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Abstract
We study Milner’s encoding of the call-by-value λ-calculus into the
π -calculus. We show that, by tuning the encoding to two subcalculi
of the π -calculus (Internal π and Asynchronous Local π ), the equiv-
alence on λ-terms induced by the encoding coincides with Lassen’s
eager normal-form bisimilarity, extended to handle η-equality. As
behavioural equivalence in the π -calculus we consider contextual
equivalence and barbed congruence. We also extend the results to
preorders.

A crucial technical ingredient in the proofs is the recently-intro-
duced technique of unique solutions of equations, further developed
in this paper. In this respect, the paper also intends to be an extended
case study on the applicability and expressiveness of the technique.

Keywords pi-calculus, lambda-calculus, full abstraction, call-by-
value

Introduction
Milner’s work on functions as processes [17, 18], that shows how
the evaluation strategies of call-by-name λ-calculus and call-by-
value λ-calculus [1, 21] can be faithfully mimicked in the π -calculus,
is generally considered a landmark in Concurrency Theory, and
more generally in Programming Language Theory. The comparison
with the λ-calculus is a significant expressiveness test for the π -
calculus. More than that, it promotes the π -calculus to be a basis for
general-purpose programming languages in which communication
is the fundamental computing primitive. From the λ-calculus point
of view, the comparison provides the means to study λ-terms in
contexts other than purely sequential ones, and with the instru-
ments available to reason about processes. Further, Milner’s work,
and the works that followed it, have contributed to understanding
and developing the theory of the π -calculus.

More precisely, Milner shows the operational correspondence
between reductions in the λ-terms and in the encoding π -terms. He
then uses the correspondence to prove that the encodings are sound,
i.e., if the processes encoding two λ-terms are behaviourally equiv-
alent, then the source λ-terms are also behaviourally equivalent in
the λ-calculus. Milner also shows that the converse, completeness,
fails, intuitively because the encodings allow one to test the λ-terms
in all contexts of the π -calculus — more diverse than those of the
λ-calculus.

The main problem that Milner work left open is the character-
isation of the equivalence on λ-terms induced by the encoding,
whereby two λ-terms are equal if their encodings are behaviourally
equivalent π -calculus terms. The question is largely independent
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of the precise form of behavioural equivalence adopted in the π -
calculus because the encodings are deterministic (or at least conflu-
ent). In the paperwe consider contextual equivalence (that coincides
with may testing and trace equivalence) and barbed congruence
(that coincides with bisimilarity).

For the call-by-name λ-calculus, the answer was found shortly
later [24, 26]: the equality induced is the equality of Lévy-Longo
Trees [15], the lazy variant of Böhm Trees. It is actually also possible
to obtain Böhm Trees, by modifying the call-by-name encoding
so to allow also reductions underneath a λ-abstraction, and by
including divergence among the observables [29]. These results
show that, at least for call-by-name, the π -calculus encoding, while
not fully abstract for the contextual equivalence of the λ-calculus, is
in remarkable agreement with the theory of the λ-calculus: several
well-known models of the λ-calculus yield Lévy-Longo Trees or
Böhm Trees as their induced equivalence [4, 14, 15].

For call-by-value, in contrast, the problem of identifying the
equivalence induced by the encoding has remained open, for two
main reasons. First, tree structures in call-by-value are less studied
and less established than in call-by-name. Secondly, proving com-
pleteness of an encoding of λ into π requires sophisticated proof
techniques. For call-by-name, for instance, a central role is played
by bisimulation up-to contexts. For call-by-value, however, existing
proof techniques, including ‘up-to contexts’, appeared not to be
powerful enough.

In this paper we study the above open problem for call-by-value.
Our main result is that the equivalence induced on λ-terms by
their call-by-value encoding into the π -calculus is eager normal-
form bisimilarity [12, 13]. This is a tree structure for call-by-value,
proposed by Lassen as the call-by-value counterpart of Lévy-Longo
Trees. Precisely we obtain the variant that is insensitive to η-expan-
sion, called η-eager normal-form bisimilarity.

To obtain the results we have however tomake a few adjustments
to Milner’s encoding and/or specialise the target language of the
encoding. These adjustments have to do with the presence of free
outputs (outputs of known names) in the encoding. We show in
the paper that this brings problems when analysing λ-terms with
free variables: desirable call-by-value equalities fail. An example is
given by the law:

I (xV ) = xV (1)

where I is λz. z and V is a value. Two possible solutions are:

1. rule out the free outputs; this essentiallymeans transplanting
the encoding onto the Internal π -calculus [25], a version of
the π -calculus in which any name emitted in an output is
fresh;

2. control the use of capabilities in the π -calculus; for instance
taking Asynchronous Local π [16] as the target of the trans-
lation. (Controlling capabilities allows one to impose a di-
rectionality on names, which, under certain technical condi-
tions, may hide the identity of the emitted names.)

1

https://doi.org/10.1145/3209108.3209152


LICS ’18, July 9–12, 2018, Oxford, United Kingdom Adrien Durier, Daniel Hirschkoff, and Davide Sangiorgi

In the paper we consider both approaches, and show that in both
cases, the equivalence induced coincides with η-eager normal-form
bisimilarity.

In summary, there are two contributions in the paper:
1. Showing that Milner’s encoding fails to equate terms that

should be equal in call-by-value.
2. Rectifying the encoding, by considering different target cal-

culi, and investigating Milner’s problem in such a setting.
The rectification we make does not really change the essence of the
encoding – in one case, the encoding actually remains the same.
Moreover, the languages used are well-known dialects of the π -
calculus, studied in the literature for other reasons. In the encoding,
they allow us to avoid certain accidental misuses of the names
emitted in the communications. The calculi were not known at the
time of Milner’s paper [18].

A key role in the completeness proof is played by a technique
of unique solution of equations, recently proposed [7]. The struc-
ture induced by Milner’s call-by-value encoding was expected to
look like Lassen’s trees; however existing proof techniques did not
seem powerful enough to prove it. The unique solution technique
allows one to derive process bisimilarities from equations whose
infinite unfolding does not introduce divergences, by proving that
the processes are solutions of the same equations. The technique
can be generalised to possibly-infinite systems of equations, and
can be strengthened by allowing certain kinds of divergences in
equations. In this respect, another goal of the paper is to carry out
an extended case study on the applicability and expressiveness of
the techniques. Then, a by-product of the study are a few further
developments of the technique. In particular, one such result allows
us to transplant uniqueness of solutions from a system of equations,
for which divergences are easy to analyse, to another one. Another
result is about the application of the technique to preorders.

Finally, we consider preorders — thus referring to the preorder
on λ-terms induced by a behavioural preorder on their π -calculus
encodings. We introduce a preorder on Lassen’s trees (preorders
had not been considered by Lassen) and show that this is the pre-
order on λ-terms induced by the call-by-value encoding, when the
behavioural relation on π -calculus terms is the ordinary contextual
preorder (again, with the caveat of points (1) and (2) above). With
the move from equivalences to preorders, the overall structure of
the proofs of our full abstraction results remains the same. However,
the impact on the application of the unique-solution technique is
substantial, because the phrasing of this technique in the cases of
preorders and of equivalences is quite different.

Further related work. The standard behavioural equivalence in
the λ-calculus is contextual equivalence. Encodings into the π -
calculus (be it for call-by-name or call-by-value) break contextual
equivalence because π -calculus contexts are richer than those in the
(pure) λ-calculus. In the paper we try to understand how far beyond
contextual equivalence the discriminating power of the π -calculus
brings us, for call-by-value. The opposite approach is to restrict
the set of ’legal’ π -contexts so to remain faithful to contextual
equivalence. This approach has been followed, for call-by-name,
and using type systems, in [5, 31].

Open call-by-value has been studied in [3], where the focus is on
operational properties of λ-terms; behavioural equivalences are not
considered. An extensive presentation of call-by-value, including
denotational models, is Ronchi della Rocca and Paolini’s book [22].

In [7], the unique-solution technique is used in the completeness
proof for Milner’s call-by-name encoding. That proof essentially
revisits the proof of [26], which is based on bisimulation up-to
context. We have explained above that the case for call-by-value is
quite different.

Structure of the paper. We recall basic definitions about the call-
by-value λ-calculus and the π -calculus in Section 1. The technique
of unique solution of equations is introduced in Section 2, together
with some new developments. Section 3 presents our analysis of
Milner’s encoding, beginning with the shortcomings related to the
presence of free outputs. The first solution to these shortcomings
is to move to the Internal π -calculus: this is described in Section 4.
For the proof of completeness, in Section 4.2, we rely on unique
solution of equations; we also compare such technique with the ‘up-
to techniques’. The second solution is to move to the Asynchronous
Local π -calculus: this is discussed in Section 5.We show in Section 6
how our results can be adapted to preorders and to contextual
equivalence. Finally in Section 7 we highlight conclusions and
possible future work.

1 Background material
Throughout the paper, R ranges over relations. The composition of
two relations R and R ′ is written R R ′. We often use infix notation
for relations; thus P R Q means (P ,Q ) ∈ R. A tilde represents a
tuple. The i-th element of a tuple P̃ is referred to as Pi . Our notations
are extended to tuples componentwise. Thus P̃ R Q̃ means Pi R Qi
for all components.

1.1 The call-by-value λ-calculus
We let x and y range over the set of λ-calculus variables. The set Λ
of λ-terms is defined by the grammar

M := x | λx .M | M1M2 .
Free variables, closed terms, substitution, α-conversion etc. are de-
fined as usual [4, 8]. Here and in the rest of the paper (including
when reasoning about π processes), we adopt the usual “Baren-
dregt convention”. This will allow us to assume freshness of bound
variables and names whenever needed. The set of free variables
in the term M is fv(M ). We group brackets on the left; therefore
MNL is (MN )L. We abbreviate λx1. · · · . λxn .M as λx1 · · · xn .M , or
λx̃ .M if the length of x̃ is not important. Symbol Ω stands for the
always-divergent term (λx .xx ) (λx .xx ).

A context is a term with a hole [·], possibly occurring more than
once. If C is a context, C[M] is a shorthand for C where the hole
[·] is substituted by M . An evaluation context is a special kind of
context, with exactly one hole [·], and in which the inserted term
can immediately run. In the pure λ-calculus values are abstractions
and variables.

Evaluation contexts Ce := [·] | CeM | VCe
Values V := x | λx .M

In call-by-value, substitutions replace variables with values; we call
them value substitutions.

Eager reduction (or βv-reduction), −→ ⊆ Λ × Λ, is determined
by the rule:

Ce[(λx .M )V ] −→ Ce[M {V /x }] .

We write =⇒ for the reflexive transitive closure of −→. A term
in eager normal form is a term that has no eager reduction.

2



Eager Functions as Processes LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Proposition 1.1. 1. IfM −→ M ′, thenCe[M] −→ Ce[M ′] and
Mσ −→ M ′σ , for any value substitution σ .

2. Terms in eager normal form are either values or of the shape
Ce[xV ].

Therefore, given a termM , eitherM =⇒ M ′ whereM ′ is a term
in eager normal form, or there is an infinite reduction sequence
starting from M . In the first case, M has eager normal form M ′,
writtenM ⇓ M ′, in the secondM diverges, writtenM ⇑. We write
M ⇓ whenM ⇓ M ′ for someM ′.

Definition 1.2 (Contextual equivalence). Given M, N ∈ Λ, we
say thatM and N are contextually equivalent, writtenM ≃Λ

ct N , if
for any context C , we have C[M] ⇓ iff C[N ] ⇓.

1.2 Tree semantics for call-by-value
We recall eager normal-form bisimilarity [12, 13, 30].

Definition 1.3 (Eager normal-form bisimulation). A relation R
between λ-terms is an eager normal-form bisimulation if, whenever
M R N , one of the following holds:

1. bothM and N diverge;
2. M ⇓ Ce[xV ] and N ⇓ C ′e[xV ′] for some x , values V , V ′, and

evaluation contexts Ce and C ′e with V R V ′ and Ce[z] R
C ′e[z] for a fresh z;

3. M ⇓ λx .M ′ and N ⇓ λx .N ′ for some x , M ′, N ′ with M ′ R
N ′;

4. M ⇓ x and N ⇓ x for some x .
Eager normal-form bisimilarity, -, is the largest eager normal-form
bisimulation.

Essentially, the structure of a λ-term that is unveiled by Defini-
tion 1.3 is that of a (possibly infinite) tree obtained by repeatedly
applying βv-reduction, and branching a tree whenever instantiation
of a variable is needed to continue the reduction (clause (2)). We
call such trees Eager Trees (ETs) and accordingly also call eager
normal-form bisimilarity the Eager-Tree equality.

Example 1.4. Relation - is strictly finer than contextual equiv-
alence ≃Λ

ct: the inclusion - ⊆ ≃Λ
ct follows from the congruence

properties of - [12]; for the strictness, examples are the following
equalities, that hold for ≃Λ

ct but not for -:

Ω = (λy.Ω) (xV ) xV = (λy.xV ) (xV ) .

Example 1.5 (η rule). The η-rule is not valid for -. For instance,
we have Ω ̸- λx .Ωx . The rule is not even valid on values, as we also
have λy.xy ̸- x . It holds however for abstractions: λy. (λx .M )y -
λx .M when y < fv(M ).

The failure of the η-rule λy.xy ̸- x is troublesome as, under any
closed value substitution, the two terms are indeed eager normal-
form bisimilar (as well as contextually equivalent). Thus η-eager
normal-form bisimilarity [12] takes η-expansion into account so to
recover such missing equalities.

Definition 1.6 (η-eager normal-form bisimulation). A relation R
between λ-terms is an η-eager normal-form bisimulation if, when-
everM R N , either one of the clauses of Definition 1.3, or one of
the two following additional clauses, hold:

5. M ⇓ x and N ⇓ λy.N ′ for some x , y, and N ′ such that
N ′ ⇓ Ce[xV ], with y R V and z R Ce[z] for some value V ,
evaluation context Ce, and fresh z.

6. the converse of (5), i.e., N ⇓ x andM ⇓ λy.M ′ for some x , y,
and M ′ such that M ′ ⇓ Ce[xV ], with V R y and Ce[z] R z
for some value V , evaluation context Ce, and fresh z.

Then η-eager normal-form bisimilarity, -η , is the largest η-eager
normal-form bisimulation.

We sometimes call relation -η the η-Eager-Tree equality.

Remark 1.7. Definition 1.6 coinductively allows η-expansions to
occur underneath other η-expansions, hence trees with infinite η-
expansions may be equated with finite trees. For instance,

x -η λy.xy -η λy.x (λz.yz) -η λy.x (λz.y (λw . zw )) -η . . .

A concrete example is given by taking a fixpoint Y , and setting

f
def
= (λzxy.x (zy)). We then have Y f x =⇒ λy.x (Y f y), and then

x (Y f y) =⇒ x (λz.y (Y f z)), and so on. Hence, we have x -η Y f x .

1.3 The π -calculus, Iπ and ALπ
In all encodings we consider, the encoding of a λ-term is parametric
on a name, i.e., it is a function from names to π -calculus processes.
We also need parametric processes (over one or several names) for
writing recursive process definitions and equations. We call such
parametric processes abstractions. The actual instantiation of the
parameters of an abstraction F is done via the application construct
F ⟨ã⟩. We use P ,Q for processes, F for abstractions. Processes and
abstractions form the set of π -agents (or simply agents), ranged
over by A. Small letters a,b, . . . ,x ,y, . . . range over the infinite set
of names. The grammar of the π -calculus is thus:

A := P | F (agents)

P := 0 | a(b̃). P | a⟨b̃⟩. P | νa P (processes)
| P1 | P2 | !a(b̃). P | F ⟨ã⟩

F := (ã) P | K (abstractions)

In prefixes a(b̃) and a⟨b̃⟩, we call a the subject and b̃ the object.
When the tilde is empty, the surrounding brackets in prefixes will
be omitted. We often abbreviate νaνb P as (νa,b)P . An input prefix
a(b̃). P , a restriction νb P , and an abstraction (b̃) P are binders for
names b̃ and b, respectively, and give rise in the expected way to
the definition of free names (fn) and bound names (bn) of a term
or a prefix, and α-conversion. An agent is name-closed if it does
not contain free names. As in the λ-calculus, following the usual
Barendregt convention we identify processes or actions which only
differ on the choice of the bound names. The symbol = will mean
“syntactic identity modulo α-conversion”. Sometimes, we use def

=

as abbreviation mechanism, to assign a name to an expression to
which we want to refer later.

We use constants, ranged over by K for writing recursive defini-
tions. Each constant has a defining equation of the form K

△
= (x̃ ) P ,

where (x̃ ) P is name-closed; x̃ are the formal parameters of the
constant (replaced by the actual parameters whenever the constant
is used).

Since the calculus is polyadic, we assume a sorting system [19]
to avoid disagreements in the arities of the tuples of names carried
by a given name and in applications of abstractions. We will not
present the sorting system because it is not essential. The reader
should take for granted that all agents described obey a sorting.
A context C of π is a π -agent in which some subterms have been
replaced by the hole [·] or, if the context is polyadic, with indexed
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holes [·]1, . . . , [·]n ; then C[A] or C[Ã] is the agent resulting from
replacing the holes with the terms A or Ã.

We omit the operators of sum and matching (not needed in the
encodings). We refer to [19] for detailed discussions on the oper-
ators of the language. We assign parallel composition the lowest
precedence among the operators.

Operational semantics. The operational semantics of the π -calcu-
lus is standard [28] (including the labelled transition system). The
reference behavioural equivalence for π -calculi will be the usual
barbed congruence. We recall its definition, on a generic subset L of
π -calculus processes. A L-context is a process of L with a single
hole [·] in it (the hole has a sort too, as it could be in place of
an abstraction). We write P ⇓a if P can make an output action
whose subject is a, possibly after some internal moves. (We make
only output observable because this is standard in asynchronous
calculi; adding also observability of inputs does not affect barbed
congruence on the synchronous calculi we will consider.)

Definition 1.8 (Barbed congruence). Barbed bisimilarity is the
largest symmetric relation ≃· on π -calculus processes such that
P ≃· Q implies:

1. If P =⇒ P ′ then there isQ ′ such thatQ =⇒ Q ′ and P ′ ≃· Q ′.
2. P ⇓a iff Q ⇓a .

Let L be a set of π -calculus agents, and A,B ∈ L. We say that
A and B are barbed congruent in L, written A ≃L B, if for each
(well-sorted) L-context C , it holds that C[A] ≃· C[B].

Remark 1.9. Barbed congruence has been uniformly defined on
processes and abstractions (via a quantification on all process contexts).
Usually, however, definitions will only be given for processes; it is then
intended that they are extended to abstractions by requiring closure
under ground parameters, i.e., by supplying fresh names as arguments.

As for all contextually-defined behavioural relations, so barbed
congruence is hard to work with. In all calculi we consider, it can
be characterised in terms of ground bisimilarity, under the (mild)
condition that the processes are image-finite up to ≈. (We recall
that the class of processes image-finite up to ≈ is the largest subset
IF of π -calculus processes which is derivation closed and such
that P ∈ IF implies that, for all actions µ, the set {P ′ | P

µ
==⇒ P ′}

quotiented by ≈ is finite. The definition is extended to abstractions
as by Remark 1.9.) All the agents in the paper, including those
obtained by encodings of the λ-calculus, are image-finite up to ≈.
The distinctive feature of ground bisimilarity is that it does not
involve instantiation of the bound names of inputs (other than
by means of fresh names), and similarly for abstractions. In the
remainder, we omit the adjective ‘ground’.

Definition 1.10 (Bisimilarity). A symmetric relation R on π -pro-
cesses is a bisimulation, if whenever P RQ and P

µ
−−→ P ′, then

Q
µ̂
==⇒ Q ′ for some Q ′ with P ′ RQ ′.
Processes P andQ are bisimilar, written P ≈ Q , if P RQ for some

bisimulation R.

We will use two subcalculi: the Internal π -calculus (Iπ ), and the
Asynchronous Local π -calculus (ALπ ), obtained by placing certain
constraints on prefixes.

Iπ . In Iπ , all outputs are bound. This is syntactically enforced by
replacing the output construct with the bound-output construct
a(b̃). P , which, with respect to the grammar of the ordinary π -
calculus, is an abbreviation forνb̃a⟨b̃⟩. P . In all tuples (input, output,
abstractions, applications) the components are pairwise distinct
so to make sure that distinctions among names are preserved by
reduction.

ALπ . ALπ is defined by enforcing that in an input a(b̃). P , all names
in b̃ appear only in output position in P . Moreover, ALπ being
asynchronous, output prefixes have no continuation; in the grammar
of the π -calculus this corresponds to having only outputs of the
form a⟨b̃⟩. 0 (which we will simply write a⟨b̃⟩). In ALπ , to maintain
the characterisation of barbed congruence as (ground) bisimilarity,
the transition system has to be modified [16], allowing the dynamic
introduction of additional processes (the ‘links’, sometimes also
called forwarders).

Theorem 1.11. 1. In Iπ , on agents that are image-finite up to ≈,
barbed congruence and bisimilarity coincide.

2. In ALπ , on agents that are image-finite up to ≈ and where no
free name is used in input, barbed congruence and bisimilarity
coincide.

All encodings of the λ-calculus (into Iπ and ALπ ) in the paper
satisfy the conditions of Theorem 1.11. Thus we will be able to
use bisimilarity as a proof technique for barbed congruence. (In
part (2) of the theorem, the condition on inputs can be removed
by adopting an asynchronous variant of bisimilarity; however, the
synchronous version is easier to use in our proofs based on unique
solution of equations).

2 Unique solutions in Iπ and ALπ
We adapt the proof technique of unique solution of equations,
from [7] to the calculi Iπ and ALπ , in order to derive bisimilarity
results. The technique is discussed in [7] on the asynchronous π -
calculus (for possibly-infinite systems of equations). The structure
of the proofs for Iπ and ALπ is similar; in particular the complete-
ness part is essentially the same because bisimilarity is the same.
The differences in the syntax of Iπ , and in the transition system
of ALπ , show up only in certain technical details of the soundness
proofs.

We need variables to write equations. We use capital letters
X ,Y ,Z for these variables and call them equation variables. The
body of an equation is a name-closed abstraction possibly contain-
ing equation variables (that is, applications can also be of the form
X ⟨ã⟩). We use E to range over such expressions; and E to range
over systems of equations, defined as follows. In the definitions
below, the indexing set I can be infinite.

Definition 2.1. Assume that, for each i of a countable indexing set
I , we have a variable Xi , and an expression Ei , possibly containing
some variables. Then {Xi = Ei }i ∈I (sometimes written X̃ = Ẽ) is a
system of equations. (There is one equation for each variable Xi ; we
sometimes use Xi to refer to that equation.)

A system of equations is guarded if each occurrence of a variable
in the body of an equation is underneath a prefix.

E[F̃ ] is the abstraction resulting from E by replacing each vari-
able Xi with the abstraction Fi (as usual assuming F̃ and X̃ have
the same sort).
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Definition 2.2. Suppose {Xi = Ei }i ∈I is a system of equations.
We say that:
• F̃ is a solution of the system of equations for ≈ if for each i it
holds that Fi ≈ Ei [F̃ ].
• The system has a unique solution for ≈ if whenever F̃ and G̃
are both solutions for ≈, we have F̃ ≈ G̃.

Definition 2.3 (Syntactic solutions). The syntactic solutions of the
system of equations X̃ = Ẽ are the recursively defined constants
KẼ,i

△
= Ei [K̃Ẽ ], for each i ∈ I , where I is the indexing set of the

system.

The syntactic solutions of a system of equations are indeed
solutions of it.

A process P diverges if it can perform an infinite sequence of in-
ternal moves, possibly after some visible ones (i.e., actions different
from τ ); formally, there are processes Pi , i ≥ 0, and some n, such
that P = P0

µ0
−−→ P1

µ1
−−→ P2

µ2
−−→ . . . and for all i > n, µi = τ . We

call a divergence of P the sequence of transitions
(
Pi

µi
−−→ Pi+1

)
i
.

In the case of an abstraction, F has a divergence if the process F ⟨ã⟩
has a divergence, where ã are fresh names. A tuple of agents Ã is
divergence-free if none of the components Ai has a divergence.

The following result is the technique we rely on to establish
completeness of the encoding. As announced above, it holds in
both Iπ and ALπ .

Theorem 2.4. In Iπ and ALπ , a guarded system of equations with
divergence-free syntactic solutions has unique solution for ≈.

Techniques for ensuring termination, hence divergence freedom,
for the π -calculus have been studied in, e.g., [6, 27, 32].

2.1 Further Developments
We present some further developments to the theory of unique
solution of equations, that are needed for the results in this paper.
The first result allows us to derive the unique-solution property for
a system of equations from the analogous property of an extended
system.

Definition 2.5. A system of equations E ′ extends system E if
there exists a fixed set of indices J such that any solution of E can
be obtained from a solution of E ′ by removing the components
corresponding to indices in J .

Theorem 2.6. Consider two systems of equations E ′ and E where
E ′ extends E. If E ′ has a unique solution, then the property also holds
for E.

We shall use Theorem 2.6 in Section 4.2, in a situation where we
transform a certain system into another one, whose uniqueness of
solutions is easier to establish.

Remark 2.7. We cannot derive Theorem 2.6 by comparing the syn-
tactic solutions of the two systems E ′ and E. For instance, the equa-
tions X = τ .X and X = τ .τ .τ . . . have (strongly) bisimilar syntactic
solutions, yet only the latter equation has the unique-solution prop-
erty. (Further, Theorem 2.6 allows us to compare systems of different
size.)

The second development is a generalisation of Theorem 2.4 to
preorders; we postpone its presentation to Section 6.

3 Milner’s encodings
3.1 Background
Milner noticed [17, 18] that his call-by-value encoding can be easily
tuned so to mimic forms of evaluation in which, in an application
MN , the functionM is run first, or the argument N is run first, or
function and argument are run in parallel (the proofs are actually
carried out for this last option). We chose here the first one, because
it is more in line with ordinary call-by-value. A discussion on the
‘parallel’ call-by-value is deferred to Section 7.

The core of any encoding of the λ-calculus into a process calculus
is the translation of function application. This becomes a particular
form of parallel combination of two processes, the function and its
argument; βv-reduction is then modeled as process interaction.

The encoding of a λ-term is parametric over a name; this may
be thought of as the location of that term, or as its continuation.
A term that becomes a value signals so at its continuation name
and, in doing so, it grants access to the body of the value. Such
body is replicated, so that the value may be copied several times.
When the value is a function, its body can receive two names: (the
access to) its value-argument, and the following continuation. In
the translation of application, first the function is run, then the
argument; finally the function is informed of its argument and
continuation.

In the original paper [17], Milner presented two candidates for
the encoding of call-by-value λ-calculus [21]. They follow the same
idea of translation, but with a technical difference in the rule for
variables. One encoding,V , is so defined:

V[[λx .M]] def
= (p) p (y). !y (x ,q).V[[M]]⟨q⟩

V[[MN ]] def
=

(p) (νq ) (V[[M]]⟨q⟩ | q(y).νr (V[[N ]]⟨r ⟩ | r (w ).y⟨w,p⟩))

V[[x]] def
= (p) p⟨x⟩

In the other encoding,V ′, application and λ-abstraction are treated
as inV ; the rule for variables is:

V ′[[x]] def
= (p) p (y). !y (z,q).x⟨z,q⟩ .

The encoding V is more efficient than V ′, as it uses fewer
communications.

3.2 Some problems with the encoding
The immediate free output in the encoding of variables inV breaks
the validity of βv-reduction; i.e., there exist a termM and a value
V such thatV[[(λx .M )V ]] ̸≈ V[[M {V/x }]] [23]. The encodingV ′
fixes this by communicating, instead of a free name, a fresh pointer
to that name. Technically, the initial free output of x is replaced by
a bound output coupled with a link to x (the process !y (z,q).x⟨z,q⟩,
receiving at y and re-emitting at x). Thus βv-reduction is vali-
dated [23]. (The final version of Milner’s paper [18], was written
after the results in [23] were known and presents only the encoding
V ′.)

Nevertheless,V ′ only delays the free output, as the added link
contains itself a free output. As a consequence, we can show that
other desirable equalities of call-by-value are broken. An example
is law (1) from the Introduction, as stated by Proposition 3.1 below.
This law is desirable (and indeed valid for contextual equivalence,
or the Eager-Tree equality) intuitively because, in any substitution
closure of the law, either both terms diverge, or they converge
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I[[λx .M]] def
= (p) p (y). !y (x ,q).I[[M]]⟨q⟩

I[[x]] def
= (p) p (y).y ▷ x

I[[MN ]] def
= (p) νq

(
I[[M]]⟨q⟩ | q(y).νr

(
I[[N ]]⟨r ⟩ |

r (w ).y (w ′,p′). (w ′ ▷w | p′ ▷ p)
))

Figure 1. The encoding into Iπ

to the same value. The same argument holds for their λ-closures,
λx .xV and λx . I (xV ). We recall that ≃π is barbed congruence in
the π -calculus.

Proposition 3.1. For any value V , we have:

V ′[[I (xV )]] ;π V ′[[xV ]] andV[[I (xV )]] ;π V[[xV ]] .

(The law is violated also under coarser equivalences, such as
contextual equivalence.) Technically, the reason why the law fails
in π can be illustrated when V = y, for encodingV . We have:

V[[xy]]⟨p⟩ ≃π x (v ).νw (v⟨w,p⟩ | !w (u).y⟨u⟩)

V[[I (xy)]]⟨p⟩ ≃π x (v ). (νw,q) (v⟨w,q⟩ | !w (u).y⟨u⟩

| q(z).p (z′). !z′(w ′). z⟨w ′⟩)

In presence of the normal form xy, the identity I becomes observ-
able. Indeed, in the second term, a fresh name, q, is sent instead
of continuation p, and a link between q and p is installed. This
corresponds to a law which is valid in ALπ , but not in π .

This problem can be avoided by iterating the transformation
that takes us fromV toV ′ (i.e., the replacement of a free output
with a bound output so to avoid all emissions of free names). Thus
the target language becomes Internal π ; the resulting encoding is
analysed in Section 4.

Another solution is to control the use of name capabilities in
processes. In this case the target language becomes ALπ , and we
need not modify the initial encodingV . This situation is analysed
in Section 5.

Moreover, in both solutions, the use of link processes validates
the following law — a form of η-expansion — (the law fails for
Milner’s encoding into the π -calculus):

λy.xy = x

In the call-by-value λ-calculus this is a useful law (that holds be-
cause substitutions replace variables with values).

4 Encoding in the Internal π -calculus
4.1 Encoding and soundness
Figure 1 presents the encoding into Iπ , derived fromMilner’s encod-
ing by removing the free outputs as explained in Section 3. Process
a ▷ b represents a link (sometimes called forwarder; for readabil-
ity we have adopted the infix notation a ▷ b for the constant ▷).
It transforms all outputs at a into outputs at b (therefore a,b are
names of the same sort). Thus the body of a ▷b is replicated, unless
a and b are continuation names (names such as p,q, r over which
the encoding of a term is abstracted). The definition of the constant

▷ therefore is:

▷
△
=




(p,q) p (x ).q(y).y ▷ x
if p,q are continuation names

(x ,y) !x (p, z).y (q,w ). (q ▷ p | w ▷ z)
otherwise

(The distinction between continuation names and the other sorts
of names is not necessary, but simplifies the proofs.)

The encoding validates βv-reduction.

Lemma4.1 (Validity of βv-reduction). For anyM,N inΛ,M −→ N
implies I[[M]] ≈ I[[N ]].

The structure of the proof of soundness of the encoding is sim-
ilar to that for the analogous property for Milner’s call-by-name
encoding with respect to Levy-Longo Trees [26]. The details are
however different, as in call-by-value both the encoding and the
trees (the Eager Trees extended to handle η-expansion) are more
complex.

We first need to establish an operational correspondence for the
encoding. For this we make use of an optimised encoding, obtained
from the one in Figure 1 by performing a few (deterministic) reduc-
tions, at the price of a more complex definition. Precisely, in the
encoding of application, we remove some of the initial communica-
tions, including those with which a term signals that it has become
a value. Correctness of the optimisations is established by algebraic
reasoning.

Using the operational correspondence, we then show that the
observables for bisimilarity in the encoding π -terms imply the
observables for η-eager normal-form bisimilarity in the encoded
λ-terms. The delicate cases are those in which a branch in the tree
of the terms is produced — case (2) of Definition 1.3 — and where an
η-expansion occurs — thus a variable is equivalent to an abstraction,
cases (5) and (6) of Definition 1.6.

For the branching, we exploit a decomposition property on π -
terms, roughly allowing us to derive from the bisimilarity of two
parallel compositions the componentwise bisimilarity of the single
components. For the η-expansion, if I[[x]] ≈ I[[λz.M]], where
M ⇓ Ce[xV ], we use a coinductive argument to derive V -η z and
Ce[y] -η y, for y fresh; from this we then obtain λz.M -η x .

Lemma 4.2 (Soundness). For any M,N ∈ Λ, if I[[M]] ≈ I[[N ]]
thenM -η N .

4.2 Completeness and Full Abstraction
To ease the reader into the proof, we first show the completeness
for -, rather than -η .

The system of equations. Suppose R is an eager normal-form
bisimulation. We define a (possibly infinite) system of equations
ER , solutions of which will be obtained from the encodings of the
pairs in R . We then use Theorem 2.4 and Theorem 2.6 to show that
ER has a unique solution.

We assume an ordering on names and variables, so to be able to
view (finite) sets of these as tuples. Moreover, if F is an abstraction,
say (ã) P , then (ỹ) F is an abbreviation for its uncurrying (ỹ, ã) P .

There is one equation XM,N = EM,N for each pair (M,N ) ∈ R.
The body EM,N is essentially the encoding of the eager normal form
ofM and N , with the variables of the equations representing the
coinductive hypothesis. To formalise this, we extend the encoding
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of the λ-calculus to equation variables by setting

I[[XM,N ]] def
= (p) XM,N ⟨ỹ,p⟩ where ỹ = fv(M,N ) .

We now describe the equation XM,N = EM,N , for (M,N ) ∈ R.
The equation is parametrised on the free variables ofM and N (to
ensure that the body EM,N is a name-closed abstraction) and an
additional continuation name (as all encodings of terms). Below
ỹ = fv(M,N ).

1. IfM ⇓ x and N ⇓ x , then the equation is the encoding of x :

XM,N = (ỹ) I[[x]]

= (ỹ,p) p (z). z ▷ x

2. IfM ⇑ and N ⇑, then the equation uses a purely-divergent
term; we choose the encoding of Ω:

XM,N = (ỹ) I[[Ω]]

3. If M ⇓ λx .M ′ and N ⇓ λx .N ′, then the equation encodes
an abstraction whose body refers to the normal forms of
M ′,N ′, via the variable XM ′,N ′ :

XM,N = (ỹ) I[[λx .XM ′,N ′]]
= (ỹ,p) p (z). !z (x ,q).XM ′,N ′⟨ỹ

′,q⟩

4. IfM ⇓ Ce[xV ] and N ⇓ C ′e[xV ′], we separate the evaluation
contexts and the values, as in Definition 1.3. In the body of
the equation, this is achieved by: (i ) rewriting Ce[xV ] into
(λz.Ce[z]) (xV ), for some fresh z, and similarly forC ′e andV ′
(such a transformation is valid for -); and (ii ) referring to
the variable for the evaluation contexts, XCe[z],C ′e[z], and to
the variable for the values, XV ,V ′ . This yields the equation
(for z fresh):

XM,N = (ỹ) I[[(λz.XCe[z],C ′e[z]) (x XV ,V ′ )]]

As an example, suppose (I , λx .M ) ∈ R, where I = λx .x and
M = (λzy. z)xx ′. The free variables of M are x and x ′. We obtain
the following equations:

1. XI,λx .M = (x ′) I[[λx .Xx,M ]]

= (x ′,p) p (y). !y (x ,q).Xx,M ⟨x ,x
′,q⟩

2. Xx,M = (x ,x ′) I[[x]]

= (x ,x ′,p) p (y).y ▷ x

Solutions of ER . Having set the system of equations for R, we
now define solutions for it from the encoding of the pairs in R.

We can view the relation R as an ordered sequence of pairs (e.g.,
assuming some lexicographical ordering). Then Ri indicates the
tuple obtained by projecting the pairs in R onto the i-th compo-
nent (i = 1, 2). Moreover (Mj ,Nj ) is the j-th pair in R, and ỹj is
fv(Mj ,Nj ).

We write Ic[[R1]] for the closed abstractions resulting from the
encoding of R1, i.e., the tuple whose j-th component is (ỹj ) I[[Mj ]],
and similarly for Ic[[R2]].

Lemma 4.3. Ic[[R1]]and Ic[[R2]]are solutions of ER .

Proof. We show that each component of Ic[[R1]] is solution of
the corresponding equation, i.e., for the j-th component we show
(ỹj ) I[[Mj ]] ≈ EMj ,Nj [I

c[[R1]]].
We reason by cases over the shape of the eager normal form of

Mj ,Nj . The most interesting case is whenMj ⇓ Ce[xV ], in which

case we use the following equality (for z fresh), which is proved
using algebraic reasoning:

I[[(λz.Ce[z]) (xV )]] ≈ I[[Ce[xV ]]] . (2)

We also exploit the validity of βv for ≈ (Lemma 4.1). 2

Unique solution for ER . Weuse Theorem 2.6 to prove uniqueness
of solutions for ER . The only delicate requirement is the one on
divergence for the syntactic solution. We introduce for this an
auxiliary system of equations, E ′

R
, that extends ER , and whose

syntactic solutions have no τ -transition and hence trivially satisfy
the requirement. Like the original system ER , so the new one E ′

R
is

defined by inspection of the pairs in R; in E ′
R
, however, a pair of R

may sometimes yield more than one equation. Thus, let (M,N ) ∈ R
with ỹ = fv(M,N ).

1. WhenM ⇑ and N ⇑, the equation is

XM,N = (ỹ,p) 0 .

2. When M ⇓ V and N ⇓ V ′, we introduce a new equation
variable XVV ,V ′ and a new equation; this will allow us, in
the following step (3), to perform some optimisations. The
equation is

XM,N = (ỹ,p) p (z).XVV ,V ′⟨z, ỹ
′⟩ ,

and we have, accordingly, the two following additional equa-
tions corresponding to the cases where values are functions
or variables:

XVλx .M ′,λx .N ′ = (z, ỹ) !z (x ,q).XM ′,N ′⟨ỹ
′,q⟩

XVx,x = (z,x ) z ▷ x

3. When M ⇓ Ce[xV ] and N ⇓ Ce[xV ′], we refer to XVV ,V ′ ,
instead of XV ,V ′ , so to remove all initial reductions in the
corresponding equation for ER . The first action thus be-
comes an output:

XM,N =

(ỹ,p) x (z,q). (XVV ,V ′⟨z, ỹ
′⟩ | q(w ).XCe[w],C ′e[w]⟨ỹ

′′,p⟩)

Lemmas 4.4 and 4.5 are needed to apply Theorem 2.6. (In the
statement of Lemma 4.4, ‘extend’ is as by Definition 2.5.)

Lemma 4.4. The system of equations E ′
R

extends the system of
equations ER .

Proof. The new system E ′
R
is obtained from ER by modifying the

equations and adding new ones. Ones shows that the solutions to
the common equations are the same, using algebraic reasoning. 2

Lemma 4.5. E ′
R
has a unique solution.

Proof. Divergence-freedom for the syntactic solutions of E ′
R
holds

because in the equations each name (bound or free) can appear
either only in inputs or only in outputs. As a consequence, since
the labelled transition system is ground (names are only replaced
by fresh ones), no τ -transition can ever be performed, after any
number of visible actions. Further, E ′

R
is guarded. Hence we can

apply Theorem 2.4. 2

Lemma 4.6 (Completeness for -). M - N implies I[[M]] ≈
I[[N ]], for anyM,N ∈ Λ.
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Proof. Consider an eager normal-form bisimulation R , and the cor-
responding systems of equations ER and E ′

R
. Lemmas 4.5 and 4.4

allow us to apply Theorem 2.6 and deduce that ER has a unique
solution. By Lemma 4.3, Ic[[R1]] and Ic[[R2]] are solutions of ER .
Thus, from M R N , we deduce (ỹ) I[[M]] ≈ (ỹ) I[[N ]], where
ỹ = fv(M,N ). Hence also I[[M]] ≈ I[[N ]].

2

Completeness for -η . The proof for - is extended to -η , main-
taining its structure. We highlight the main differences.

We enrich ER with the equations corresponding to the two
additional clauses of -η (Definition 1.6). When M ⇓ x and N ⇓
λz.N ′, where N ′ -η xz, we proceed as in case 4 of the definition
of ER , given that N -η λz. ((λw .Ce[w]) (xV )); the equation is:

XM,N = (ỹ) I[[λz.
(
(λw .Xw,Ce[w]) (x Xz,V )

)
]] .

We proceed likewise for the symmetric case.
In the optimised equations that we use to derive unique solu-

tions, we add the following equation (relating values), as well as its
symmetric counterpart:

XVx,λz .N ′ = (y0, ỹ)

!y0 (z,q).x (z′,q′). (XVz,V ⟨z
′, ỹ ′⟩ | q′(w ).Xw,Ce[w]⟨ỹ

′′,q⟩) .

Finally, to prove that Ic[[R1]] and Ic[[R2]] are solutions of ER ,
we show that, wheneverM ⇓ x and N ⇓ λz.N ′, with N ′ ⇓ Ce[xV ]:

I[[M]] ≈ EM,N [Ic[[R1]]]⟨ỹ⟩

= I[[λz. ((λw .w ) (xz))]]

and

I[[N ]] ≈ EM,N [Ic[[R2]]]⟨ỹ⟩

= I[[λz. ((λw .Ce[w]) (xV ))]] .

To establish the former, we use algebraic reasoning to infer I[[x]] ≈
I[[λz.xz]]. For the latter, we use law (2) (given in the proof of
Lemma 4.3).

Lemma 4.7 (Completeness for -η ). For anyM,N in Λ,M -η N
implies I[[M]] ≈ I[[N ]].

Combining Lemmas 4.2 and 4.7, and Theorem 1.11 we derive
Full Abstraction for -η with respect to barbed congruence.

Theorem 4.8 (Full Abstraction for -η ). For any M,N in Λ, we
haveM -η N iff I[[M]] ≃Iπ I[[N ]]

Remark 4.9 (Unique solutions versus up-to techniques). For Mil-
ner’s encoding of call-by-name λ-calculus, the completeness part of
the full abstraction result with respect to Lévy-Longo Trees [26] relies
on up-to techniques for bisimilarity. Precisely, given a relation R
on λ-terms that represents a tree bisimulation, one shows that the
π -calculus encoding of R is a π -calculus bisimulation up-to context
and expansion. Expansion is a preorder that intuitively guarantees
that a term is ‘more efficient’ than another one. In the up-to technique,
expansion is used to manipulate the derivatives of two transitions so
to bring up a common context. Such up-to technique is not powerful
enough for the call-by-value encoding and the Eager Trees because
some of the required transformations would violate expansion (i.e.,
they would require to replace a term by a ‘less efficient’ one). An
example of this is law (2) (in the proof of Lemma 4.3), that would
have to be applied from right to left so to implement the branching in
clause (2) of Definition 1.3 (as a context with two holes).

The use of the technique of unique solution of equations allows
us to overcome the problem: law (2) and similar laws that introduce
’inefficiencies’ can be used (and they are indeed used, in various places),
as long as they do not produce new divergences.

5 Encoding into ALπ
Full abstraction with respect to η-Eager-Tree equality also holds for
Milner’s simplest encoding, namelyV (Section 3), provided that the
target language of the encoding is taken to be ALπ . The adoption
of ALπ implicitly allows us to control capabilities, avoiding viola-
tions of laws such as (1) in the Introduction. In ALπ , bound output
prefixes such as a(x ).x (y) are abbreviations for νx (a⟨x⟩ | x (y)).

Theorem 5.1. M -η N iffV[[M]] ≃ALπ V[[N ]], for anyM,N ∈ Λ.

The main difference with respect to the proofs of Lemmas 4.6
and 4.7 is when proving absence of divergences for the (optimised)
system of equations. Indeed, in ALπ the characterisation of barbed
congruence (≃ALπ ) as bisimilarity makes use of a different labelled
transition system where visible transitions may create new pro-
cesses (the ‘static links’), that could thus produce new reductions.
Thus one has to show that the added processes do not introduce
new divergences.

6 Contextual equivalence and preorders
We have presented full abstraction for η-Eager-Tree equality taking
a ‘branching’ behavioural equivalence, namely barbed congruence,
on the π -processes. We show here the same result for contextual
equivalence, the most common ‘linear’ behavioural equivalence.
We also extend the results to preorders.

We only discuss the encoding I into Iπ . Similar results however
hold for the encodingV into ALπ .

6.1 Contextual relations and traces
Contextual equivalence is defined in the π -calculus analogously to
its definition in the λ-calculus (Definition 1.2); thus, with respect to
barbed congruence, the bisimulation game on reduction is dropped.
Since we wish to handle preorders, we also introduce the contextual
preorder.

Definition 6.1. Two Iπ agents A,B are in the contextual preorder,
written A ≲Iπ

ct B, if C[A] ⇓a implies C[B] ⇓a , for all contexts C .
They are contextually equivalent, written A ≃Iπ

ct B, if both A ≲Iπ
ct B

and B ≲Iπ
ct A hold.

To manage contextual preorder and equivalence in proofs, we
exploit characterisations of them as trace inclusion and equivalence.
For s = µ1, . . . , µn , where each µi is a visible action, we set P

s
=⇒ if

P
µ1
==⇒ P1

µ2
==⇒ P2 . . . Pn−1

µn
===⇒ Pn , for some processes P1, . . . , Pn .

Definition 6.2. Two Iπ processes P ,Q are in the trace inclusion,
written P ⪯tr Q , if P

s
=⇒ implies Q

s
=⇒, for each trace s . They are

trace equivalent, written P ≈tr Q , if both P ⪯tr Q and Q ⪯tr P hold.

As usual, these relations are extended to abstractions by requir-
ing instantiation of the parameters with fresh names.

Theorem 6.3. In Iπ , relation ≲Iπ
ct coincides with ⪯tr, and relation

≃Iπ
ct coincides with ≈tr.
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6.2 A proof technique for preorders
We modify the technique of unique solution of equations to reason
about preorders, precisely the trace inclusion preorder.

In the case of equivalence, the technique of unique solutions
exploits symmetry arguments, but symmetry does not hold for
preorders. We overcome the problem by referring to the syntactic
solution of the system in an asymmetric manner. This yields the
two lemmas below, intuitively stating that the syntactic solution
of a system is its smallest pre-fixed point, as well as, under the
divergence-freeness hypothesis, its greatest post-fixed point. We
say that F̃ is a pre-fixed point for ⪯tr of a system of equations {X̃ = Ẽ}

if Ẽ[F̃ ] ⪯tr F̃ ; similarly, F̃ is a post-fixed point for ⪯tr if F̃ ⪯tr Ẽ[F̃ ].

Lemma 6.4 (Pre-fixed points, ⪯tr). Let E be a system of equations,
and K̃E its syntactic solution. If F̃ is a pre-fixed point for ⪯tr of E,
then K̃E ⪯tr F̃

Lemma 6.5 (Post-fixed points, ⪯tr). Let E be a guarded system of
equations, and K̃E its syntactic solution. Suppose K̃E has no diver-
gences. If F̃ is a post-fixed point for ⪯tr of E, then F̃ ⪯tr K̃E .

Lemma 6.4 is immediate; the proof of Lemma 6.5 is similar to the
proof of Theorem 2.4 (for bisimilarity). We thus derive the following
proof technique.

Theorem 6.6. Suppose that E is a guarded system of equations with
a divergence-free syntactic solution. If F̃ is a pre-fixed point for ⪯tr of
E, and G̃ a post-fixed point, then F̃ ⪯tr G̃.

We can also extend Theorem 2.6 to preorders. We say that a
system of equations E ′ extends E with respect to a given preorder if
there exists a fixed set of indices J such that:

1. any pre-fixed point of E for the preorder can be obtained
from a pre-fixed point of E ′ (for the same preorder) by re-
moving the components corresponding to indices in J ;

2. the same as (1) with post-fixed points in place of pre-fixed
points.

Theorem 6.7. Consider two systems of equations E ′ and E where
E ′ extends E with respect to ⪯tr. Furthermore, suppose E ′ is guarded
and has a divergence-free syntactic solution. If F̃ is a pre-fixed point
for ⪯tr of E, and G̃ a post-fixed point, then F̃ ⪯tr G̃.

6.3 Full abstraction results
The preorder on λ-terms induced by the contextual preorder is
η-eager normal-form similarity, ≤η . It is obtained by imposing that
M ≤η N for all N , wheneverM is divergent. Thus, with respect to
the bisimilarity relation -η , we only have to change clause (1) of
Definition 1.3, by requiring onlyM to be divergent. (The bisimilarity
-η is then the intersection of ≤η and its converse ≥η .)

Theorem 6.8 (Full abstraction on preorders). For any M,N ∈ Λ,
we haveM ≤η N iff I[[M]] ≲Iπ

ct I[[N ]].

The structure of the proofs is similar to that for bisimilarity,
using however Theorem 6.6. We discuss the main aspects of the
completeness part.

Given an η-eager normal-form simulation R , we define a system
of equations ER as in Section 4.2. The only notable difference in the
definition of the equations is in the case whereMRN ,M diverges
and N has an eager normal form. In this case, we use the following
equation instead:

XM,N = (ỹ) I[[Ω]] . (3)

As in Section 4.2, we define a system of guarded equations E ′
R

whose syntactic solutions do not diverge. Equation (3) is replaced
with XM,N = (ỹ,p) 0.

Exploiting Theorem 6.7, we can use unique solution for preorders
(Theorem 6.6) with ER instead of E ′

R
.

Defining Ic[[R1]] and Ic[[R2]] as previously, we need to prove
that Ic[[R1]] ⪯tr ẼR [Ic[[R1]]] and ẼR [Ic[[R2]]] ⪯tr Ic[[R2]]. The
former result is established along the lines of the analogous result
in Section 4.2: indeed, Ic[[R1]] is a solution of ER for ≈, and ≈tr is
coarser than ≈.

For the latter, the only difference is due to equation (3), when
MRN , and M diverges but not N . In that case, we have to prove
that I[[Ω]] ⪯tr I[[N ]], which follows easily because the only trace
of I[[Ω]] is the empty one, hence I[[Ω]]⟨p⟩ ⪯tr P for any P .

Corollary 6.9 (Full abstraction for ≃Iπ
ct ). For anyM,N in Λ,M -η

N iff I[[M]] ≃Iπ
ct I[[N ]].

7 Conclusions and future work
In the paper we have studied the main question raised in Milner’s
landmark paper on functions as π -calculus processes, which is
about the equivalence induced on λ-terms by their process encoding.
We have focused on call-by-value, where the problemwas still open;
as behavioural equivalence on π -calculus we have taken contextual
equivalence and barbed congruence (the most common ‘linear’ and
’branching’ equivalences).

First we have shown that some expected equalities for open terms
fail under Milner’s encoding. We have considered two ways for
overcoming this issue: rectifying the encodings (precisely, avoiding
free outputs); restricting the target language to ALπ , so to control
the capabilities of exported names. We have proved that, in both
cases, the equivalence induced is Eager-Tree equality, modulo η
(i.e., Lassen’s η-eager normal-form bisimulation). We have then
introduced a preorder on these trees, and derived similar full ab-
straction results for them with respect to the contextual preorder
on π -terms. The paper is also a test case for the technique of unique
solution of equations (and inequations), which is essential in all
our completeness proofs.

Lassen had introduced Eager Trees as the call-by-value anal-
ogous of Lévy-Longo and Böhm Trees. The results in the paper
confirm the claim, on process encodings of λ-terms: it was known
that for (weak and strong) call-by-name, the equalities induced are
those of Lévy-Longo Trees and Böhm Trees [29].

For controlling capabilities, we have used ALπ . Another possi-
bility would have been to use a type system. In this case however,
the technique of unique solution of equations needs to be extended
to typed calculi. We leave this for future work.

We also leave for future work a thorough comparison between
the technique of unique solution of equations and techniques based
on enhancements of the bisimulation proof method (the “up-to”
proof techniques), including if and how our completeness results
can be derived using the latter techniques. (We recall that the “up-
to” proof techniques are used in the completeness proofs with
respect to Lévy-Longo Trees and Böhm Trees for the call-by-name
encodings. We have discussed the problems with call-by-value in
Remark 4.9.) In any case, even if other solutions existed, for this
specific problem the unique solution technique appears to provide
an elegant and natural framework to carry out the proofs.
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For our encodings we have used the polyadic π -calculus; Mil-
ner’s original paper [17] used the monadic calculus (the polyadic
π -calculus makes the encoding easier to read; it had not been in-
troduced at the time of [17]). We believe that polyadicity does not
affect the results in the paper (the possibility of autoconcurrency
breaks full abstraction of the encoding of the polyadic π -calculus
into the monadic one, but autoconcurrency does not appear in the
encoding of λ-terms).

In the call-by-value strategy we have followed, the function is
reduced before the argument in an application. Our results can be
adapted to the case in which the argument runs first, changing
the definition of evaluation contexts. The parallel call-by-value, in
which function and argument can run in parallel (considered in
[18]), appears more delicate, as we cannot rely on the usual notion
of evaluation context.

Interpretations of λ-calculi into π -calculi appear related to game
semantics [5, 9, 10]. In particular, for untyped call-by-name they
both allow us to derive Böhm Trees and Lévy-Longo Trees [11, 20].
To our knowledge, game semantics exist based on typed call-by-
value, e.g., [2, 9], but not in the untyped case. In this respect, it would
be interesting to see whether the relationship between π -calculus
and Eager Trees studied in this paper could help to establish similar
relationships in game semantics.
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