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Abstract
We present a unified translation of LTL formulas into deterministic
Rabin automata, limit-deterministic Büchi automata, and nonde-
terministic Büchi automata. The translations yield automata of
asymptotically optimal size (double or single exponential, respec-
tively). All three translations are derived from one single Master
Theorem of purely logical nature. The Master Theorem decomposes
the language of a formula into a positive boolean combination of
languages that can be translated into ω-automata by elementary
means. In particular, Safra’s, ranking, and breakpoint constructions
used in other translations are not needed.

CCS Concepts • Theory of computation → Automata over
infinite objects;Modal and temporal logics;

Keywords Linear temporal logic, Automata over infinite words,
Deterministic automata, Non-deterministic automata

1 Introduction
Linear temporal logic (LTL) [32] is a prominent specification lan-
guage, used both for model checking and automatic synthesis of
systems. In the standard automata-theoretic approach [38] the in-
put formula is first translated into an ω-automaton, and then the
product of this automaton with the input system is further analyzed.
Since the size of the product is often the bottleneck of all the verifi-
cation algorithms, it is crucial that the ω-automaton is as small as
possible. Consequently, a lot of effort has been spent on translating
LTL into small automata, e.g. [4, 10–12, 17, 18, 20, 21, 36].

While non-deterministic Büchi automata (NBA) can be used
for model checking non-deterministic systems, other applications
such as model checking probabilistic systems or synthesis usually
require automata with a certain degree of determinism, such as de-
terministic parity automata (DPA) or deterministic Rabin automata
(DRA) [5], deterministic generalized Rabin automata (DGRA) [8],
limit-deterministic (or semi-deterministic) Büchi automata (LDBA)
[9, 22, 35, 37], unambiguous Büchi automata [6] etc. The usual
constructions that produce such automata are based on Safra’s de-
terminization and its variants [31, 33, 34]. However, they are known
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to be difficult to implement efficiently, and to be practically ineffi-
cient in many cases due to their generality. Therefore, a recent line
of work shows howDPA [14, 28], DRA and DGRA [13, 15, 26, 27], or
LDBA [23, 24, 35] can be produced directly from LTL, without the
intermediate step through a non-deterministic automaton. All these
works share the principle of describing each state by a collection
of formulas, as happens in the classical tableaux construction for
translation of LTL into NBA. This makes the approach particularly
apt for semantic-based state reductions, e.g., for merging states
corresponding to equivalent formulas. These reductions cannot be
applied to Safra-based constructions, where this semantic structure
gets lost.

In this paper, we provide a unified view of translations of LTL into
NBA, LDBA, and DRA enjoying the following properties, absent in
former translations:

Asymptotic Optimality. D(G)RA are the most compact among
the deterministic automata used in practice, in particular compared
to DPA. Previous translations to D(G)RA were either limited to
fragments of LTL [3, 26, 27], or only shown to be triply exponential
[13, 15]. Here we provide constructions for all mentioned types of
automata matching the optimal double exponential bound for DRA
and LDBA, and the optimal single exponential bound for NBA.

Symmetry. The first translations [26, 27] used auxiliary automata
to monitor each Future- and Globally-subformula. While this ap-
proach worked for fragments of LTL, subsequent constructions for
full LTL [13, 15, 35] could not preserve the symmetric treatment.
They only used auxiliary automata for G-subformulas, at the price
of more complex constructions. Our translation re-establishes the
symmetry of the first constructions. It treats F and G equally (actu-
ally, and more generally, it treats each operator and its dual equally),
which results into simpler auxiliary automata.

Independence of Syntax. Previous translations were quite sensi-
tive to the operators used in the syntax of LTL. In particular, the
only greatest-fixed-point operator they allowed was Globally. Since
formulas also had to be in negation normal form, pre-processing
of the input often led to unnecessarily large formulas. While our
translations still requires negation normal form, it allows for direct
treatment of Release,Weak until, and other operators.

Unified View. Our translations rely on a novel Master Theorem,
which decomposes the language of a formula into a positive boolean
combination of “simple” languages, in the sense that they are easy
to translate into automata. This approach is arguably simpler than
previous ones (it is certainly simpler than our previous papers
[15, 35]). Besides, it provides a unified treatment of DRA, NBA, and
LDBA, differing only in the translations of the “simple” languages.
The automaton for the formula is obtained from the automata for
the “simple” languages by means of standard operations for closure
under union and intersection.
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On top of its theoretical advantages, our translation is compara-
ble to previous DRA translations in practice, even without major
optimizations. Summarizing, we think this paper finally achieves
the goals formulated in [26], where the first translation of this
kind—valid only for what we would now call a small fragment of
LTL—was presented.

Structure of the Paper. Section 2 contains preliminaries about
LTL and ω-automata. Section 3 introduces some definitions and
results of [15, 35]. Section 4 shows how to use these notions to
translate four simple fragments of LTL into deterministic Büchi
and coBüchi automata; these translations are later used as building
blocks. Section 5 presents our main result, the Master Theorem.
Sections 6, 7, and 8 apply the Master Theorem to derive translations
of LTL into DRA, NBA, and LDBA, respectively. Section 9 compares
the paper to related work and puts the obtained results into context.
The appendix of the accompanying technical report [16] contains
the few omitted proofs and further related material.

2 Preliminaries
2.1 ω-Languages and ω-Automata
Let Σ be a finite alphabet. An ω-word w over Σ is an infinite
sequence of letters w[0]w[1]w[2] . . . . We denote the finite infix
w[i]w[i+1] · · ·w[j−1] bywi j , and the infinite suffixw[i]w[i+1] . . .
bywi . An ω-language is a set of ω-words.

For the sake of presentation, we introduce ω-automata with
accepting conditions defined on states. However, all results can be
restated with accepting conditions defined on transitions, more in
line with other recent papers and tools [2, 12, 25].

Let Σ be a finite alphabet. A nondeterministic pre-automaton
over Σ is a tuple P = (Q,∆,Q0) where Q is a finite set of states,
∆ : Q × Σ → 2Q is a transition function, and Q0 is a set of initial
states. A transition is a triple (q,a,q′) such that q′ ∈ ∆(q,a). A
pre-automaton P is deterministic if Q0 is a singleton and ∆(q,a) is
a singleton for every q ∈ Q and a ∈ Σ.

A run of P on an ω-word w is an infinite sequence of states
r = q0q1q2 . . . with qi+1 ∈ δ (qi ,w[i]) for all i and we denote by
inf (r ) the set of states occurring infinitely often in r . An accepting
condition is an expression over the syntax α ::= inf (S) | fin (S) |
α1 ∨ α2 | α1 ∧ α2 with S ⊆ Q . Accepting conditions are evaluated
on runs and the evaluation relation r |= α is defined as follows:

r |= inf (S) iff inf (r ) ∩ S , ∅

r |= fin (S) iff inf (r ) ∩ S = ∅

r |= α1 ∨ α2 iff r |= α1 or r |= α2
r |= α1 ∧ α2 iff r |= α1 and r |= α2

An accepting condition α is a

• Büchi condition if α = inf (S) for some set S of states.
• coBüchi condition if α = fin (S) for some set S of states.
• Rabin condition if α =

∨k
i=1(inf (Ii )∧fin (Fi )) for some k ≥ 1

and some sets I1, F1, . . . , Ik , Fk of states.

An ω-automaton over Σ is a tuple A = (Q,∆,Q0,α) where
(Q,∆,Q0) is a pre-automaton over Σ andα is an accepting condition.
A run r of A is accepting if r |= α . A word w is accepted by A

if some run of A on w is accepting. An ω-automaton is a Büchi
(coBüchi, Rabin) automaton if its accepting condition is a Büchi
(coBüchi, Rabin) condition.

Limit-Deterministic BüchiAutomata. Intuitively, a NBA is limit-
deterministic if it can be split into a non-deterministic component
without accepting states, and a deterministic component. The au-
tomaton can only accept by “jumping” from the non-deterministic
to the deterministic component, but after the jump it must stay
in the deterministic component forever. Formally, a NBA B =

(Q,∆,Q0,α) is limit-deterministic (LDBA) if Q can be partitioned
into two disjoint sets Q = QN ⊎QD , s.t.

1. ∆(q,ν ) ⊆ QD and |∆(q,ν )| = 1 for every q ∈ QD , ν ∈ Σ, and
2. S ⊆ QD for all S ∈ α .

2.2 Linear Temporal Logic
We work with a syntax for LTL in which formulas are written in
negation-normal form, i.e., negations only occur in front of atomic
propositions. For every temporal operator we also include in the
syntax its dual operator. On top of the next operator X, which is
self-dual, we introduce temporal operators F (eventually), U (until),
and W (weak until), and their duals G (always), R (release) andM
(strong release). The syntax may look redundant but as we shall see
it is essential to includeW andM and very convenient to include F
and G.

Syntax and semantics of LTL. A formula of LTL in negation
normal form over a set of atomic propositions (Ap) is given by the
syntax:

φ ::= tt | ff | a | ¬a | φ ∧ φ | φ ∨ φ | Xφ

| Fφ | Gφ | φUφ | φWφ | φMφ | φRφ

where a ∈ Ap. We denote sf (φ) the set of subformulas of φ. A
subformulaψ of φ is called proper if it is neither a conjunction nor
a disjunction, i,e., if the root of its syntax tree is labelled by either
a, ¬a, or a temporal operator. The satisfaction relation |= between
ω-words over the alphabet 2Ap and formulas is inductively defined
as follows:

w |= tt
w ̸ |= ff
w |= a iff a ∈ w[0]
w |= ¬a iff a < w[0]
w |= φ ∧ψ iff w |= φ andw |= ψ
w |= φ ∨ψ iff w |= φ orw |= ψ
w |= Xφ iff w1 |= φ
w |= Fφ iff ∃k .wk |= φ
w |= Gφ iff ∀k .wk |= φ
w |= φUψ iff ∃k .wk |= ψ and ∀j < k .w j |= φ
w |= φWψ iff w |= Gφ or w |= φUψ
w |= φMψ iff ∃k .wk |= φ and ∀j ≤ k .w j |= ψ
w |= φRψ iff w |= Gψ or w |= φMψ

Two formulas are equivalent if they are satisfied by the same words.
We also introduce the stronger notion of propositional equivalence:

Definition 2.1 (Propositional Equivalence). Given a formula φ, we
assign to it a propositional formula φP as follows: replace every
maximal proper subformulaψ by a propositional variable xψ . Two
formulas φ,ψ are propositionally equivalent, denoted φ ≡P ψ , iff φP
andψP are equivalent formulas of propositional logic. The set of
all formulas propositionally equivalent to φ is denoted by [φ]P .

Example 2.2. Let φ = Xb ∨ (G(a ∨ Xb) ∧ Xb) with ψ1 = Xb and
ψ2 = G(a ∨Xb). We have φP = xψ1 ∨ (xψ2 ∧ xψ1 ) ≡P xψ1 . Thus Xb
is propositionally equivalent to φ and Xb ∈ [φ]P . △
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Observe that propositional equivalence implies equivalence, but
the converse does not hold.

3 The “after” Function
We recall the definition of the“after function” af(φ,w), read “φ after
w” [13, 15]. The function assigns to a formula φ and a finite wordw
another formula such that, intuitively, φ holds forww ′ iff af(φ,w)

holds “after readingw”, that is, iffw ′ |= af(φ,w).1

Definition 3.1. Let φ be a formula and ν ∈ 2Ap a single letter. The
formula af(φ,ν ) is inductively defined as follows:

af(a,ν ) =

{
tt if a ∈ ν

ff if a < ν

af(¬a,ν ) =

{
ff if a ∈ ν

tt if a < ν

af(tt,ν ) = tt

af(ff,ν ) = ff

af(φ ∧ψ ,ν ) = af(φ,ν ) ∧ af(ψ ,ν )

af(φ ∨ψ ,ν ) = af(φ,ν ) ∨ af(ψ ,ν )

af(Xφ,ν ) = φ

af(Fφ,ν ) = af(φ,ν ) ∨ Fφ

af(Gφ,ν ) = af(φ,ν ) ∧ Gφ

af(φUψ ,ν ) = af(ψ ,ν ) ∨ (af(φ,ν ) ∧ φUψ )

af(φWψ ,ν ) = af(ψ ,ν ) ∨ (af(φ,ν ) ∧ φWψ )

af(φMψ ,ν ) = af(ψ ,ν ) ∧ (af(φ,ν ) ∨ φMψ )

af(φRψ ,ν ) = af(ψ ,ν ) ∧ (af(φ,ν ) ∨ φRψ )
Furthermore, we generalize the definition to finite words by setting
af(φ, ϵ) = φ and af(φ,νw) = af(af(φ,ν ),w) for every ν ∈ 2Ap and
every finite wordw . Finally, we define the set of formulas reachable
from φ as Reach(φ) = {[ψ ]P | ∃w . ψ = af(φ,w)}.

Example 3.2. Let φ = a ∨ (b U c). We then have af(φ, {a}) ≡P tt,
af(φ, {b}) ≡P (b U c), af(φ, {c}) ≡P tt, and af(φ, ∅) ≡P ff . △

The following lemma states the main properties of af, which are
easily proved by induction on the structure of φ. For convenience
we include the short proof in the appendix of [16].

Lemma 3.3. [15]
(1) For every formula φ, finite wordw ∈ (2Ap )∗, and infinite word

w ′ ∈ (2Ap )ω :ww ′ |= φ iffw ′ |= af(φ,w)

(2) For every formula φ and finite wordw ∈ (2Ap )∗: af(φ,w) is a
positive boolean combination of proper subformulas of φ.

(3) For every formula φ: If φ has n proper subformulas, then
Reach(φ) has at most size 22

n
.

It is easy to show by induction that φ ≡P ψ implies af(φ,w) ≡P
af(ψ ,w) for every finitewordw .We extend af to equivalence classes
by defining af([φ]P ,w) := [af(φ,w)]P . Sometimes we abuse lan-
guage and identify a formula and its equivalence class. For example,
we write “the states of the automaton are pairs of formulas” instead
of “pairs of equivalence classes of formulas”.

4 Constructing DRAs for Fragments of LTL
We show that the function af can be used to construct determinis-
tic Büchi and coBüchi automata for some fragments of LTL. The
constructions are very simple. Later, in Sections 6, 7, and 8 we use
these constructions as building blocks for the translation of general
LTL formulas. The fragments are:
1There is a conceptual correspondences to the derivatives of [7] and af directly connects
to the classical “LTL expansion laws” [5]. Furthermore, the yet to be introduced af ∨

relates to [1] in a similar way.

• The µ-fragment µLTL and the ν-fragment νLTL.
µLTL is the fragment of LTL restricted to temporal operators
F,U,M, on top of Boolean connectives (∧,∨), literals (a,¬a),
and the next operator (X). νLTL is defined analogously, but
with the operators G,W,R. In the literature µLTL is also
called syntactic co-safety and νLTL syntactic safety.

• The fragments GF(µLTL) and FG(νLTL).
These fragments contain the formulas of the form GFφ,
where φ ∈ µLTL, and FGφ, where φ ∈ νLTL.

The reason for the names µLTL and νLTL is that F,U,M are
least-fixed-point operators, in the sense that their semantics is
naturally formulated by least fixed points, e.g. in the µ-calculus,
while the semantics of G,W,R is naturally formulated by greatest
fixed points.

The following lemma characterizes the words w satisfying a
formula φ of these fragments in terms of the formulas af(φ,w).

Lemma 4.1. [15] Let φ ∈ µLTL and letw be a word. We have:
• w |= φ iff ∃i . af(φ,w0i ) ≡P tt.
• w |= GFφ iff ∀i . ∃j . af(Fφ,wi j ) ≡P tt.

Let φ ∈ νLTL and letw be a word. We have:
• w |= φ iff ∀i . af(φ,w0i ) .P ff .
• w |= FGφ iff ∃i .∀j . af(Gφ,wi j ) .P ff

The following proposition constructs DBAs or DCAs for the
fragments. The proof is an immediate consequence of the lemma.

Proposition 4.2. Let φ ∈ µLTL.
• The following DBA over the alphabet 2Ap recognizes L(φ):

A
φ
µ = (Reach(φ), af,φ, inf (tt))

• The following DBA over the alphabet 2Ap recognizes L(GFφ):

A
φ
GFµ = (Reach(Fφ), afFφ , Fφ, inf (tt))

afFφ (ψ ,ν ) =

{
Fφ ifψ ≡P tt
af(ψ ,ν ) otherwise.

Let φ ∈ νLTL.
• The following DCA over the alphabet 2Ap recognizes L(φ):

A
φ
ν = (Reach(φ), af,φ,fin (ff))

• The following DCA over the alphabet 2Ap recognizes L(FGφ):

A
φ
FGν = (Reach(Gφ), afGφ ,Gφ,fin (ff))

afGφ (ψ ,ν ) =

{
Gφ ifψ ≡P ff
af(ψ ,ν ) otherwise.

Example 4.3. Let φ = a ∧ X(b ∨ Fc) ∈ µLTL. The DBA A
φ
GFµ

recognizing L(GFφ) is depicted below. We use the abbreviations
α := {ν ∈ 2Ap | a ∈ ν }, β := {ν ∈ 2Ap | b ∈ ν }, and γ := {ν ∈

2Ap | c ∈ ν }. △

Fφ Fφ ∨ b ∨ Fc

Fφ ∨ Fc

tt

2Ap \ α

α

{a }

∅

β, γ

γ

{a }, {a, b }

∅, {b }

2Ap
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Example 4.4. Let φ = aWb ∨c ∈ νLTL. The DCAA
φ
FGν recogniz-

ing L(FGφ) is depicted below. We use the abbreviations of Example
4.3 again.

Gφ Gφ ∧ aWb ff

β, γ

{a }

∅

{a }, {a, c }

β

∅, {c }

2Ap

Now consider the formula φ = FG(aUb ∨ c). It does not belong to
any of the fragments due to the deeper alternation of the least- and
greatest-fixed-point operators: F−G−U. If we constructAφ

FGν we
obtain a DCA isomorphic to the one above, because af(ψ1Uψ2,ν )
and af(ψ1Wψ2,ν ) are defined in the same way. However, the DCA
does not recognize L(φ): For example, on the word {a}ω , it loops
on the middle state and accepts, even though {a}ω ̸ |= φ. The reason
is that Aφ

FGν checks that the greatest fixed point holds, and cannot
enforce satisfaction of the least-fixed-point formula aUb.

If only we were given a promise that aUb holds infinitely often,
then we could conclude that such a run is accepting.We can actually
get such promises: for NBA and LDBA via the non-determinism
of the automaton, and for DRA via the “non-determinism” of the
acceptance condition. In the next section, we investigate how to
utilize such promises (Section 5.3) and how to check whether the
promises are fulfilled or not (Section 5.4). △

5 The Master Theorem
Wepresent and prove theMaster Theorem: A characterization of the
words satisfying a given formula from which we can easily extract
deterministic, limit-deterministic, and nondeterministic automata
of asymptotically optimal size.

We first provide some intuition with the help of an example.
Consider the formulaφ = FG((aRb)∨(cUd)), which does not belong
to any of the fragments in the last section, and a wordw . Assume
we are promised that alongw the µ-subformula cUd holds infinitely
often (this is the case e.g. forw = (∅{d})ω ). In particular, we then
know thatd holds infinitely often, and so we can “reduce”w |=?φ to
w |=? FG((aRb)∨(cWd)), which belongs to the fragment FG(νLTL).

Assume now we are promised that cUd only holds finitely often
(for example, becausew = {d}4{c}ω ). Even more, we are promised
that along the suffixw5 the formula cUd never holds anymore. How
can we use this advice? First, w |=?φ reduces to w5 |=? af(φ,w05)
by the fundamental property of af, Lemma 3.3(1). Further, a little
computation shows that af(φ,w05) ≡P φ, and so that w |=? φ
reduces to w5 |=? φ. Finally, using that cUd never holds again,
we reduce w |=? φ to w5 |=? FG(aRb ∨ ff) ≡P FG(aRb) which
belongs to the fragment FG(νLTL).

This example suggests a general strategy for solvingw |=?φ:
• Guess the set of least-fixed-point subformulas of φ that hold
infinitely often, denoted by GFw , and the set of greatest-
fixed-point subformulas that hold almost always, denoted
by FGw .

• Guess a stabilization point after which the least-fixed-point
subformulas outside GFw do not hold any more, and the
greatest-fixed-point subformulas of FGw hold forever.

• Use these guesses to reducew |=?φ to problemsw |=?ψ for
formulasψ that belong to the fragments introduced in the
last section.

• Check that the guesses are correct.
In the rest of the section we develop this strategy. In Section

5.1 we introduce the terminology needed to formalize stabilization.
Section 5.2 shows how to use a guess X for GF or a guess Y for FG

to reducew |=?φ to a simpler problemw |=?φ[X ]ν orw |=?φ[Y ]µ ,
where φ[X ]ν and φ[Y ]µ are read as “φ with GF-advice X ” and “φ
with FG-advice Y ”, respectively. Section 5.3 shows how to use the
advice to decide w |=? φ. Section 5.4 shows how to check that
the advice is correct. The Master Theorem is stated and proved in
Section 5.5.

5.1 µ- and ν-stability.
Fix a formula φ. The set of subformulas of φ of the form Fψ ,ψ1Uψ2,
andψ1Mψ2 is denoted by µ(φ). So, loosely speaking, µ(φ) contains
the set of subformulas of φ with a least-fixed-point operator at the
top of their syntax tree. Given a wordw , we are interested in which
of these formulas hold infinitely often, and which ones hold at least
once, i.e., we are interested in the sets

GFw = {ψ | ψ ∈ µ(φ) ∧w |= GFψ }

Fw = {ψ | ψ ∈ µ(φ) ∧w |= Fψ }

Observe that GFw ⊆ Fw . We say thatw is µ-stable with respect to
φ if GFw = Fw .

Example 5.1. For φ = Ga ∨ bUc we have µ(φ) = {bUc}. Let
w = {a}ω and w ′ = {b}{c}{a}ω . We have Fw = ∅ = GFw and
GFw ′ = ∅ ⊂ {bUc} = Fw ′ . So w is µ-stable with respect to φ, but
w ′ is not. △

Dually, the set of subformulas of φ of the form Gψ ,ψ1Wψ2, and
ψ1Rψ2 is denoted by ν (φ). This time we are interested in whether
these formulas hold everywhere or almost everywhere, i.e., in the
sets

FGw = {ψ | ψ ∈ ν (φ) ∧w |= FGψ }

Gw = {ψ | ψ ∈ ν (φ) ∧w |= Gψ }

(Observe that the question whether a ν -formula like, say, Ga, holds
once or infinitely often makes no sense, because it holds once iff it
holds infnitely often.) We have FGw ⊇ Gw , and we say thatw is
ν-stable with respect to φ if FGw = Gw .

Example 5.2. Let φ,w andw ′ as in Example 5.1. We have ν (φ) =
{Ga}. The word w is ν-stable, but w ′ is not, because FGw ′ =

{Ga} ⊃ ∅ = Gw ′ . △

So not every word is µ-stable or ν -stable. However, as shown by
the following lemma, all but finitely many suffixes of a word are µ-
and ν-stable.

Lemma 5.3. For every wordw there exist indices i, j ≥ 0 such that
for every k ≥ 0 the suffix wi+k is µ-stable and the suffix w j+k is
ν -stable.

Proof. We only prove the µ-stability part; the proof of the other
part is similar. Since GFwi ⊆ Fwi for every i ≥ 0, it suffices to
exhibit an index i such that GFwi+k ⊇ Fwi+k for every k ≥ 0. If
GFw ⊇ Fw then we can choose i := 0. So assume Fw \ GFw , ∅.
By definition, everyψ ∈ Fw \ GFw holds only finitely often along
w . So for every ψ ∈ Fw \ GFw there exists an index iψ such that

4
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wiψ +k ̸ |= ψ for every k ≥ 0. Let i := max{iψ | ψ ∈ Fw }, which
exists because Fw is a finite set. It follows GFwi+k ⊇ Fwi+k for
every k ≥ 0, and so everywi+k is µ-stable. □

Example 5.4. Let againφ = Ga∨bUc . The wordw ′ = {b}{c}{a}ω

is neither µ-stable nor ν -stable, but all suffixesw ′
(2+k ) ofw

′ are both
µ-stable and ν-stable. △

5.2 The formulas φ[X ]ν and φ[Y ]µ .
We first introduce φ[X ]ν . Assume we have to determine if a wordw
satisfies φ, and we are told thatw is µ-stable. Further, we are given
the set X ⊆ µ(φ) such that GFw = X = Fw . We use this oracle
information to reduce the problemw |=? φ to a “simpler” problem
w |=? φ[X ]ν , where “simpler” means that φ[X ]ν is a formula of
νLTL, for which we already know how to construct automata. In
other words, we define a formula φ[X ]ν ∈ νLTL such that GFw =
X = Fw impliesw |= φ iffw |= φ[X ]ν . (Observe that X ⊆ µ(φ) but
φ[X ]ν ∈ νLTL, and so the latter, not the former, is the reason for
the ν-subscript in the notation φ[X ]ν .)

The definition of φ[X ]ν is purely syntactic, and the intuition
behind it is very simple. All the main ideas are illustrated by the
following examples, where we assume GFw = X = Fw :

• φ = Fa ∧ Gb and X = {Fa}. Then Fa ∈ GFw , which implies
in particular w |= Fa. So we can reduce w |=? Fa ∧ Gb to
w |=? Gb, and so φ[X ]ν := Gb.

• φ = Fa ∧ Gb and X = ∅. Then Fa < Fw , and so w ̸ |= Fa. So
we can reducew |=? Fa ∧ Gb to the trivial problemw |=? ff ,
and so φ[X ]ν := ff .

• φ = G(bUc) and X = {bUc}. Then bUc ∈ GFw , and so
w |= GF(bUc). This does not implyw |= bUc , but implies that
c will hold in the future. So we can reducew |=? G(bUc) to
w |=? G(bWc), a formula of νLTL, and so φ[X ]ν := G(bWc).

Definition 5.5. Let φ be a formula and let X ⊆ µ(φ). The formula
φ[X ]ν is inductively defined as follows:

• If φ = tt,ff,a,¬a, then φ[X ]ν = φ.
• If φ = op(ψ ) for op ∈ {X,G} then φ[X ]ν = op(ψ [X ]ν ).
• If φ = op(ψ1,ψ2) for op ∈ {∧,∨,W,R} then
φ[X ]ν = op(ψ1[X ]ν ,ψ2[X ]ν ).

• If φ = Fψ then φ[X ]ν =

{
tt if φ ∈ X

ff otherwise.

• Ifφ = ψ1Uψ2 thenφ[X ]ν =

{
(ψ1[X ]ν )W(ψ2[X ]ν ) if φ ∈ X

ff otherwise.

• Ifφ = ψ1Mψ2 thenφ[X ]ν =

{
(ψ1[X ]ν )R(ψ2[X ]ν ) if φ ∈ X

ff otherwise.

We now introduce, in a dual way, a formula φ[Y ]µ ∈ µLTL such
that FGw = Y = Gw impliesw |= φ iffw |= φ[Y ]µ .

Definition 5.6. Let φ be a formula and let Y ⊆ ν (φ). The formula
φ[Y ]µ is inductively defined as follows:

• If φ = tt,ff,a,¬a, then φ[Y ]µ = φ.
• If φ = op(ψ ) for op ∈ {X, F} then φ[Y ]µ = op(ψ [Y ]µ ).
• If φ = op(ψ1,ψ2) for op ∈ {∧,∨,U,M} then
φ[Y ]µ = op(ψ1[Y ]µ ,ψ2[Y ]µ ).

• If φ = Gψ then φ[Y ]µ =

{
tt if φ ∈ Y

ff otherwise.

• Ifφ = ψ1Wψ2 thenφ[Y ]µ =

{
tt if φ ∈ Y

(ψ1[Y ]µ )U(ψ2[Y ]µ ) otherwise.

• Ifφ = ψ1Rψ2 thenφ[Y ]µ =

{
tt if φ ∈ Y

(ψ1[Y ]µ )M(ψ2[Y ]µ ) otherwise.

Example 5.7. Let φ = ((aWb) ∧ Fc) ∨ aUd . We have:

φ[{Fc}]ν = ((aWb) ∧ tt) ∨ ff ≡P aWb
φ[{aUd}]ν = ((aWb) ∧ ff) ∨ aWd ≡P aWd
φ[∅]ν = ((aWb) ∧ ff) ∨ ff ≡P ff
φ[{aWb}]µ = (tt ∧ Fc) ∨ aUd ≡P Fc ∨ aUd
φ[∅]µ = (aUb ∧ Fc) ∨ aUd

△

5.3 Utilizing φ[X ]ν and φ[Y ]µ .
The following lemma states the fundamental properties of φ[X ]ν
and φ[Y ]µ . As announced above, for a µ-stable word w we can
reduce the problemw |=? φ tow |=? φ[X ]ν , and for a ν -stable word
tow |=? φ[Y ]µ . However, there is more: If we only knowX ⊆ GFw ,
then we can still inferw |= φ fromw |= φ[X ]ν , only the implication
in the other direction fails.

Lemma 5.8. Let φ be a formula and letw be a word.
For every X ⊆ µ(φ):
(a1) If Fw ⊆ X andw |= φ, thenw |= φ[X ]ν .
(a2) If X ⊆ GFw andw |= φ[X ]ν , thenw |= φ.

In particular:
(a3) If Fw = X = GFw thenw |= φ iffw |= φ[X ]ν .

For every Y ⊆ ν (φ):
(b1) If FGw ⊆ Y andw |= φ, thenw |= φ[Y ]µ .
(b2) If Y ⊆ Gw andw |= φ[Y ]µ , thenw |= φ.

In particular:
(b3) If FGw = Y = Gw thenw |= φ iffw |= φ[Y ]µ .

Proof. All parts are proved by a straightforward structural induction
on φ. We consider only (a1), and only two representative cases of
the induction. Representative cases for (a2), (b1), and (b2) can be
found in the appendix of [16].
(a1) Assume Fw ⊆ X . Then Fwi ⊆ X for all i ≥ 0. We prove the
following stronger statement via structural induction on φ:

∀i . ( (wi |= φ) → (wi |= φ[X ]ν ) )

We consider one representative of the “interesting” cases, and
one of the “straightforward” cases.
Case φ = ψ1Uψ2: Let i ≥ 0 arbitrary and assumewi |= ψ1Uψ2. Then
ψ1Uψ2 ∈ Fwi and so φ ∈ X . We provewi |= (ψ1Uψ2)[X ]ν :

wi |= ψ1Uψ2
=⇒ wi |= ψ1Wψ2
=⇒ ∀j . wi+j |= ψ1 ∨ ∃k ≤ j . wi+k |= ψ2
=⇒ ∀j . wi+j |= ψ1[X ]ν ∨ ∃k ≤ j . wi+k |= ψ2[X ]ν (I.H.)
=⇒ wi |= (ψ1[X ]ν )W(ψ2[X ]ν )

=⇒ wi |= (ψ1Uψ2)[X ]ν (φ ∈ X , Def. 5.5)

Case φ = ψ1 ∨ψ2: Let i ≥ 0 arbitrary and assumewi |= ψ1 ∨ψ2:

wi |= ψ1 ∨ψ2
=⇒ (wi |= ψ1) ∨ (wi |= ψ2)
=⇒ (wi |= ψ1[X ]ν ) ∨ (wi |= ψ2[X ]ν ) (I.H.)
=⇒ wi |= (ψ1 ∨ψ2)[X ]ν (Def. 5.5) □

5
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Lemma 5.8 suggests to decidew |=? φ by “trying out” all possible
sets X . Part (a2) shows that the strategy of checking for every set
X if both X ⊆ GFw andw |= φ[X ]ν hold is sound.

Example 5.9. Consider φ = GFa ∨ GF(b ∧ Gc). Since µ(φ) =
{Fa, F(b ∧ Gc)}, there are four possible X ’s to be tried out: ∅, {Fa},
{F(b ∧ Gc)}, and {Fa, F(b ∧ Gc)}. For X = ∅ we get φ[X ]ν = ff ,
indicating that if neither a nor b ∧ Gc hold infinitely often, then φ
cannot hold. For the other three possibilities (a holds infinitely often,
b ∧ Gc holds infinitely often, or both) there are words satisfying φ,
like aω , {b, c}ω , and {a,b, c}ω . △

However there are still two questions open. First, is this strategy
complete? Part (a3) shows that it is complete for µ-stable words:
Indeed, in this case there is a set X such that GFw = X = Fw , and
for this particular set w |= φ[X ]ν holds. For words that are not
µ-stable, we will use the existence of µ-stable suffixes: Instead of
checking w |= φ[X ]ν , we will check the existence of a suffix wi
such thatwi |= af(φ,w0i )[X ]ν . This will happen in Section 5.5. The
second open question is simply how to check X ⊆ GFw . We deal
with it in Section 5.4.

5.4 Checking X ⊆ GFw and Y ⊆ FGw .
Consider again the formula φ = GFa ∨ GF(b ∧ Gc) of Example
5.9. If X = {Fa}, then checking whether X is a correct advice (i.e.,
whether X ⊆ GFw holds) is easy, because GFFa ∈ GF(µLTL), see
Proposition 4.2. In contrast, forX = {F(b∧Gc)} this is not so. In this
case it would come handy if we had an advice Y = {Gc} promising
that Gc holds almost always, as is the case for e.g. ∅5({b, c}{c})ω .
Indeed, we could easily check correctness of this advice, because
FGGc ∈ FG(νLTL), and with its help checking GF(b ∧Gc) reduces
to checking GF(b ∧ tt) = GFb, which is also easy.

One of the main ingredients of our approach is that in order to
verify a promise X ⊆ GFw we can rely on a promise Y ⊆ FGw
about subformulas of X , and vice versa. There is no circularity in
this rely/guarantee reasoning because the subformula order is well
founded, and we eventually reach formulasψ such thatψ [X ]ν = ψ
orψ [Y ]µ = ψ . This argument is formalized in the next lemma. The
first part of the lemma states that mutually assuming correctness
of the other promise is correct. The second part states that, loosely
speaking, this rely/guarantee method is complete.

Lemma 5.10. Let φ be a formula and letw be a word.
(1.) For every X ⊆ µ(φ) and Y ⊆ ν (φ), if

∀ψ ∈ X . w |= GF(ψ [Y ]µ )
∀ψ ∈ Y . w |= FG(ψ [X ]ν )

then X ⊆ GFw and Y ⊆ FGw .
(2.) If X = GFw and Y = FGw then

∀ψ ∈ X . w |= GF(ψ [Y ]µ )
∀ψ ∈ Y . w |= FG(ψ [X ]ν )

Proof. (1.) Let X ⊆ µ(φ) and Y ⊆ ν (φ). Observe that X ∩Y = ∅. Let
n := |X ∪Y |. Letψ1, . . . ,ψn be an enumeration of X ∪Y compatible
with the subformula order, i.e., ifψi is a subformula ofψj , then i ≤ j .
Finally, let (X0,Y0), (X1,Y1), . . . , (Xn ,Yn ) be the unique sequence
of pairs satisfying:

• (X0,Y0) = (∅, ∅) and (Xn ,Yn ) = (X ,Y ).
• For every 0 < i ≤ n, if ψi ∈ X then Xi \ Xi−1 = {ψi } and
Yi = Yi−1, and ifψi ∈ Y , thenXi = Xi−1 andYi \Yi−1 = {ψi }.

We prove Xi ⊆ GFw and Yi ⊆ FGw for every 0 ≤ i ≤ n
by induction on i . For i = 0 the result follows immediately from
X0 = ∅ = Y0. For i > 0 we consider two cases:
Case 1:ψi ∈ Y , i.e., Xi = Xi−1 and Yi \ Yi−1 = {ψi }.

By induction hypothesis and Xi = Xi−1 we have Xi ⊆ GFw and
Yi−1 ⊆ FGw . We proveψi ∈ FGw , i.e.,w |= FGψi , in three steps.
Claim 1:ψi [X ]ν = ψi [Xi ]ν .
By the definition of the ·[·]ν mapping,ψi [X ]ν is completely deter-
mined by the µ-subformulas ofψi that belong toX . By the definition
of the sequence (X0,Y0), . . . , (Xn ,Yn ), a µ-subformula ofψi belongs
to X iff it belongs to Xi , and we are done.
Claim 2: Xi ⊆ GFwk for every k ≥ 0.
Follows immediately from Xi ⊆ GFw .
Proof of w |= FGψi . By the assumption of the lemma we have
w |= FG(ψi [X ]ν ), and so, by Claim 1, w |= FG(ψi [Xi ]ν ). So there
exists an index j such that w j+k |= ψi [Xi ]ν for every k ≥ 0. By
Claim 2 we further have Xi ⊆ GFw j+k for every j,k ≥ 0. So we
can apply part (a2) of Lemma 5.8 to Xi ,w j+k , andψi , which yields
w j+k |= ψi for every k ≥ 0. Sow |= FGψi .
Case 2:ψi ∈ X , i.e., Xi \ Xi−1 = {ψi } and Yi = Yi−1.
In this case Xi−1 ⊆ GFw and Yi ⊆ FGw . We proveψi ∈ GFw , i.e.,
w |= GFψi in three steps.
Claim 1:ψi [Y ]µ = ψi [Yi ]µ .
The claim is proved as in Case 1.
Claim 2: There is an j ≥ 0 such that Yi ⊆ Gwk for every k ≥ j.
Follows immediately from Yi ⊆ FGw .
Proof of w |= GFψi . By the assumption of the lemma we have
w |= GF(ψi [Y ]µ ). Let j be the index of Claim 2. By Claim 1 we have
w |= GF(ψi [Yi ]µ ), and so there exist infinitely many k ≥ j such
that wk |= ψi [Yi ]µ . By Claim 2 we further have Yi ⊆ Gwk . So we
can apply part (b2) of Lemma 5.8 to Yi , wk , and ψi , which yields
wk |= ψi for infinitely many k ≥ j. Sow |= GFψi .

(2.) Letψ ∈ GFw . We havew |= GFψ , and sowi |= ψ for infinitely
many i ≥ 0. Since FGwi = FGw for every i ≥ 0, part (b1) of
Lemma 5.8 can be applied to wi , FGwi , and ψ . This yields wi |=

ψ [FGw ]µ for infinitely many i ≥ 0 and thusw |= GF(ψ [FGw ]µ ).
Let ψ ∈ FGw . Since wi |= FGψ , there is an index j such that

w j+k |= ψ for every k ≥ 0. By Lemma 5.3 the index j can be
chosen so that it also satisfies GFw = Fw j+k = GFw j+k for every
k ≥ 0. So part (a1) of Lemma 5.8 can be applied to Fw j+k , w j+k ,
and ψ . This yields w j+k |= ψ [GFw ]ν for every k ≥ 0 and thus
w |= FG(ψ [GFw ]ν ). □

Example 5.11. Let φ = F(a ∧ G(b ∨ Fc)), X = {φ}, and Y =
{G(b ∨ Fc)}.

• The condition ∀ψ ∈ X . w |= GF(ψ [Y ]µ ) becomes

w |= GF
(
φ[Y ]µ

)
= GF(Fa) ≡ GFa

• The condition ∀ψ ∈ Y . w |= FG(ψ [X ]ν ) becomes

w |= FG (G(b ∨ Fc)[X ]ν ) = FG(Gb) ≡ FGb

By Lemma 5.10 (1) we then have that w |= GFa ∧ FGb implies
φ ∈ GFw and G(b ∨ Fc)) ∈ FGw . △

5.5 Putting the pieces together: The Master Theorem.
Putting together Lemma 5.8 and Lemma 5.10, we obtain the main
result of the paper, which we will use as “Master Theorem” for the
construction of automata.
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Theorem5.12 (Master Theorem). For every formulaφ and for every
wordw : w |= φ iff there exists X ⊆ µ(φ) and Y ⊆ ν (φ) satisfying

(1) ∃i . wi |= af(φ,w0i )[X ]ν

(2) ∀ψ ∈ X . w |= GF(ψ [Y ]µ )

(3) ∀ψ ∈ Y . w |= FG(ψ [X ]ν )

Observe that af(φ,w0i )[X ]ν , GF(ψ [Y ]µ ), and FG(ψ [X ]ν ) are for-
mulas of νLTL, GF(µLTL), and FG(νLTL), respectively, i.e., they all
belong to the fragments of Section 4.

Before proving the theorem, let us interpret it in informal terms.
The Master Theorem states that in order to decidew |=?φ we can
guess two sets X ⊆ µ(φ) and Y ⊆ ν (φ) and an index i , and then
proceed as follows: verifyY ⊆ FGw assuming thatX ⊆ GFw holds
(3), verify X ⊆ GFw assuming that Y ⊆ FGw holds (2), and verify
wi |= af(φ,w0i ) assuming that X ⊆ GFw holds (1). The procedure
is sound by Lemma 5.8 and Lemma 5.10, and complete because the
guess where X := GFw , Y := FGw , and i is a stabilization point of
w , is guaranteed to succeed.

Example 5.13. Let φ = F(a∧G(b∨Fc)) as in Example 5.11, and let
φ ′ = dUφ. For X = {φ,φ ′}, Y = {G(b ∨ Fc)}, and i = 0 the Master
Theorem yields thatw |= φ ′ is implied by

(1) w |= (dUφ)[X ]ν = dW(φ[X ]ν ) = dWtt ≡ tt,
(2) w |= GF(φ[Y ]µ ) ∧ GF(φ ′[Y ]µ ) = GFa ∧ GF(dU(Fa)), and
(3) w |= FG((G(b ∨ Fc)[X ]ν ) ≡ FGb.

For X = {φ}, Y = {G(b ∨ Fc)}, and i = 0, condition (1) is w |= ff ,
and we do not derive any useful information. △

Proof (of the Master Theorem).
(⇒): Assumew |= φ, and set X := GFw and Y := FGw . Properties
(2) and (3) follow from Lemma 5.10. For property (1), let i be an
index such that Fwi = GFwi ; this index exists by Lemma 5.3.
By Lemma 3.3 we have wi |= af(φ,w0i ), and by Lemma 5.8 (a1)
wi |= af(φ,w0i )[X ]ν .
(⇐): Assume that properties (1-3) hold for sets X ,Y and an index
i . By Lemma 5.10 (1.) we have X ⊆ GFw , and so X ⊆ GFwi . By
Lemma 5.8 (a2) we obtain wi |= af(φ,w0i )[X ]ν , and thus wi |=

af(φ,w0i ). Lemma 3.3 yieldsw |= φ. □

Let LjX ,Y be the language of all words that satisfy condition (j)
of the Master Theorem for the sets X and Y . The Master Theorem
can then be reformulated as:

L(φ) =
⋃

X ⊆µ(φ)
Y ⊆ν (φ)

L1X ,Y ∩ L2X ,Y ∩ L3X ,Y

Therefore, given an automata model effectively closed under union
and intersection, in order to construct automata for all of LTL it
suffices to exhibit automata recognizing L1X ,Y ,L

2
X ,Y ,L

3
X ,Y . In the

next section we consider the case of DRAs, and then we proceed to
NBAs and LDBAs.

6 Constructing DRAs for LTL Formulas
Let φ be a formula of length n. We use the Master Theorem to
construct a DRA for L(φ) with 22

O (n)
states and O(2n ) Rabin pairs.

Since our purpose is only to show that we can easily obtain au-
tomata of asymptotically optimal size, we give priority to a simpler
construction over one with the least number of states. We comment

in Section 9 on optimizations that reduce the size by using other
acceptance conditions.

We first construct DRAs for L1X ,Y , L
2
X ,Y , and L

3
X ,Y with 22

O (n)

states and one single Rabin pair. More precisely, for each of these
languages we construct either a DBA or a DCA. We then construct
a DRA for L(φ) by means of intersections and unions.

A DCA for L1X ,Y . We define a DCA Cφ,X that accepts a wordw iff
wi |= af(φ,w0i )[X ]ν for some suffixwi ofw . In the rest of this part
of the section we abbreviate af(φ,w0i ) to φi . Recall that φi [X ]ν is a
formula of νLTL, and so for every i ≥ 0 there is a DCA with a state
ff such that the automaton rejects iff it reaches this state. Intuitively,
if the automaton rejects, then it rejects “after finite time”. We prove
the following lemma:

Lemma 6.1. Let φi := af(φ,w0i ). Ifw |= φ[X ]ν thenwi |= φi [X ]ν
for all i > 0.

Proof. Assumew |= φ[X ]ν . It suffices to provew1 |= φ1[X ]ν , since
the general case follows immediately by induction. For i = 1 we
proceed by structural induction on φ, and consider only some rep-
resentative cases.
Case φ = a. Sincew |= a[X ]ν = a we have a ∈ w[0]. So φ1[X ]ν =

tt[X ]ν = tt, and thusw1 |= φ1[X ]ν .
Case φ = ψUχ . Since w |= φ[X ]ν we have φ[X ]ν , ff , and so
φ ∈ X . We have:

w |= φ[X ]ν
=⇒ w |= (ψ [X ]ν )W(χ [X ]ν ) (Def. 5.5)
=⇒ w |= (ψ [X ]ν ∧ X((ψ [X ]ν )W(χ [X ]ν ))) ∨ χ [X ]ν
=⇒ w |= (ψ [X ]ν ∧ X((ψUχ )[X ]ν )) ∨ χ [X ]ν (φ ∈ X )
=⇒ w1 |= (ψ1[X ]ν ∧ φ[X ]ν ) ∨ χ1[X ]ν (I.H.)
=⇒ w1 |= ((ψ1 ∧ (ψUχ )) ∨ χ1)[X ]ν (Def. 5.5)
=⇒ w1 |= φ1[X ]ν (Def. 3.1)

□

Loosely speaking, Cφ,X starts by checkingw |=? φ[X ]ν . For this it
maintains the formula (φ[X ]ν )i in its state. If the formula becomes
ff after, say, j steps, thenw ̸ |= φ[X ]ν , and Cφ,X proceeds to check
w |=? φ j [X ]ν . In order to “switch” to this new problem, Cφ,X needs
to know φ j , and so it maintains φ j it in its state. In other words,
after j steps Cφ,X is in state

(
φ j , af(φi [X ]ν ,wi j )

)
, where i ≤ j is the

number of steps after which Cφ,X switched to a new problem for
the last time. If the second component of the state becomes ff , then
the automaton uses the first component to determinewhich formula
to check next. The accepting condition states that the transitions
leading to a state of the form (ψ ,ff)must occur finitely often, which
implies that eventually one of the checksw |=? φ j [X ]ν succeeds.

The formal description of Cφ,X is as follows:

Cφ,X = (Reach(φ) × Reach(φ)[X ]ν ,δ , (φ,φ[X ]ν ),fin (F ))

where
• Reach(φ)[X ]ν =

⋃
ψ ∈Reach(φ) Reach(ψ [X ]ν )

• δ ((ξ , ζ ),ν ) =

{
(af(ξ ,ν ), af(ξ [X ]ν ,ν )) if ζ ≡P ff
(af(ξ ,ν ), af(ζ ,ν )) otherwise.

• F = Reach(φ) × {ff}

Since Reach(φ) has at most size 22
n
, the number of states of Cφ,X

is bounded by
(
22

n
)2
= 2O (2n ).
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Example 6.2. Let φ = G(aUb ∨ Fc), X = {aUb}, and φ[X ]ν =

G(aWb). Below we show a fragment of Cφ,X , with α , β,γ as in
Example 4.3.

φ, φ[X ]ν φ, ffφ ∧ (aUb ∨ Fc),
φ[X ]ν ∧ aWb

β
{c }

{a }
{a }

{c }

β

Forw = {c}{c}({a}{b})ω we have X = GFw ; the word is accepted.
Forw ′ = {c}ω we have X , GFw ′ , and the word is rejected. △

ADBA forL2X ,Y . Wedefine aDBA recognizingL
(∧

ψ ∈X GF(ψ [Y ]µ )
)
.

Observe that GF(ψ [Y ]µ ) ∈ GF(µLTL) for every ψ ∈ X , and that
ψ [Y ]µ has at most n subformulas. By Proposition 4.2, L(GF(ψ [Y ]µ )
is recognized by a DBA with at most 22

O (n)
states. Recall that the

intersection of the languages of k DBAs with s1, . . . , sk states is
recognized by a DBA with k ·

∏k
j=1 sj states. Since |X | ≤ n, the

intersection of the DBAs for the formulas GF(ψ [Y ]µ ) yields a DBA

with at most n ·

(
22

O (n)
)n
= 2n2

O (n)
= 22

O (n)
states.

ADCA for L3X ,Y (φ). TheDCA for L
(∧

ψ ∈Y FG(ψ [X ]ν

)
is obtained

dually to the previous case, applying FG(ψ [X ]ν ) ∈ FG(νLTL), and
Proposition 4.2.

A DRA for L(φ). By the Master Theorem we have:

L(φ) =
⋃

X ⊆µ(φ)
Y ⊆ν (φ)

L1X ,Y ∩ L2X ,Y ∩ L3X ,Y

We first construct a DRA AX ,Y for the intersection of LiX ,Y , where
i = 1, 2, 3. Let AiX ,Y be the DCA or DBA for LiX ,Y . The set of states
of AX ,Y is the cartesian product of the sets of states of the AiX ,Y ,
the transition function is as usual, and the accepting condition is

fin ((S1 ×Q2 ×Q3) ∪ (Q1 ×Q2 × S3)) ∧ inf (Q1 × S2 ×Q3)

where Qi is the set of states of AiX ,Y , and fin (S1), inf (S2), fin (S3)
are the accepting conditions of A1

X ,Y , A
2
X ,Y , and A

3
X ,Y .

We construct a DRA Aφ for L(φ). Since X ⊆ µ(φ) and Y ⊆

ν (φ), there are at most 2n pairs of sets X ,Y . Let A1, . . . ,Ak be an
enumeration of the DRAs for these pairs, where k ≤ 2n , and let
Qi and αi = fin (Ui ) ∧ inf (Vi ) be the set of states and accepting
condition ofAi , repectively. The set of states ofAφ isQ1 × · · · ×Qk ,
the transition function is as usual, and the accepting condition is∨k

i=1 fin (Q1 × · · · ×Qi−1 ×Ui ×Qi+1 × · · · ×Qk ) ∧

inf (Q1 × · · · ×Qi−1 ×Vi ×Qi+1 × · · · ×Qk )

So Aφ has
(
22

O (n)
)2n
= 22

O (n) ·2n = 22
O (n)

states and at most 2n

Rabin pairs.

7 Constructing NBAs for LTL Formulas
Assume that φ has length n. We use the Master Theorem to con-
struct a NBA for L(φ) with 2O (n) states.

We first describe how to construct NBAs for the LTL fragments
of Section 4. Let us start with some informal intuition. Consider

the formula φ = GX(a ∨ b). In the DRA for φ we find states for the
formulas φ and af(φ, ∅) and a transition

φ
∅

−→ af(φ, ∅)

where af(φ, ∅) ≡P φ ∧ (a ∨ b). The languages recognized from the
states φ and af(φ, ∅) are precisely L(φ) and L(af(φ, ∅)). The basic
principle for the construction of the NBAs is to put af(φ, ∅) in
disjunctive normal form (DNF)

φ ∧ (a ∨ b) ≡P (φ ∧ a) ∨ (φ ∧ b)

and instead of a single transition, have two transitions

φ
∅

−→ φ ∧ a and φ
∅

−→ φ ∧ b .

In other words, the nondeterminism is used to guess which of the
two disjuncts of the DNF is going to hold. Formally, we proceed as
follows:

Definition 7.1. We define dnf(φ) as the set of clauses obtained by
putting the propositional formula φ in DNF, i.e., φ ≡P

∨
ψ ∈dnf(φ)ψ .

Further let
Reach∨(φ) =

⋃
w ∈(2Ap )∗

af ∨(ψ ,w)

with af ∨(ψ , ϵ) = dnf(ψ ), af ∨(ψ ,ν ) = dnf(af(ψ ,ν )), and af ∨(ψ ,νw) =⋃
ψ ′∈af ∨(ψ ,ν ) af

∨(ψ ′,w) for every formulaψ , letter ν , and wordw .

Notice that dnf(ff) = ∅ and dnf(tt) = {tt}. Since the automata
defined below have sets of states of the form Reach∨(φ), they have
a state labeled by tt, but no state labeled by ff .

The proof of the next proposition follows immediately from the
definitions.

Proposition 7.2. Let φ ∈ µLTL.
• The following NBA over the alphabet 2Ap recognizes L(φ):

A
φ
µ = ( Reach∨(φ), af ∨, dnf(φ), inf (tt) )

• The following NBA over the alphabet 2Ap recognizes L(GFφ):

A
φ
GFµ = ( Reach∨(Fφ), af ∨Fφ , {Fφ}, inf (tt) )

af ∨Fφ (ψ ,ν ) =

{
{Fφ} ifψ ≡P tt
af ∨(ψ ,ν ) otherwise.

Let φ ∈ νLTL.
• The following NBA over the alphabet 2Ap recognizes L(φ):

A
φ
ν = ( Reach∨(φ), af ∨, dnf(φ), inf (Reach∨(φ)) )

• The following NBA over the alphabet 2Ap recognizes L(FGφ):

A
φ
FGν = ( Reach∨(Gφ) ∪ {FGφ}, af ∨Gφ , {FGφ}, inf (Reach

∨(Gφ)) )

af ∨Gφ (ψ ,ν ) =

{
{FGφ,Gφ} ifψ = FGφ
af ∨(ψ ,ν ) otherwise.

Recall that the elements of Reach(φ) are positive boolean com-
binations of proper subformulas of φ. It follows that the elements
of Reach∨(φ) are conjunctions of proper subformulas of φ. Since
the number of proper subformulas is bounded by the length of the
formula, we immediately obtain:

Proposition 7.3. If φ has n proper subformulas, then Reach∨(φ)
has at most 2n elements, and so all the NBAs of Proposition 7.2 have
at most 2n+1 + 1 = O(2n ) states.
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Example 7.4. Let φ = a ∧X(b ∨ Fc), the formula for which a DBA
was given in Example 4.3. The NBA A

φ
GFµ is shown below. The

figure uses the abbreviations of Example 4.3.

Fφ Fc

b

tt
α

2Ap

α

2Ap

γ

β

2Ap

Compared to the DBA of Example 4.3, the NBA has a simpler
structure, although in this case the same number of states. △

To define NBAs for arbitrary formulas we apply the Master
Theorem. This is routine, and so we only sketch the constructions.

A NBA for L1X ,Y . We define a NBA Cφ,X that accepts a word
w iff wi |= af(φ,w0i )[X ]ν for some suffix wi of w . Recall that
af(φ,w0i )[X ]ν ∈ νLTL for every i ≥ 0. The automaton consists
of two components with sets of states Q1 and Q2 given by

Q1 = {(ψ , 1) | ψ ∈ Reach∨(φ)} Q2 = {(ψ [X ]ν , 2) | ψ ∈ Reach∨(φ)}

Transitions either stay in the same component, or “jump” from the
first component to the second. Transitions that stay in the same
component are of the form (ψ , i)

ν
−→ (ψ ′, i) forψ ′ ∈ af ∨(ψ ,ν ) and

i = 1, 2. “Jumps” are transitions of the form (ψ , 1)
ϵ

−→ (ψ [X ]ν , 2).
Jumping amounts to nondeterministically guessing the suffix wi
satisfying af(φ,w0i )[X ]ν . The accepting condition is inf (Q2). Notice
that the state (ff, 2) does not have any successors.
Since Reach∨(φ) has at most 2n states, Cφ,X has 2O (n) states.

A NBA for L2X ,Y . As in the case of DRAs, we define a NBA recog-

nizing L
(∧

ψ ∈X GF(ψ [Y ]µ )
)
. To obtain an NBA with 2O (n) states

we use a well-known trick. Given a set {ψ1, . . . ,ψk } of formulas,
we have

k∧
i=1

GFψi ≡ GF(ψ1 ∧ F(ψ2 ∧ F(ψ3 ∧ . . . ∧ F(ψk−1 ∧ Fψk ) . . .))

The formula obtained after applying the trick belongs to GF(µLTL)
and has O(n) µ-subformulas. By Proposition 7.2.2 we can construct
a NBA for it with 2O (n) states.

A NBA for L3X ,Y . In this case we apply

k∧
i=1

FGψi ≡ FG

( k∧
i=1

ψi

)
and Proposition 7.2.4, yielding an automaton with 2O (n) states.

ANBA for L(φ). We proceed as in the case of DRAs, using the well-
known operations for union and intersection of NBAs. The NBA
Aφ is the union of at most 2n NBAs AX ,Y , each of them with 2O (n)

states. The difference with the DRA case is that, given NBAs with
n1, . . . ,nk states accepting languages L1, . . . ,Lk , we can construct
a NBA for

⋃k
i=1 Li with

∑k
i=1 ni states, instead of

∏k
i=1 ni states,

as was the case for DRAs. So Aφ has 2n · 2O (n) = 2O (n) states.

8 Constructing LDBAs for LTL Formulas
The translation of LTL into LDBA combines the translations into
DRA and NBA. Recall that the states of an LDBA are partitioned
into an initial component and a deterministic accepting component
containing all accepting states. While in the definition of a LDBA
the initial component can be nondeterministic, in our construction
we can easily make it deterministic: Every accepting run has ex-
actly one non-deterministic step. This makes the LDBA usable for
quantitative (and not only qualitative) probabilistic model checking,
as described in [35].

Lemma 6.1 shows that checking property (1) of Theorem 5.12
can be arbitrarily delayed, which allows us to slightly rephrase the
Master Theorem as follows:

Theorem 8.1. (Variant of the Master Theorem) For every formula
φ and for every wordw : w |= φ iff there exists X ⊆ µ(φ), Y ⊆ ν (φ),
and i ≥ 0 satisfying

(1′) wi |= af(φ,w0i )[X ]ν
(2′) ∀ψ ∈ X . wi |= GF(ψ [Y ]µ )
(3′) ∀ψ ∈ Y . wi |= G(ψ [X ]ν )

Proof. Clearly, the existence of an index i satisfying (1’-3’) implies
that conditions (1-3) hold. For the other direction, assume condi-
tions (1-3) hold. By Lemma 6.1 the index i of condition (1) can
be chosen arbitrarily large. Since w |=

∧
ψ ∈X FG(ψ [X ]ν ), we can

choose i so that it also satisfieswi |=
∧
ψ ∈X G(ψ [X ]ν ). □

The idea of the construction is to use the initial component to
keep track of af(φ,w0i )—that is, after reading a finite wordw0i the
initial component is in state af(φ,w0i )—and use the jump to the
accepting component to guess sets X and Y and the stabilization
point i . The jump leads to the initial state of the intersection of
three DBAs, which are in charge of checking (1′), (2′), and (3′).

Recall that af(φ,w0i ) ∈ Reach(φ) for every wordw and every i ≥
0. For everyψ ∈ Reach(φ) and for each pair of setsX ,Y we construct
a DBA Dψ ,X ,Y recognizing the intersection of the languages of
the formulas:

ψ [X ]ν
∧
ψ ∈X GF(ψ [Y ]µ )

∧
ψ ∈Y G(ψ [X ]ν )

These formulas belong to νLTL, GF(µLTL), and νLTL, respectively,
and so we can obtain DBAs for them following the recipes of Propo-
sition 4.2. As argued before, each of these DBAs have 22

O (n)
states,

and so we can also construct a DBA for their intersection with the
same upper bound. Summarizing, we obtain:

Initial component. The component is (Reach(φ), af, {φ}) and thus
the component has at most 22

n
states. Recall that this component

does not have accepting states.

Accepting component. The component is the disjoint union, for
everyψ ∈ Reach(φ), X ⊆ µ(φ), and Y ⊆ ν (φ), of the DBA Dψ ,X ,Y .
Since Reach(φ) has at most 22

n
formulas and there are at most 2n

pairs (X ,Y ), the component is the disjoint union of at most 22
n
· 2n

automata, each of then with 22
O (n)

states. Thus in total 22
O (n)

states.

A LDBA for L(φ). The LDBA is the disjoint union of the initial
and accepting components. The initial component is connected
to the accepting component by ϵ-transitions: For every formula
ψ ∈ Reach(φ) and for every two sets X ,Y , there is an ϵ-transition
from stateψ of the initial component to the initial state of Dψ ,X ,Y .

9
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The LDBA has 22
O (n)
+ 22

n
= 22

O (n)
states. Recall that the lower

bound for the blowup of a translation of LTL to LDBA is also doubly
exponential (see e.g. [35]).

9 Discussion
This paper builds upon our own work [13, 15, 19, 26, 27, 35]. In
particular, the notion of stabilization point of a word with respect
to a formula, and the idea of using oracle information that is sub-
sequently checked are already present there. The translations of
LTL to LDBAs of [23, 24] are based on similar ideas, also with
resemblance to obligation sets of [29, 30].

The essential novelty of this paper with respect to the previous
work is the introduction of the symmetric mappings ·[·]µ and ·[·]ν .
Applying them to an arbitrary formula φ yields a simpler formula,
but not in the sense one might expect. In particular, φ[Y ]µ may be
stronger than φ. For example, the information that, say, the formula
aWb does not hold infinitely often makes us check the stronger
formula aUb = (aWb)[∅]µ . However, exactly this point makes the
“µ-ν-alternation” work: The formulas φ[X ]ν and φ[Y ]µ are only
simpler in the sense of easier to translate. This is the reason why
operators W and M are present in the core syntax and the missing
piece since the symmetric solutions [26, 27], limited to fragments
based on the simpler operators F and G.

The Master Theorem can be applied beyond what is described
in this paper. In order to translate LTL into universal automata
we only need to normalize formulas into conjunctive normal form.
Furthermore one can obtain a double exponential translation into
deterministic parity automata adapting the approach described in
[14]. Another intriguing question is whether our translation into
NBA, which is very different from the ones described in the litera-
ture is of advantage in some application like runtime verification.

The target automata classes used in practice typically use an ac-
ceptance condition defined on transitions, instead of states. Further,
they use generalized acceptance conditions, be it Büchi or Rabin.
All our constructions can be restated effortlessly to yield automata
with transition-based acceptance, and if generalized acceptance
conditions are allowed then they become simpler and more suc-
cinct. The implementation used in our experiments actually uses
these two features, which is described in the appendix of [16].

To conclude, in our opinion this paper successfully finishes the
journey started in [26]. Via a single theorem it provides an arguably
elegant (unified, symmetric, syntax-independent, not overly com-
plex) and efficient (asymptotically optimal and practically relevant)
translation of LTL into your favourite ω-automata.
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