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Quantified Boolean formulas (QBFs) generalise propositional logic by adding
Boolean quantification. While not more expressive than propositional formulas,
QBFs allow more succinct encodings of many practical problems. From a com-
plexity point of view, they capture all problems from PSPACE.

Following the enormous success of SAT solving there has been increased at-
tention on QBF solving in the past two decades. However, lifting the success of
SAT to QBF presents significant additional challenges stemming from quantifi-
cation, and solvers use quite different techniques to do this.

We consider two popular paradigms for solving QBF in prenex conjunctive
normal form (PCNF). In the first, QBF solvers use Conflict Driven Clause Learn-
ing (CDCL) techniques from SAT solving, together with a ‘reduction’ rule to
deal with universally quantified literals. In the second method, QBF solvers use
quantifier expansion to remove the universally quantified literals in order to then
use resolution on the formulas.

These two paradigms can be modelled by different QBF proof systems. Mod-
ern SAT solvers correspond to the Resolution proof system; similarly QBF solvers
correspond to different QBF Resolution calculi. CDCL-style QBF (QCDCL) sys-
tems correspond to the QBF resolution system Q-resolution (Q-Res) [3], although
algorithms implementing QCDCL, such as DepQBF, typically also implement
additional reasoning techniques. In contrast, expansion solving builds on ex-
pansion QBF proof systems, with ∀Exp+Res as their base system [2]. In fact,
∀Exp+Res was originally developed to model RAReQS [2].

The proof systems ∀Exp+Res and Q-Res are known to be incomparable, i.e.
there are families of QBFs that have polynomial-size refutations in one system,
but require exponential size refutations in the other [2, 1]. As such we would not
expect either QCDCL or expansion-based algorithms to be consistently stronger
than the other, but would instead anticipate that solvers implementing the two
systems would complement each other.

We examine the relationship between Q-Res and ∀Exp+Res under the natural
and practically important restriction to families of QBFs with bounded quantifier
complexity, which express exactly all problems from the polynomial hierarchy
and thus cover most application scenarios. In this case, we show that (dag-like)
Q-Res is p-simulated by ∀Exp+Res. The simulation increases in complexity as
the number of quantification levels grows, and indeed there is an exponential
separation between the two systems on a family of QBFs with an unbounded
number of quantification levels [2]. The opposite simulation does not hold, there
are families of QBFs with only three quantifier blocks that have short ∀-Red
proofs but require exponential proofs in Q-Res (for one or two quantifier blocks
the two systems are equivalent). For practitioners, our result points towards a



potential advantage of expansion solving techniques over QCDCL solving and
offers a partial explanation for the observation that “the performance of solvers
based on different solving paradigms substantially varies on classes of PCNFs
defined by their numbers of alternations” [4].

The result is shown via a direct construction, we create a ∀Exp+Res proof
from a Q-Res proof. A natural way to transform a clause from a Q-Res refutation
into a clause in a ∀Exp+Res refutation is to define some complete assignment α
to the universal variables of the input formula that does not satisfy the clause.
All universal literals are removed (since they are falsified under α), and each
existential literal x is replaced by an annotated literal x[α] ([α] indicates the
restriction of α to those variables that appear before the annotated literal in
the quantifier prefix). The difficulty is to ensure that the resolution steps in
the attempted ∀Exp+Res proof are valid. In particular, in every resolution step
the pivot literals must have the same annotation. It may be impossible to find
suitable annotations for each clause in the given Q-Res proof that respect this
restriction.

We can manage this problem by duplicating clauses (and their entire deriva-
tion) whenever multiple incompatible annotations would be required in a ∀-Red
proof. Of course, such duplication of clauses may result in an exponential increase
in the proof size if there are many different possible annotations to consider. How-
ever, if attention is restricted to QBFs that have O(1) quantifier blocks, then
we can carefully manage the process of duplicating clauses to support all the
required annotations without an exponential increase in the proof size. We show
that

Theorem 1. Let Φ be a QBF with k quantification blocks and π a Q-Res proof
of Φ. Then there is an ∀Exp+Res proof of Φ of size at most |π|1+k/2.

Since the cost of transforming a dag-like Q-Res proof into a ∀Exp+Res proof
by this construction depends on the number of quantifier alternations it provides
theoretical support for the observation that QCDCL solvers are more competitive
on formulas with longer quantifier prefixes. For tree-like proofs our construction
does not increase the size of the proof for any number of quantifier blocks, so it
can also be used to show the simulation of tree-like Q-Res by tree-like ∀Exp+Res
(similar to the technique in [2]).
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