from x 0 ^−1y.

Proposition 5.1. There is a polynomial-time reduction from

the winning strategy existence problem for LRV[⊤,←] into
the problem on LRV[⊤,≈,←].

This is done as it was done for the satisfiability problem

[11, Proposition 4]. The key observation is that

• ¬(x 0 ^−1y) is equivalent to ¬X−1⊤ ∨ (x ≈ X−1y ∧
G−1(¬X−1⊤ ∨ y ≈ X−1y));
• x 0 ^−1y can be translated into ¬(x ≈ x≈^−1y ) ∧

x≈^−1y ≈ ^
−1y for a new variable x≈^−1y belonging to

the same player as x .

Given a formula φ in negation normal form (i.e., negation is

only applied to boolean variables and data tests), consider

the formula φ ′ resulting from the replacements listed above.

It follows that φ ′ does not make use of 0. It is easy to see

that there is a winning strategy for system in the game with

winning condition φ if and only if she has a winning strategy

for the game with condition φ ′.

We consider games where environment has only Boolean

variables while system player has data variables. We call this

the single-sided LRV[⊤,←] games and show that winning

strategy existence problem is decidable. The main concept

we use for decidability is a symbolic representation of mod-

els, introduced in [10]. The building blocks of the symbolic

representation are frames, which we adapt here. We finally

show effective reductions between single-sided LRV[⊤,←]

games and single-sided VASS games. This implies decidabil-

ity of single-sided LRV[⊤,←] games. From Proposition 5.1,

it suffices to show effective reductions between single-sided

LRV[⊤, ≈,←] games and single-sided VASS games.

Given a formula in LRV[⊤,≈,←], we replace sub-formulas

of the formx ≈ X−jywithX−j (y ≈ Xjx) if j > 0. For a formula

φ obtained after such replacements, let l be the maximum i
such that a term of the form Xix appears in φ. We call l the X-
length of φ. Let BVARSφ ⊆ BVARS and DVARS

φ ⊆ DVARS be

the set of Boolean and data variables used in φ. Let Ω
φ
l be the

set of constraints of the form Xiq, Xix ≈ Xjy or Xi (x ≈ ^−1y),
where q ∈ BVARSφ , x ,y ∈ DVARSφ and i, j ∈ {0, . . . , l}. For
e ∈ {0, . . . , l}, an (e,φ)-frame is a set of constraints fr ⊆ Ω

φ
l

that satisfies the following conditions:

(F0) For all constraints Xiq,Xix ≈ Xjy,Xi (x ≈ ^−1y) ∈ fr ,

i, j ∈ {0, . . . , e}.
(F1) For all i ∈ {0, . . . , e} and x ∈ DVARSφ , Xix ≈ Xix ∈ fr .

(F2) For all i, j ∈ {0, . . . , e} and x ,y ∈ DVARS
φ
, Xix ≈

Xjy ∈ fr iff Xjy ≈ Xix ∈ fr .

(F3) For all i, j, j ′ ∈ {0, . . . , e} and x ,y, z ∈ DVARS
φ
, if

{Xix ≈ Xjy,Xjy ≈ Xj
′

z} ⊆ fr , then Xix ≈ Xj
′

z ∈ fr .

(F4) For all i, j ∈ {0, . . . , e} and x ,y ∈ DVARS
φ
such that

Xix ≈ Xjy ∈ fr :

• if i = j, then for every z ∈ DVARSφ we have Xi (x ≈
^−1z) ∈ fr iff Xj (y ≈ ^−1z) ∈ fr .

• if i < j, then Xj (y ≈ ^−1x) ∈ fr and for any z ∈
DVARS

φ
,Xj (y ≈ ^−1z) ∈ fr iff eitherXi (x ≈ ^−1z) ∈

fr or there exists i ≤ j ′ < j with Xjy ≈ Xj
′

z ∈ fr .

The condition (F0) ensures that a frame can constrain at

most (e + 1) contiguous valuations. The next three condi-

tions ensure that equality constraints in a frame form an

equivalence relation. The last condition ensures that obliga-

tions for repeating values in the past are consistent among

various variables.

A pair of (l ,φ)-frames (fr, fr ′) is said to be one-step con-

sistent iff

(O1) for all Xix ≈ Xjy ∈ Ω
φ
l with i, j > 0, we have Xix ≈

Xjy ∈ fr iff Xi−1x ≈ Xj−1y ∈ fr
′
,

(O2) for all Xi (x ≈ ^−1y) ∈ Ωφ
l with i > 0, we have Xi (x ≈

^−1y) ∈ fr iff Xi−1(x ≈ ^−1y) ∈ fr
′
and

(O3) for all Xiq ∈ Ω
φ
l with i > 0, we have Xiq ∈ fr iff

Xi−1q ∈ fr
′
.

For e ∈ {0, . . . , l−1}, an (e,φ) frame fr and an (e+1,φ) frame

fr
′
, the pair (fr, fr ′) is said to be one step consistent iff fr ⊆ fr

′

and for every constraint in fr
′
of the form Xix ≈ Xjy, Xiq or

Xi (x ≈ ^−1y) with i, j ∈ {0, . . . , e}, the same constraint also

belongs to fr .

An (infinite) (l ,φ)-symbolicmodel ρ is an infinite sequence
of (l ,φ)-frames such that for all i ∈ N, the pair (ρ(i), ρ(i + 1))
is one-step consistent. Let us define the symbolic satisfaction

relation ρ, i |=symb φ
′
where φ ′ is a sub-formula of φ. The

relation |=symb is defined in the same way as |= for LRV,

except that for every element φ ′ of Ω
φ
l , we have ρ, i |=symb φ

′

whenever φ ′ ∈ ρ(i). We say that a concrete model σ realizes

a symbolic model ρ if for every i ∈ N\{0}, ρ(i) = {φ ′ ∈ Ω
φ
l |

σ , i |= φ ′}. The next result follows easily from definitions.

Lemma 5.2 (symbolic vs. concrete models). Suppose φ is

a LRV[⊤,≈,←] formula of X-length l , ρ is a (l ,φ)-symbolic

model and σ is a concrete model realizing ρ. Then ρ symboli-

cally satisfies φ iff σ satisfies φ.

We fix a LRV[⊤, ≈,←] formula φ of X-length l . For e ∈
{0, . . . , l}, an (e,φ)-frame fr , i ∈ {0, . . . , e} and a variable x ,
the set of past obligations of the variable x at level i in fr

is defined to be the set POfr (x , i) = {y ∈ DVARS
φ | Xi (x ≈

^−1y) ∈ fr}. The equivalence class of x at level i in fr is

defined to be [(x , i)]fr = {y ∈ DVARS
φ | Xix ≈ Xiy ∈ fr}.

Consider a concrete model σ restricted to two variables

x ,y as shown below. The top row indicates the positions

i, (i + 1), . . . , (i + l), (i + l + 1), j, (j + 1), . . . , (j + l), (j + l + 1).
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x
y

i i+1 i+l i+l+1

. . .d

d

d
j j+1 j+l j+l+1

. . .d' d'. . .

fri
fri+1 frj

frj+1

. . . . . . . . .

The left column indicates the two variables x ,y and the re-

maining columns indicate valuations. E.g., σ (i + 1)(y) = d
and σ (j + l + 1)(x) = d ′. Let fri = {φ

′ ∈ Ω
φ
l | σ , i |= φ

′}. We

have indicated this pictorially by highlighting the valuations

that determine the contents of fri . The data values for x at

positions i and (i + l + 1) are equal, but the positions are too
far apart to be captured by any one constraint of the form

Xαx ≈ Xβx in Ω
φ
l . However, the intermediate position (i + 1)

has the same data value and is less than l positions apart
from both positions. One constraint from Ω

φ
l can capture the

data repetition between positions i and (i + 1) while another
one captures the repetition between positions (i + 1) and

(i + l + 1), thus indirectly capturing the repetition between

positions i and (i+l+1). For e ∈ {0, . . . , l}, an (e,φ)-frame fr ,

i ∈ {0, . . . , e} and a variable x , we say that there is a forward
(resp. backward) reference from (x , i) in fr if Xix ≈ Xi+jy ∈ fr

(resp. Xix ≈ Xi−jy ∈ fr) for some j > 0 and y ∈ DVARS
φ
.

The constraint x ≈ Xy in fri above is a forward reference

from (x , 0) in fri , while the constraint X
lx ≈ y is a backward

reference from (x , l) in fri+1.

In the above picture, the data values of x at positions j and
(j + l + 1) are equal, but the two positions are too far apart

to be captured by any constraint of the form Xαz ≈ Xβw
in Ω

φ
l . Neither are there any intermediate positions with

the same data value to capture the repetition indirectly. We

maintain a counter to keep track of the number of such re-

mote data repetitions. Let X ⊆ DVARS
φ
be a set of variables.

A point of decrement for counter X in an (e,φ)-frame fr is

an equivalence class of the form [(x , e)]fr such that there is

no backward reference from (x , e) in fr and POfr (x , e) = X .
In the above picture, the equivalence class [(x , l)]fr j+1 in the

frame fr j+1 is a point of decrement for {x}. A point of in-

crement for X in an (l ,φ)-frame fr is an equivalence class of

the form [(x , 0)]fr such that there is no forward reference

from (x , 0) in fr and [(x , 0)]fr ∪ POfr (x , 0) = X . In the above

picture, the equivalence class [(x , 0)]fr j in the frame fr j is

a point of increment for {x}. Points of increment are not

present in (e,φ)-frames for e < l since such frames do not

contain complete information about constraints in the next

l positions. We denote by inc(fr) the vector indexed by non-

empty subsets of DVARS
φ
, where each coordinate contains

the number of points of increment in fr for the correspond-

ing subset of variables. Similarly, we have the vector dec(fr)

for points of decrement.

Given a LRV[⊤, ≈,←] formula φ in which DVARS
e = ∅ =

BVARS
s
, we construct a single-sided VASS game as follows.

Let l be the X-length ofφ and FR be the set of all (e,φ)-frames

for all e ∈ {0, . . . , l}. LetAφ
be a deterministic parity automa-

ton that accepts a symbolic model iff it symbolically satisfies

φ, with set of statesQφ
and initial state q

φ
init

. The single-sided

VASS game will have set of counters P+(DVARSφ ), set of en-

vironment states {−1, 0, . . . , l} ×Qφ × (FR∪ {⊥}) and set of
system states {−1, 0, . . . , l} ×Qφ × (FR∪ {⊥})×P(BVARSφ ).
Every state will inherit the colour of its Qφ

component.

For convenience, we let ⊥ to be the only (−1,φ)-frame and

(⊥, fr ′) be one-step consistent for every 0-frame fr
′
. The ini-

tial state is (−1,q
φ
init
,⊥), the initial counter values are all 0

and the transitions are as follows (⌈·⌉l denotes the mapping

that is identity on {−1, 0, . . . , l − 1} and maps all others to l ).

• (e,q, fr)
®0
−→ (e,q, fr,V ) for every e ∈ {−1, 0, . . . , l}, q ∈ Qφ

,

fr ∈ FR ∪ {⊥} and V ⊆ BVARS
φ
.

• (e,q
φ
init
, fr,V )

inc(fr)−dec(fr′)
−−−−−−−−−−−→ (e + 1,q

φ
init
, fr ′) for every V ⊆

BVARS
φ
, e ∈ {−1, 0, . . . , l − 2}, (e,φ)-frame fr and (e + 1,φ)-

frame fr
′
, where the pair (fr, fr ′) is one-step consistent and

{p ∈ BVARSφ | Xe+1p ∈ fr
′} = V .

• (e,q, fr,V )
inc(fr)−dec(fr′)
−−−−−−−−−−−→ (⌈e + 1⌉l ,q′, fr ′) for every e ∈

{l − 1, l}, (e,φ)-frame fr , V ⊆ BVARS
φ
, q,q′ ∈ Qφ

and

(⌈e + 1⌉l ,φ)-frame fr
′
, where the pair (fr, fr ′) is one-step

consistent, {p ∈ BVARSφ | X ⌈e+1⌉lp ∈ fr
′} = V and q

fr
′

−−→ q′

is a transition in Aφ
.

Transitions of the form (e,q, fr)
®0
−→ (e,q, fr,V ) let the en-

vironment choose any subset V of BVARS
φ
to be true in the

next round. In transitions of the form (e,q, fr,V )
inc(fr)−dec(fr′)
−−−−−−−−−−−→

(⌈e + 1⌉l ,q′, fr ′), the condition {p ∈ BVARS
φ | X ⌈e+1⌉lp ∈

fr
′} = V ensures that the frame fr

′
chosen by the system

is compatible with the subset V of BVARS
φ
chosen by the

environment in the preceding step. By insisting that the pair

(fr, fr ′) is one-step consistent, we ensure that the sequence

of frames built during a game is a symbolic model. The con-

dition q
fr
′

−−→ q′ ensures that the symbolic model is accepted

by Aφ
and hence symbolically satisfies φ. The update vector

inc(fr)−dec(fr ′) ensures that symbolic models are realizable,

as explained in the proof of the following result.

Lemma 5.3 (repeating values to VASS). Let φ be a LRV[⊤,

≈,←] formula with DVARS
e = BVARS

s = ∅. Then system has

a winning strategy in the corresponding single-sided LRV[⊤,

≈,←] game iff she has a winning strategy in the single-sided

VASS game constructed above.

Proof idea. A game on the single-sided VASS game results in

a sequence of frames. The single-sided VASS game embeds

automata which check that these sequences are symbolic

models that symbolically satisfy φ. This in conjunction with

Lemma 5.2 (symbolic vs. concrete models) will prove the re-

sult, provided the symbolic models are also realizable. Some

symbolic models are not realizable since frames contain too

many constraints about data values repeating in the past

and no concrete model can satisfy all those constraints. To
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avoid this, the single-sided VASS game maintains counters

for keeping track of the number of such constraints. When-

ever a frame contains such a past repetition constraint that

is not satisfied locally within the frame itself, there is an ab-

sence of backward references in the frame and it results in a

point of decrement. Then the −dec(fr ′) part of transitions of

the form (e,q, fr,V )
inc(fr)−dec(fr′)
−−−−−−−−−−−→ (⌈e+1⌉l ,q′, fr ′)will decre-

ment the corresponding counter. In order for this counter

to have a value of at least 0, the counter should have been

incremented earlier by inc(fr) part of earlier transitions. This

ensures that symbolic models resulting from the single-sided

VASS games are realizable. □

Corollary 5.4. The winning strategy existence problem for

single-sided LRV[⊤, ≈,←] game of repeating values (without

past-time temporal modalities) is in 4Exptime.

Proof. For a LRV[⊤,≈,←] formulawithDVARS
e = BVARS

s =

∅ and no past-time temporal modalities, the single-sided

VASS game defined above can be constructed in 2Exptime.

Hence, the double exponential time upper bound for energy

games (and for single-sided VASS games) given in [9] trans-

lates to 4Exptime for single-sided LRV[⊤, ≈,←] games. □

Our decidability proof thus depends ultimately on energy

games, as hinted in the title of this paper. Next we show

that single-sided VASS games can be effectively reduced to

single-sided LRV[⊤, ≈,←] games.

Theorem 5.5. Given a single-sided VASS game, a single-sided

LRV[⊤, ≈,←] game can be constructed in polynomial time so

that the system player has a winning strategy in the first game

iff the system player has a winning strategy in the second one.

Proof idea. Wewill simulate runs of single-sided VASS games

with models of formulas in LRV. The formulas satisfied at

position i of the concrete model will contain information

about counter values before the ith transition and the iden-

tity of the ith transition chosen by the environment and the

system players in the run of the single-sided VASS game. For

simulating a counter x , we use two system variables x and

x . The data values assigned to these variables from positions

1 to i in a concrete model σ will represent the counter value

that is equal to the cardinality of the set {d ∈ D | ∃j ∈
{1, . . . , i},σ (j)(x) = d,∀j ′ ∈ {1, . . . , i},σ (j ′)(x) , d}. Using
formulas in LRV[⊤, ≈,←], the two players can be enforced

to correctly update the concrete model to faithfully reflect

the moves in the single-sided VASS game. A formula can

also be written to ensure that system wins the single-sided

LRV[⊤, ≈,←] game iff the single-sided VASS game being

simulated satisfies the parity condition. □

6 Single-sided LRV[⊤, ≈,→] is undecidable
In this section we show that the positive decidability result

for the single-sided LRV[⊤,←] game cannot be replicated

for the future demands fragment, even in a restricted setting.

Theorem 6.1. The existence of winning strategy for single-

sided LRV[⊤,≈,→] games is undecidable, even when environ-
ment has 1 Boolean variable and system has 3 data variables.

We don’t know the decidability status for the case where

system has less than three data variables.

As in the previous undecidability results in Section 4, the

result is proven by a reduction from the reachability problem

for 2-countermachines. Systemmakes use of labels to encode

the sequence of transitions of a witnessing run of the counter

machine. This time, system has 3 data variables x ,y, z (in

addition to a number of Boolean variables which encode the

labels); and environment has just one Boolean variable b.
Variables x , y are used to encode the counters cx and cy as

before, and variables z, b are used to ensure that there are no

‘illegal’ transitions — namely, no decrements of a zero-valued

counter, and no tests for zero for a non-zero-valued counter.

Each transition in the run of the 2-counter machine will

be encoded using two consecutive positions of the game.

Concretely, while in the previous coding of Section 4 a wit-

nessing reachability run t1 t2 · · · tn ∈ δ
∗
was encoded with

the label sequence begin t1 t2 · · · tn t̂
ω
, in this encoding tran-

sitions are interspersed with a special bis label, and thus the

run is encoded as t1bis t2 bis · · · tn bis (t̂ bis)
ω ∈ (δ ∪ {bis})ω .

Suppose a position has the label of a cx + + transition

and the variable x has the data value d . Our encoding will

ensure that if the data value d repeats in the future, it will

be only once and at a position that has the label of a cx − −
transition. A symmetrical property holds for cy and variable

y. The value of counter cx (resp. cy ) before the i
th
transition

(encoded in the 2i th and (2i + 1)st positions) is the number of

positions j < 2i satisfying the following two conditions: i)

the position j should have the label of a cx ++ transition and

ii) σ (j)(x) < {σ (j ′)(x) | j + 1 < j ′ < 2i}. Intuitively, if 2i is
the current position, the value of cx (resp. cy ) is the number

of previous positions that have the label of a cx ++ transition
whose data value is not yet matched by a position with the

label of a cx − − transition. In this reduction we assume that

system plays first and environment plays next at each round,

since it is easier to understand (the reduction also holds for

the game where turns are inverted by shifting environment
behavior by one position). At each round, system will play a

label bis if the last label played was a transition. Otherwise,

she will choose the next transition of the 2-counter machine

to simulate and she will chose the values for variables x , y, z
in such a way that the aforementioned encoding for counters

cx and cy is preserved. To this end, system is bound by the

following set of rules, described here pictorially:

(_,
c x

++,_)

bis (_,
c y

++,_)

bis (_,
c x

– –
,_)

bis (_,
c y

– –
,_)

bis (_,
c x

=0?
,_)

bis (_,
c y

=0?
,_)

bis

y

x x

y

x

y

x

y

principal value
secondary value
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The first (leftmost) rule, for example, reads that whenever

there is a cx ++ transition label, then all four values for x and

y in both positions (i.e., the transition position and the next

bis position) must have the same data value d (which we call

‘principal’), which does not occur in the future under variable

y. The third rule says that cx − − is encoded by having x on

the first position to carry the ‘principal’ data value d of the

transition, which is final (that is, it is not repeated in the

future under x or y), and all three remaining positions have

the same data value d ′ different from d . In this way, system
can make sure that the value of cx is decremented, by playing

a data value d that has occurred in a cx + + position that is

not yet matched. (While system could also play some data

value which does not match any previous cx + + position,

this ‘illegal’ move leads to a losing play for system, as we will

show.) In this rule, the usage of two positions per transition

becomes essential: it ensures that the data value d ′ of y (for

whichd ′ , d) appears in the future both in x andy. Thus, the
presence of d ′ doesn’t affect the value of cy or cx —to affect

either, the data value should repeat in only one variable.

From these rules, it follows that every ck + + can be

matched to at most one future ck − −. However, there can
be two ways in which this coding can fail: a) there could be

invalid tests ck = 0?, that is, a situation in which the preced-

ing positions of the test contain a ck + + transition which is

not matched with a ck − − transition; and b) there could be

some ck − − with no previous matching ck + +. As we will
see next, variables z and b play a crucial role in the game

whenever any of these two cases occurs. In all the rounds,

environment always plays ⊤, except if he detects that one of
these two situations, a) or b), have arisen, in which case he

plays ⊥. In the following rounds system plays a value in z
that will enable to test, with an LRV formula, if there was

indeed an a) or b) situation, in which case systemwill lose, or

if environment was just ‘bluffing’, in which case system will

win. Since this is the most delicate point in the reduction,

we dedicate the remaining of this section to the explanation

of how these two situations a) and b) are treated.

Remember that environment has just one bit of informa-

tion to play with. The LRV property we build ensures that

the sequence of b-values must be from the set ⊤∗⊥∗⊤ω .

a) Avoiding illegal tests for zero. Suppose that at some

point of the 2-counter machine simulation, system decides

to play a ck = 0? transition. Suppose there is some preceding

ck + + transition for which either: a1) there is no matching

ck −− transition; or a2) there is a matching ck −− transition
but it occurs after the ck = 0? transition. Situation a1 can

be easily avoided by ensuring that any winning play must

satisfy the formula µ = G(τ(ck++) ∧ Fτ(ck=0?) ⇒ k ≈ ^k)
for every k ∈ {x ,y}. Here, τinst tests if the current position
is labelled with an instruction of type inst . On the other

hand, Situation a2 requires environment to play a certain

strategy (represented in Figure 1-a2). This means that ck is

(_,c x+
+,_)

bis (_,c x–
 –,_)

bis(_,c x=
0?,_)

bis
x
y

. . . . . . . . .. . .
z
b ⊤ ⊥ ⊥ ⊥⊤ ⊤ ⊤

. . .. . . . . . . . .
. . . . . . . . . . . .

(_,c x–
 –,_)

bis
x
y

. . . . . .
z
b ⊥ ⊤

. . . . . .

. . . . . .⊤

situation a2) situation b)

Figure 1. Depiction of best strategies in both situations.

non-zero at the position of the ck = 0? transition, and that

this is an illegal transition; thus, environment must respond

accordingly. Further, suppose this is the first illegal transition

that has occurred so far. Environment, who so far has been

playing only ⊤, decides to play ⊥ to mark the cheating point.

Further, he will continue playing⊥ until the matching ck −−
transition is reached (if it is never reached, it is situation

a1 and system loses as explained before), after which he

will play ⊤ forever afterwards. In some sense, environment
provides a link between the illegal transition and the proof of

its illegality through a ⊥∗-path. The following characterizes

environment’s denouncement of an illegal test for zero:

Property 1: b becomes⊥ at a ck = 0? position and stops being

⊥ at a ck − − position thereafter.

Note that Property 1 is clearly definable by a formula π1 of
LRV[⊤,≈,→]. If Property 1 holds, a formulaφ1 can constrain
system to play z according to the following: z always carries
the same data value, distinct from the values of all other

variables, but as soon as the last ⊥ value is played, which

has to be on a ck − − position, the value of z changes and

holds the principal value of that ck − − transition,
2
and it

continues to hold that value forever after (cf. Figure 1-a2).
Further, if environment cheated in his denouncement by

linking a ck = 0? transition with a future ck − − with a

matching ck + + that falls in-between the test for zero and

the decrement, then a property π ′
1
can catch this: there exists

a ck + + with ⊥ whose principal value matches that of a

future z-value.
Finally, assuming environment correctly denounced an il-

legal test for zero and system played accordingly on variable

z, a property φ ′
1
can test that environment exposed an illegal

transition, by testing that there exists a ck + + transition

whose principal value corresponds to the z-value of some

future position. Thus, the encoding for this situation is ex-

pressed with the formulaψ1 = µ∧((π1∧¬π
′
1
) ⇒ (φ1∧¬φ

′
1
)).

b) Avoiding illegal decrements. Suppose now that at some

point of the 2-counter machine simulation, system decides

to play a ck − − transition for which there is no preceding

ck++ transitionmatching its final data value. This is a form of

cheating, and thus environment should respond accordingly.

Further, suppose this is the first cheating that has occurred so

2
To make sure it is the last ⊥ element, system has to wait for ⊤ to appear,

hence variable z changes its value at the next position after the last ⊥.
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far. Environment, who so far has been playing only⊤, decides
then to mark this position with ⊥; and for the remaining

of the play environment plays only ⊤ (even if more illegal

transitions are performed in the sequel). Summing up, for this

situation environment’s best strategy has a value sequence

from ⊤∗⊥⊤ω , and this property characterizes environment’s
denouncement of an illegal decrement (cf. Figure 1-b).

Property 2: b becomes ⊥ at a ck − − position and stops being

⊥ immediately after.

A formula π2 can test Property 2; and a formula φ2 can
constrain variable z to always have the same data value —

distinct from all other data values played on variables x ,y—
while b contains ⊤ values; and as soon as b turns to ⊥ on a

ck −− position, then z at the next position takes the value of

the current variable k , and maintains that value (cf. Figure 1-

b). Further, a formula φ ′
2
tests that in this case there must be

some ck + + position with a data value equal to variable z of
a future position. The formula corresponding to this case is

thenψ2 = π2 ⇒ φ2 ∧ φ
′
2
.

The final formula to test is then of the form φ = φlab ∧
φx,y ∧ ψ1 ∧ ψ2, where φlab ensures the finite-automata be-

havior of labels, and in particular that a final state can be

reached, and φx,y asserts the correct behavior of the vari-

ables x ,y relative to the labels. It follows that system has

a winning strategy for the game with input φ if, and only

if, there is a positive answer to the reachability problem for

the 2-counter machine. Finally, labels can be eliminated by

means of special data values encoding blocks exactly as done

in Section 4.2, and in this way Theorem 6.1 follows.

7 Conclusion
It remains open whether the 4Exptime upper bound given

in Corollary 5.4 is optimal. The satisfiability problem for

propositional LTL is complete for Pspace and the realizabil-

ity problem is complete for exponential of alternating Pspace,

which is 2Exptime. Since the satisfiability of LRV is com-

plete for 2Expspace, it would be surprising if games on LRV

have upper bounds smaller than exponential of alternating

2Expspace, which is 4Exptime. For the decidability result in

Section 5, we assumed that in any sub-formula of the form

x ≈ ⟨φ?⟩−1y, φ is ⊤. We believe that this assumption can

possibly be removed if we maintain counters for (variable,

formula) pairs instead of variables. We leave the technical

details of this extension for future work. An open question is

the decidability status of single-sided games with future obli-

gations restricted to only two data variables; the reduction

we have in Section 6 needs three.

Some future directions for research on this topic include

finding restrictions other than single-sidedness to get de-

cidability. For the decidable cases, the structure of winning

strategies can be studied, e.g., whether memory is needed

and if yes, how much.
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