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Abstract
We introduce a logic, called ℒT , to express properties of transduc-

tions, i.e. binary relations from input to output (finite) words. InℒT ,
the input/output dependencies are modelled via an origin function
which associates to any position of the output word, the input posi-

tion from which it originates. ℒT is well-suited to express relations

(which are not necessarily functional), and can express all regular

functional transductions, i.e. transductions definable for instance
by deterministic two-way transducers.

Despite its high expressive power, ℒT has decidable satisfia-

bility and equivalence problems, with tight non-elementary and

elementary complexities, depending on specific representation of

ℒT -formulas. Our main contribution is a synthesis result: from

any transduction R defined in ℒT , it is possible to synthesise a

regular functional transduction f such that for all input words u
in the domain of R, f is defined and (u, f (u)) ∈ R. As a conse-

quence, we obtain that any functional transduction is regular iff it

is ℒT -definable.
We also investigate the algorithmic and expressiveness prop-

erties of several extensions of ℒT , and explicit a correspondence

between transductions and data words. As a side-result, we obtain

a new decidable logic for data words.
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1 Introduction
The theory of regular languages of finite and infinite words is rich

and robust, founded on the equivalence of a descriptive model

(monadic second-order logic, MSO) and a computational one (finite

automata), due the works of Büchi, Elgot, McNaughton and Traht-

enbrot [33]. Since then, many logics have been designed and studied

to describe languages (see for instance [13, 32]), among which tem-

poral logics, with notable applications in model-checking [34].
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In this paper, we consider transductions, i.e. binary relations

relating input to output words. E.g. the transduction τshuffle asso-

ciates with a word all its permutations – (ab,ab), (ab,ba) ∈ τshuffle.

Operational models, namely extensions of automata with outputs,

called transducers, have been studied for computing transductions.

This includes finite transducers, i.e. finite automata with outputs,

which have been studied since the 60s [23, 29] and two-way trans-

ducers (two-way automata with a one-way output tape). When

restricted to transducers defining functions (called functional trans-

ducers), the latter model has recently received a lot of attention

due to its appealing algorithmic properties, its expressive power

and its many equivalent models: deterministic two-way transduc-

ers [12], reversible two-way transducers [11], deterministic (one-

way) transducers with registers [2] (also known as streaming string

transducers), regular combinator expressions [4] and Courcelle’s

MSO-transducers [15] (MSOT), a model we will come back to in the

related work section. Because of these many characterisations, the

class defined by these models has been coined regular transductions,
or regular functions.

However, much less is known about logics to describe trans-

ductions (see for instance [18] for a brief overview). Recently, Bo-

jańczyk, Daviaud, Guillon and Penelle have considered an expres-

sive logic, namely MSO over origin graphs (o-graphs) [6]. Such
graphs encode pairs of words together with an origin mapping,
relating any output position to an input position, as depicted in

Fig. 1. Intuitively, if one thinks of an operational model for trans-

ductions, the origin of an output position is the input position from

which it has been produced. As noticed in [5], most known trans-

input

origin

output

a b c a

a bc a

a b c a

abca

Figure 1. Possible o-graphs for τshuffle

ducer models not only define transductions, but origin transductions
(o-transductions), i.e. sets of o-graphs, and can thus be naturally

interpreted in both origin-free semantics (i.e. usual semantics) or the

richer origin semantics. We denote by MSOo monadic second-order

logic over o-graphs. Precisely, it is MSO equipped with monadic

predicates σ(x) for position labels, a linear order ≤in (resp. ≤out)

over input (resp. output) positions, and an origin function o. We

denote by ⟦ϕ⟧o the origin-transduction defined by ϕ, i.e. the set of
o-graphs satisfying ϕ, and by ⟦ϕ⟧ the transduction defined by ϕ
(obtained by projecting away the origin mapping of ⟦ϕ⟧o ). While

[6] was mostly concerned with characterising classes of o-graphs

generated by particular classes of transducers, the authors have

shown another interesting result, namely the decidability of model-

checking regular functions with origin against MSOo properties: it

is decidable, given anMSOo sentenceϕ and a deterministic two-way

transducer T , whether all o-graphs of T satisfy ϕ.
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Satisfiability and synthesis. Important and natural verification-

oriented questions are not considered in [6]. The first is the sat-

isfiability problem for MSOo: given a sentence ϕ, is it satisfied by

some o-graph? While being one of the most fundamental problem

in logic, its decidability would also entail the decidability of the

equivalence problem, a fundamental problem in transducer theory:

given two sentences ϕ1,ϕ2 of MSOo, does ⟦ϕ1⟧o = ⟦ϕ2⟧o hold?

The second problem is the regular synthesis problem: given an

MSOo-sentence ϕ, does there exist a deterministic two-way trans-

ducer T such that (1) T has the same domain as ⟦ϕ⟧ (the set of
words which have some image by ⟦ϕ⟧) and (2) for all u in the

domain of T , its image T (u) satisfies (u,T (u)) ∈ ⟦ϕ⟧. Note that
without requirement (1), any transducer T with empty domain

would satisfy (2). So, instead of designing a transducer and then

verifying a posteriori that it satisfies some MSOo properties, the

goal is to check whether some transducer can be automatically

generated from these properties (and to synthesise it), making it

correct by construction. Unsurprisingly, we show that both these

problems are undecidable for MSOo.

Contribution: The fragmentℒT .We define a fragment of MSOo

called ℒT for which, amongst other interesting properties, the

two problems mentioned before are decidable. Before stating our

precise results on ℒT , let us intuitively define it and provide ex-

amples. ℒT is the two-variable fragment
1

of first-order logic –

FO
2

. The predicates in its signature are the output labels, the lin-

ear order ≤out for the output positions, the origin function o,
and any binary MSO predicate restricted to input positions, us-

ing input label predicates and the input order ≤in. We write it

ℒT ∶= FO
2[Γ,≤out, o,MSObin[≤in, Σ]] where Γ is the output al-

phabet and Σ the input alphabet.

As an example, let us define the transduction τshuffle in ℒT . We

express that (1) o preserves the labelling: ∀out
x ⋀σ∈Γ σ(x) →

{σ(o(x))}, and (2) o is bijective, i.e. injective: ∀out
x ,y {o(x) =

o(y)} → x = y and surjective: ∀in
x∃outy {x = o(y)}. The

notation ∀out
is a macro which restricts quantification over out-

put positions, and we use brackets {, } to distinguish the binary

MSO predicates. Extending this, suppose we have some alphabetic

linear order ⪯ over Σ and we want to sort the input labels by

increasing order. This can be done by adding the requirement

∀out
x ,y⋀σ≺σ ′ σ(x) ∧ σ

′(y) → x ≤out y. This simply defined

transduction can be realised by a two-way transducer, which would

make one pass per symbol σ (in increasing order), during which it

copies the σ -symbols on the output tape and not the others.

Results.We show the following results on ℒT :
• it is expressive: any regular functional transduction is defin-

able in ℒT . Beyond functions, ℒT is incomparable with non-

deterministic two-way transducers and non-deterministic stream-

ing string transducers (it can express τshuffle which is definable

in none of these models).

• it characterises the regular functional transductions: a functional
transduction is regular iff it is ℒT -definable. Moreover, given

an ℒT -formula, it is decidable whether it defines a functional

transduction.

• the satisfiability problem is decidable (in non-elementary time,

which is unavoidable because of the binary MSO predicates), and

1

Only two variable names can be used (and reused) in a formula, see e.g. [32]

ExpSpace-c if the binary MSO predicates are given by automata.

Since ℒT is closed under negation, we obtain as a consequence

the decidability of the equivalence problem for ℒT -definable
o-transductions.

• it admits regular synthesis: from any ℒT -sentence ϕ, one can
always synthesise a deterministic two-way transducer which has

the same domain as ⟦ϕ⟧ and whose o-graphs all satisfy ϕ.

Finally, we provide two strictly more expressive extensions of

ℒT , shown to admit regular synthesis, and hence decidable sat-

isfiability problem. The first one ∃ℒT extends any ℒT -formula

with a block of existential monadic second-order quantifiers and

it captures all transductions defined by non-deterministic MSO-

transducers or equivalently non-deterministic streaming string

transducers [3]. Then, we introduce ∃ℒso

T which extends ∃ℒT with

unary predicates L(x) called single-origin predicates, where L is a

regular language, which holds in an input position x if the word

formed by the positions having origin x belongs to L. For instance
one could express that any input position labelled by a has to pro-

duce a word in (bc)∗, which cannot be done with a FO
2

formula.

This extension allows us to additionally capture any rational rela-

tion, i.e. the transductions defined by (nondeterministic) one-way

transducers [23].

Ourmain andmost technical result is regular synthesis. Indeed, it

entails satisfiability (test domain emptiness of the constructed trans-

ducer), and, since no automata/transducer model is known to be

equivalent to MSOo norℒT , we could not directly rely on automata-

based techniques. The techniques of [6] for model-checking do not

apply either because the target model is not given when consider-

ing satisfiability and synthesis. Instead, we introduce a sound and

complete bounded abstraction of the o-graphs satisfying a given

ℒT -formula. This abstraction was inspired by techniques used in

data word logics [30], although we could not directly reuse known

results, since they were only concerned with the satisfiability prob-

lem. Nonetheless, we exhibit a tight connection between o-graphs

and data words.

A consequence on datawords.As a side contribution, we explicit
a bijection between non-erasing origin graphs (the origin mapping

is surjective) and words over an infinite alphabet of totally ordered

symbols, called data words. Briefly, the origin becomes the data and

conversely the data becomes the origin. We show that this bijection

carries over to the logical level, and we obtain a new decidable

logic for data words, which strictly extends the logic FO
2[≤,⪯

, S⪯] (linear position order and linear order and successor over

data), known to be decidable from [30], with any binary MSO[⪯]
predicate talking only about the data.

Related Work. First, let us mention some known logical way of

defining transductions. Synchronised (binary) relations, also known

as automatic relations, are relations defined by automata running

over word convolutions [29]. A convolution u ⊗v is obtained by

overlapping twowordsu,v and by using a padding symbol⊥ if they

do not have the same length. E.g. aba⊗ bc = (a,b)(b, c)(a,⊥). By
taking MSO over word convolutions, one obtains a logic to define

transductions. It is however quite weak in expressive power, as

it cannot even express all functional transductions definable by

one-way input-deterministic finite transducers.

Courcelle has introduced MSO-transducers to define graph trans-

ductions [9] and which, casted to words, gives a logic-based for-

malism to define word transductions. Roughly, the predicates of

2
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the output word are defined by several MSO-formulas with free

variables, interpreted over a bounded number of copies of the input

structure. Additionally, several free parameters can be used to add a

form of non-determinism. Functional MSO-transducers correspond

exactly to functional regular transduction [15]. However, they have

a relatively limited expressive power when it comes to relations,

because, unlikeℒT , the number of images of a word is always finite.

For instance, the universal transduction Σ
∗ × Σ

∗
is not definable

in this formalism, while it is simply definable by the ℒT -formula

⊤, nor is τshuffle (this can be shown using cardinality arguments).

Finally, there is a number of recent works on reactive synthe-

sis [22], since the seminal problem raised by Church [1], and studied

by Pnueli and Rosner for LTL specifications [28]. In these works

however, the specification is always a synchronised relation and the

target implementation is a Mealy machine (an input-deterministic

finite transducer alternatively reading and producing exactly one

symbol at a time). While ℒT does not make any synchronicity

assumption, the target implementations in this paper are deter-

ministic two-way transducer which are, computationally speaking,

more powerful. We leave open the question of whether the fol-

lowing synthesis problem is decidable: given an ℒT -formula ϕ, is
there a (one-way) input-deterministic (also known as sequential)

transducer realising ϕ?
Transducer synthesis is also equivalently known as uniformi-

sation in transducer theory [29]. This problem has been studied

in the origin-free semantics for the class of rational relations. It is

known that from any rational relation one can synthesise a ratio-

nal function [14], and that checking whether it is realisable by a

sequential function is undecidable [8, 17]. The former result is a

consequence of our results on the extension ℒso

T : we show that any

rational relation defined by a one-way transducer is ℒso

T -definable

(while preserving the origin mappings) and moreover, any trans-

duction defined in ℒso

T is realisable by a regular function . Hence,

from rational relation given as a one-way transducerT we obtain an

order-preserving and functional regular o-transduction that realises

the relation defined by T . Such o-transductions are easily seen to

be equivalent to rational functions [5, 16]. Finally, we mention that

transducer synthesis has also been recently studied in the context

of trees, where the specification is a tree automatic relation [24].

Due to the lack of space, some proofs are omitted or only sketched

in the body of the paper. The full proofs are given in the appendix.

2 Logics with origin for transductions

Words and transductions.Wedenote by Σ
∗
the set of finitewords

over some alphabet Σ, and by ϵ the empty word. The length of a

word u ∈ Σ
∗
is denoted by ∣u∣, in particular ∣ϵ∣ = 0. The set of

positions of u is dom(u) = {1, . . . , ∣u∣}, an element i ∈ dom(u)
denoting the ith position of u, whose symbol is denoted u(i) ∈ Σ.

Let Σ and Γ be two alphabets, without loss of generality assumed

to be disjoint. A transduction is a subset of Σ
+ × Γ

∗
of pairs (u,v),

where u is called the input word and v the output word. An origin
mapping from a word v ∈ Γ

∗
to a word u ∈ Σ

+
is a mapping

o ∶ dom(v) → dom(u). Intuitively, it means that position i was
produced when processing position o(i) in the input word u. We

exclude the empty input word from the definition of transductions,

because we require every output position to have some origin. This

does not weaken the modelling power of the logics we consider,

up to putting some starting marker for instance. Following the

terminology of [6], an origin-graph (o-graph for short) is a pair

(u, (v,o)) such that (u,v) ∈ Σ
+ × Γ

∗
and o is an origin mapping

fromv tou. We denote by𝒪𝒢(Σ, Γ) the set of o-graphs from Σ to Γ.
A transduction with origin (or just o-transduction) τ from Σ to Γ is

a set of o-graphs. We say that τ is functional (or is a function) if for

all u, there is at most one pair (v,o) such that (u, (v,o)) ∈ τ , and
rather denote it by f instead of τ . The domain of an o-transduction

τ is the set dom(τ ) = {u ∣ ∃(u, (v,o)) ∈ τ}. Finally, the origin-free
projection of τ is the transduction {(u,v) ∣ ∃(u, (v,o)) ∈ τ}. Many

results of this paper hold with or without origins. We always state

them in their strongest version, usually without origin.

Regular functional transductions. Regular functional transduc-
tions (or regular functions) have many characterisations, as men-

tioned in the introduction. We will briefly define them as the trans-

ductions definable by deterministic two-way transducers, which

are pairs (A, ρ) such that A is a deterministic two-way automaton

with set of transitions ∆, and ρ is a morphism of type ∆
∗
→ Γ

∗
.

The transduction defined by (A, ρ) has domain L(A) (the language
recognised by A) and for all words u in its domain, the output of u
is the word ρ(r), where r is the accepting sequence of transitions
of A on u. Such transducers (as well as other known equivalent

models) can be naturally equipped with an origin semantics [5] and

we say that a functional o-transduction is regular if it is equal to

the set of o-graphs of some deterministic two-way transducer.

FO andMSO logics for transductions.We consider FO andMSO

over particular signatures. Without defining their syntax formally

(we refer the reader e.g. to [32]), recall that MSO over a set of

predicates S allows for first-order quantification ∃x over elements,

second-order quantification ∃X over element sets, membership

predicates x ∈ X , predicates of S and all Boolean operators. We use

the notation MSO[S] (or FO[S]) to emphasise that formulas are

built over a particular signature S . As usual, ϕ(x1, . . . ,xn) denotes
a formula with n free first-order variables, and we call sentence a
formula without free variables. Finally, ⊧ denotes the satisfiability

relation.

Origin-graphs (u, (v,o)) of𝒪𝒢(Σ, Γ) are seen as structures with
domain dom(u) ⊎ dom(v) over the signature 𝒮Σ,Γ composed of

unary predicates δ(x), for all δ ∈ Σ∪Γ, holding true on all positions
labelled δ , ≤in a linear-order on the positions of u, ≤out a linear-

order on the positions of v , and o a unary function for the origin,

which is naturally interpreted by o over dom(v), and as the identity
function

2

over dom(u). We also use the predicates =, <in and

<out, which are all definable in the logics we consider. We denote

by MSOo the logic MSO[𝒮Σ,Γ]. Any MSOo sentence ϕ defines an

o-transduction ⟦ϕ⟧o = {(u, (v,o)) ∈ 𝒪𝒢(Σ, Γ) ∣ (u, (v,o)) ⊧

ϕ} and its origin-free counterpart ⟦ϕ⟧. An o-transduction (resp.

transduction) τ is MSOo-definable if τ = ⟦ϕ⟧o (resp. τ = ⟦ϕ⟧) for
some sentence ϕ ∈ MSOo.

Example 1. First, we define the transduction τcfl mapping a
n
b
n
to

(ab)n , as the origin-free projection of the set of o-graphs defined by
some MSOo-sentence ϕcfl, which expresses that (1) the domain is in

a
∗
b
∗
, (2) the codomain in (ab)∗ (both properties are regular and,

hence, respectively MSO[Σ,≤in]- and MSO[Γ,≤out]-definable),
and (3) the origin-mapping is bijective and label-preserving (see

introduction).

2

As functional symbols must be interpreted by total functions, we need to interpret o
over dom(u) as well.
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Satisfiability and synthesis problems. The satisfiability prob-

lem asks, given an MSOo-sentence ϕ, whether it is satisfied by

some o-graph, i.e. whether ⟦ϕ⟧o ≠ ∅ (or equivalently ⟦ϕ⟧ ≠ ∅)
holds. By encoding the Post Correspondence Problem, we show that

MSOo has undecidable satisfiability problem, even if restricted to

the two-variable fragment of FO with the Sout predicate, denoting
the successor relation over output positions:

Proposition 2. Over o-graphs, the logic FO2[Σ, Γ,≤in,≤out, Sout, o]
has undecidable satisfiability problem.

Given a transduction τ and a functional transduction f , we
say that f realises τ if dom(f ) = dom(τ ), and for all input u,
(u, f (u)) ∈ τ . The regular synthesis problem asks whether given an

o-transduction τ , there exists a regular functional o-transduction
f which realises it. As claimed in the introduction, this problem is

undecidable when τ is defined in MSOo.

Proposition 3. The regular synthesis problem is undecidable for
MSOo-definable transductions.

Sketch. We reduce the MSOo satisfiability problem. First, consider

the MSOo-sentence ϕcfl of Ex. 1 defining a transduction with non-

regular domain. Then, given an MSOo-formula ψ of which one

wants to check satisfiability, we define in MSOo, usingψ and ϕcfl,
the transduction τ mapping any word u1#u2 to v1#v2 such that

(u1,v1) ∈ ⟦ψ ⟧ and (u2,v2) ∈ ⟦ϕcfl⟧. Then, dom(τ ) is non-regular
iff it is nonempty. Since regular functions have regular domains, τ
is realisable by a regular function iff dom(τ ) = ∅ iff ⟦ψ ⟧ = ∅ iff

⟦ψ ⟧o = ∅. □

The logic ℒT for transductions. Informally, the logic ℒT ex-

tends the two-variable logic FO
2[Σ, Γ,≤in,≤out, o] with any bi-

nary predicate definable in MSO[≤in, Σ], i.e. any binary MSO pred-

icate that is only allowed to talk about the input positions, in

order to capture regular input properties. Formally, we denote

by MSObin[≤in, Σ] the set of n-ary predicates, n ∈ {0, 1, 2}, de-
noted by {ϕ}, where ϕ is an MSO[≤in, Σ]-formula with at most

n free first-order variables. Over a word u, such a formula ϕ de-

fines an n-ary relation Rϕ,u on its position, and over an o-graph

(u, (v,o)), we interpret {ϕ} by Rϕ,u . The logic ℒT is the two-

variable fragment of first-order logic over the output symbol predi-

cates, the linear-order ≤out, and all predicates in MSObin[≤in, Σ],
i.e. ℒT ∶= FO

2[Γ,≤out, o,MSObin[≤in, Σ]]. Modulo removing the

brackets {, }, it is a proper fragment of MSOo.

Examples of ℒT -transductions. The true formula ⊤ is satisfied

by any o-graph. Hence ⟦⊤⟧ = Σ
+ × Γ

∗
. Let us now define sev-

eral macros that will be useful throughout the paper. The formula

in(x) ≡ x ≤in x (resp. out(x) ≡ x ≤out x ) holds true if x belongs

to the input word (resp. output word). Now for α ∈ {in, out}, we
define the guarded quantifiers ∃αx ϕ and ∀αx ϕ as shortcuts for

∃x α(x)∧ϕ and ∀x α(x) → ϕ (note that ¬∃αx ϕ is equivalent to

∀αx ¬ϕ).
Preservation of the input/output orders is expressed by the ℒT -

formula ∀out
x ,y (x ≤out y) → {x ′ ≤in y

′}(o(x), o(y)). Note
that we could equivalently replace x

′
and y

′
by any variable (even

x and y), without changing the semantics: the formula x
′
≤in y

′

defines a binary relation on the input word, which is used as an

interpretation of the predicate {x ′ ≤in y
′} in o-graphs. To ease the

notations, any predicate {ϕ}(t1, t2) where ϕ has two free variables

x1 and x2 may be sometimes written {ϕ[x1/t1,x2/t2]}, i.e. ϕ in

which ti has been substituted for xi . We keep the brackets { and }
to emphasise the fact that it is a binary MSO formula which speaks

about the input word. Hence, the previous formula may also be

written ϕpres ≡ ∀
out

x ,y (x ≤out y) → {o(x) ≤in o(y)}.
The fact that o is a bijective mapping is expressible by some ℒT -

formula ϕbij, as seen in the introduction. Then, the shuffle transduc-

tion τshuffle is defined by ϕshuffle ≡ ϕbij ∧∀
out

x ⋀σ∈Γ σ(o(x)) →
σ(x). If the origin mapping is also required to be order-preserving,

we get a formula defining identity: ϕid ≡ ϕshuffle ∧ ϕpres.
Let us now consider the transduction τ ∶ (ab)n ↦ a

n
b
n
. By

taking any bijective and label-preserving origin mapping, e.g. as
follows: a b a b a b a b

a a a a b b b b
one can define τ , as long as the input word is in (ab)∗, which
is regular, hence definable by some MSO[≤in, Σ]-formula ϕ(ab)∗ .
Then, τ is defined by: {ϕ(ab)∗} ∧ ϕbij ∧⋀α∈{a,b}∀

out
x

α(x) → {α(o(x))} ∧ ∀out
x ,y a(x) ∧ b(y) → x ≤out y. More

generally, one could associate with any word (ab)n the set of all

well-parenthesised words of length n over Γ.

Remark 4. According to the previous examples, one can express

in ℒT the transduction τ1 defined as the shuffle over the language

a
∗
b
∗
, and also τ2 ∶ (ab)n ↦ a

n
b
n
. Hence the composition τ2 ◦

τ1 ∶ a
n
b
n

↦ a
n
b
n
has a non-regular domain. However, as we

will see in Section 3, the domain of an ℒT -transduction is always

regular, which means that ℒT -transductions are not closed under

composition.

3 Expressiveness, satisfiability and synthesis
3.1 Expressiveness of ℒT
Our first result is that ℒT can express all regular functions. To

show this result, we use their characterisation as deterministic

MSO-transducers [15]. We briefly recall that an MSO-transducer is

defined by some MSO[≤in, Σ]-formulas interpreted over the input

word structure (with linear order denoted here by ≤in), which spec-

ify the predicates of the output word structure, the domain of which

are copies of the input nodes. More precisely, a constant k speci-

fies the number of copies of the input word structure, MSO[≤in]-
formulas ϕ

c
pos (x) specify whether the cth copy of node x is kept

in the output structure, monadic formulas ϕ
c
γ (x) for each copy

c ∈ {1, . . . ,k} and γ ∈ Γ, specify whether the cth copy of input

node x is labelled γ in the output structure, and ordering formulas

ϕ
c,d
≤out

(x ,y), say if the cth copy of x is before the dth copy of y in

the output.

Theorem 5. Any regular function is ℒT -definable.

Sketch of proof. Let f be a regular function. Since it is regular, there

exists an MSO-transducer defining it. We convert it into an ℒT -
formula. First, it is not difficult to define an MSO[≤in, Σ]-formula

ϕc
1
, ...,cl ,v (x), c1, . . . , cl ∈ {1, . . . ,k} and v ∈ Γ

∗
, which holds

true if and only if in the output structure generated by the MSO-

transducer, the copies of x that are used are exactly c1, . . . , cl , they
occur in this order in the output structure, and they are respectively

labelled v(1), . . . ,v(l). In other words, input position x generates

the subwordv in the output structure. Then, we defineℒT -formulas

Ci(x), for all i ∈ {1, . . . ,k} and x an output node (in the o-graph),

4
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which hold, respectively, iff x is the ith node (in the output order)

whose origin is o(x). This can be done using only two variables:

C1(x) ≡ out(x) ∧ ∀out
y, y <out x → {o(x) ≠ o(y)} and for

i ≥ 1, Ci+1(x) ≡

∃outy (y <out x ∧ {o(x)=o(y)} ∧Ci(y)) ∧ (∀y (y < x∧

{o(x)=o(y)}) → ¬(∃outx (x <out y ∧ {o(x)=o(y)} ∧Ci(x)))
Finally, we construct the final ℒT -formula (omitting some minor

details) as a conjunction, for allm, l ≤ k , all copies c1, . . . , cl and

d1, . . . ,dm , all words v ∈ Γ
l
and w ∈ Γ

m
, all i ≤ l and j ≤ m, of

the formulas:

∀out
x ,y

({ϕci ,dj≤ (o(x), o(y)) ∧ ϕc
1
, ...,cl ,v (o(x)) ∧ ϕd1, ...,dl ,w (o(y))}

∧Ci(x) ∧Cj(y)) → (x ≤out y ∧v(i)(x) ∧w(j)(y))
□

MSO-transducers have been extended with nondeterminism

(NMSO-transducers or just NMSOT) to express non-functional

transductions, by using a set of monadic second-order parame-

ters X1, . . . ,Xn [15]. Each formula of an NMSO-transduction can

use X1, . . . ,Xn as free variables. Once an interpretation for these

variables as sets of positions has been fixed, the transduction be-

comes functional. Therefore, the maximal number of output words

for the same input word is bounded by the number of interpreta-

tions for X1, . . . ,Xn . NMSO-transducers are linear-size increase

(the length of any output word is linearly bounded by the length

of the input word), hence the universal transduction Σ
+ × Γ

∗
is

not definable in NMSO, while it is ℒT -definable by ⊤. The shuffle

transduction is not definable in NMSOT as well (this can be shown

by cardinality arguments). Conversely, it turns out that a transduc-

tion like (u,vv) where v is a subword of u of even length is not

ℒT -definable whereas is it in NMSOT.

Rational relations are transductions defined by (non-deterministic)

finite transducers (finite automata over the product monoid Σ
∗ ×

Γ
∗
), denoted 1NFT [23]. This class is incomparable with ℒT : the

shuffle is not a rational relation, while the relation {a} × L, where

L is a non-FO
2

-definable regular language is not ℒT -definable. In-
deed, when all inputs are restricted to the word a, the expressive

power of ℒT is then restricted to FO
2[≤out, Γ] over the output.

Non-deterministic two-way transducers (2NFT), are incompa-

rable to NMSO [15], and also to ℒT , since they extend 1NFT and

cannot define the shuffle transduction. Fig. 2 depicts these compar-

isons, summarised by the following proposition:

Proposition 6. The classes of ℒT , 2NFT (resp. 1NFT), and NMSOT-
definable transductions are pairwise incomparable.

3.2 Satisfiability and equivalence problems
Our first main contribution is the following result, whose proof is

sketched in Section 4. Here and throughout the paper, by effectively

we mean that the proof effectively constructs a finite object.

Proposition 7. The input domain of any ℒT -transduction is (effec-
tively) regular.

Theorem 8. Over o-graphs, the logic ℒT has decidable satisfiability
problem.

2NFT

1NFT

ℒT

NMSO

f REG

MSOo

τshuffle

τ1
τ3 τ2

τ4

Figure 2. Expressiveness of ℒT , compared to MSOo, non-

deterministic MSO transductions, non-deterministic one-way and

two-way transducers and regular functions. Here, τ1 = {(u,vv) ∣
v is a subword of u of even length}, τ2 = {a} × (ab)∗, τ3 =

{(u,un) ∣ n ≥ 0} and τ4 = {anbn , (ab)n ∣ n > 0}.

This latter theorem is a consequence of Thm 9. We point out that

it holds also for origin-free transductions, because given an ℒT -
formula ϕ, ⟦ϕ⟧ = ∅ iff ⟦ϕ⟧o = ∅. The equivalence problem asks,

given two formulas ϕ1,ϕ2, whether ⟦ϕ1⟧o = ⟦ϕ2⟧o , i.e. whether
ϕ1 ↔ ϕ2 is universally true. As a consequence of Thm. 8 and closure

under negation of ℒT we have the decidability of the equivalence

problem for ℒT .
With respect to satisfiability, ℒT seems to lie at the decidability

frontier. Adding just the successor relation over outputs already

leads to undecidability, by Prop. 2.

3.3 Regular synthesis of ℒT and consequences
Our main result is the regular synthesis of ℒT -transductions.

Theorem 9 (Regular synthesis of ℒT ). Let ϕ be an ℒT formula.
The transduction defined by ϕ is (effectively) realisable by a regular
function.

In other words, from any specification ϕ written in ℒT , one can
synthesise a functional transduction f , in the proof represented

by an MSO-transducer T , such that dom(f ) = dom(⟦ϕ⟧) and f =

⟦T ⟧ ⊆ ⟦ϕ⟧. Moreover, it turns out that the constructed transducerT
defines a functional o-transduction ⟦T ⟧o such that ⟦T ⟧o ⊆ ⟦ϕ⟧o . In
other words,T does not change the origins specified in ϕ. Since we
rely onMSO-to-automata translation in the construction, the size of

the constructed MSO-transducer is non-elementary in the size of ϕ.
One of the main consequences of the synthesis and expressiveness

results is a new characterisation of the class of regular functions.

Theorem 10 (New characterisation of regular functions). Let f ∶
Σ
∗
→ Γ

∗. Then, f is regular iff f is ℒT -definable.

Proof. By Thm. 5, f regular implies f is ℒT -definable, which im-

plies by Thm. 9 that f is regular. □

A consequence of synthesis is the following positive result on

functionality:

Corollary 11 (Functionality). Given an ℒT -sentence ϕ, it is decid-
able whether the o-transduction ⟦ϕ⟧o is functional.

Proof. To test whether ⟦ϕ⟧o is functional, first realise it by a reg-

ular function (Thm. 9), defined e.g. by a deterministic two-way

5
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transducer T , and then test whether ⟦ϕ⟧o ⊆ ⟦T ⟧o . The latter is de-
cidable since T can be converted (while preserving origins) into an

equivalent ℒT -formulaψ (Thm. 5) and test that ϕ → ψ is satisfiable

(Thm.8). □

4 Domain regularity and synthesis: sketch of
proofs

In this section, we sketch the proofs of Prop. 7 (domain regularity

of ℒT -transductions) and Thm. 9 (regular synthesis). These two

results are based on common tools which we now describe. We let

ϕ be an ℒT -sentence over input and output alphabets Σ, Γ respec-

tively. We assume that ℒT defines a non-erasing o-transduction, i.e.
an o-transduction which uses every input position at least once (the

origin mapping is surjective). This can be done without loss of gen-

erality, i.e. one can transform in polynomial time any ℒT -sentence
into a non-erasing one (by adding dummy output positions the

origins of which are the erased input positions), while preserving

the domain and set of regular functions realising it (modulo the

previous encoding).

Scott normal form. The ℒT formula ϕ is then transformed into a

Scott normal form (SNF), a standard transformation when dealing

with two-variable logics (see for instance [19]). By enriching the

alphabet, the transformation allows to restrain ourself to the easier

setting of formulas of quantifier-depth two. Precisely, we obtain a

formula of the form:

∀
out

x ,y ψ (x ,y) ∧
m

⋀
i=1
∀
out

x∃
out

y ψi(x ,y)

where the formulas ψ and ψi , i = 1, . . . ,m, are quantifier free,

but over an extended output alphabet Γ × Γ
′
(where Γ

′
may be

exponential in ϕ). These subformulas can also still contain binary

MSO predicates over the input, which are not restricted in any way.

Up to projection over Γ, the SNF formula accepts the same models

as ϕ, and hence we now just assume that ϕ is a formula of the above

form over an input alphabet Σ and output alphabet Γ. In the full

proof (Appendix), the SNF is further equivalently transformed into

what we call a system of universal and existential constraints (in

the vein of [30]), which are easier to manipulate in the proofs than

the formulasψ andψi , but are not necessary at a conceptual level,

so we do not include them in the sketch.

The profile abstraction. We define an abstraction which maps

any o-graph (u, (v,o)) to a sequence of ∣u∣ tuples λ1 . . . λ∣u∣ called
profiles, one for each input position. A profile contains bounded

information (bounded in the size of ϕ) about the binary input MSO

predicates, the input symbol and some output positions. To explain

this abstraction, we first informally define what we call the full
graph of an o-graph (u, (v,o)). Intuitively, the full graph contains

a node for each pair (p,p′) ∈ dom(u) × dom(v), labelled by some

information called clause about the “effect” of position p′ at position
p. To understand it, it is convenient to see the full graph as a two-

dimensional structure with the input position as x-axis (ordered by

≤in) and the output position as the y-axis (ordered by ≤out). Fig-

ure 3 shows such a representation. E.g. the top-left figure represents
the full graph of an o-graph which translates σ1 . . . σ5 into (βγ )3
(for instance, the origin of the last output position, labelled γ , is the
third input position, labelled σ3), plus some additional information

which we now detail.

Each row contains a single node labelled in Γ, corresponding to

an output position, and placed according to its origin. Let (p,p′)
(output position p

′
with origin p) be such a node, labelled by some

γ ∈ Γ. This node generates an horizontal trace around it, whose

elements are of the form γ
←−
R or γ

−→
R . The arrows indicate in which

direction the γ -labelled node is. The elements R, say at coordinates

(s,p′), are MSO[Σ,≤in]-types (of bounded quantifier rank) talk-

ing about the input word u with the positions s and p marked. In

the proof, we represent these MSO-types as state information of

node selecting automata (or query automata, see e.g. [27]). The
idea behind this information is that, by looking independently

at each column of the full graph of an o-graph, it is possible to

decide whether this o-graph satisfies ϕ. Suppose for instance we
want to check whether the o-graph satisfies a formula of the form

∀out
x∃outy ⋅ γ (x) → γ

′(y) ∧ y <out x ∧ {ξ}(o(y), o(x)). Then,
for every column containing a γ -labelled node, say at coordinate

(p,p′), one has to check that there exists a node in the same col-

umn, say at position (p,p′′), labelled by some (γ ′←−R ) or some (γ ′−→R ),
such that p

′′
< p

′
and R satisfies ξ . Suppose that in the SNF we also

have a conjunct of the form ∀out
x ,y ⋅ (γ (x)∧γ ′(y)∧ {o(x) <out

o(y))} → {ξ ′}(o(x), o(y)), then we must additionally checks that

for every column, for every γ -labelled node in this column and

every γ
′−→
R -labelled node on the same column, R satisfies ξ

′
. We call

a column which satisfies the SNF formula ϕ a valid column.

A key property we now use is that, if on a column there exists

at least three nodes with the same label, then removing all but

the smallest and greatest (in output order) of these nodes does not

influence the validity of the column. It is easy to see for subfor-

mulas of ϕ of the form ∀out
x ,y ψ (x ,y) (removing nodes makes

such a formula “easier” to satisfy). For subformulas of the form

∀out∃outy ψi(x ,y), it is due to the fact that ψi is quantifier-free,
and therefore it is safe to keep only the extremal witnesses y for x .

This observation leads us to the notion of abstract graph, the
subgraph of the full graph obtained by keeping only the extremal

occurrences of every node with same labels. Figure 3 illustrates this

abstraction, on hypothetical full graphs where label equalities have

been underlined. Each column indexed by position p of this abstract

graph, together with the input symbol, is what we call the profile
of p. Note that this is a bounded object. Then, to any o-graph one

can associate a sequence of profiles this way, but this association is

not injective in general since we may lose information, as shown

in the figure. Put differently, the abstract graph can in general be

concretised in more than one full graph.

Properties of profile sequences. The key ingredient of the proof
is to define properties on profile sequences s (which are nothing but
words over the finite alphabet of profiles), that can be checked in a

regular manner (by an automaton) so that there exists at least one

o-graph д such that (1) s is the profile sequence of д and (2) д ⊧ ϕ.
Property (2) is ensured by the notion of validity defined before, and
by a notion ofmaximality for the MSO-types R (no information can

be withheld). Property (1) is ensured by a notion of consistency

between profiles. Intuitively, it asks that the information declared in

one profile is consistent, in some precise way, with the information

declared in the next profile. Roughly, since we use automata to

represent the information R, one step consistency corresponds

to one step in the runs of the automata. Maximal and consistent

sequences of valid profiles are called good profile sequences.

6
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Figure 3. The profile abstraction and the graph of clauses

We then prove a completeness result: the profile sequence of any

model of ϕ is good. We also prove a soundness result: any good

profile sequence is the profile sequence of at least one model of

ϕ. As a matter of fact, we prove a slightly stronger result which

allows one to recover not just one but potentially several models

of ϕ. As illustrated on the figure, every connected component of

the abstract graph corresponds to exactly one node labelled in Γ.
The notion of consistency ensures this property as well, and, as a

matter of fact, the output positions of the models we reconstruct

out of good profile sequences are in bijection with these connected

components (CC). We can even order them partially, as illustrated

on the figure, by overlapping: a CC is the successor of another one if

they overlap horizontally, and the former is above the latter (again,

our definition of consistency ensures that there is no “crossing” in

abstract graphs, hence this relation can indeed be shown to be a

partial order). Hence, a good profile sequence defines an abstract

graph which gives us: the input position with their labels, the

output positions with their labels and origins, and some partial

order between these output positions. What’s missing is a linear

order on these output positions, but we prove that any linearisation

of this partial order actually defines an o-graph which satisfies ϕ.
Coming back to the example, the two possibly linearisations give

the output words βγ ββγ and βγγ βγ .

Back to the theorems. To show domain regularity (Prop. 7), we

observe that the domain is the projection on input alphabet Σ of

the set of good profile sequences, which turns out to be regular

(the whole point of defining the notions of validity, maximality and

consistency is that they can be checked by an automaton). Since

regular languages are closed under projection, we get the result.

Showing regular synthesis (Thm. 9) is a bit more technical. The

main idea is to show that the mapping which takes as input a wordu
over Σ, and which outputs all the abstract graphs of o-graphs which
satisfy ϕ and have u as input, is definable by a non-deterministic

MSO word-to-DAG transduction T1. It is possible since the no-

tions of consistency, maximality and validity are all MSO-definable,

and an abstract graph is always a DAG. Then, we use a result

of Courcelle which states that there exists a deterministic MSO

DAG-to-word transduction R2 which, given a DAG, produces a

topological sort of it [10]. The DAG additionally needs to be locally
ordered (the successors of a node are linearly ordered), but we can

ensure this property in our construction. Then, we use closure

under composition of NMSOT to show that R2 ◦ R1 is definable
by some word-to-word NMSOT, which can be easily realised by a

(deterministic) MSOT, concluding the proof.

Comparison with [30].Wewould like to point out that this proof

was inspired by a decidability proof for the logic FO
2[≤,⪯, S⪯] over

data words (a linear order over positions and a linear order and

7
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successor over data). We somehow had to cast it to transductions,

and extend it with binary MSO predicates. Moreover, further ma-

nipulations and notions were needed to extract the synthesis result.

In particular, the ideas of using Scott normal form, to see o-graphs

as two-dimensional structures, and the abstraction, were directly

inspired from [30].

5 A decidable logic for typed data words
We make here a bijective connection between o-transductions and

what we call typed data words, which slightly generalise data words,

and introduce a new decidable logicℒD for typed datawords, whose

decidability stems from the equivalence with ℒT .
Typed data words.We consider typed data words over an ordered

data domain, such that each datum also carries a label (type) from

a finite alphabet. Formally, a typed data word of length n and data
size m over two disjoint alphabets Γ and Σ is a word over the

alphabet Γ × N × Σ, w = (γ1,d1,σ1)⋯(γn ,dn ,σn) verifying the

following properties: di is called the datum of position i , we have
that {d1, . . . ,dn} = {1, . . . ,m} 3

and we also have for any positions

i, j that di = dj ⇒ σi = σj , hence σi is called the type of datum di .
We denote by 𝒯 𝒟𝒲(Σ, Γ) the set of typed data words over

alphabets Σ, Γ of any length n and any data sizem.

The data of a typed data wordw induce a total preorder ⪯ over

the positions ofw defined by i ⪯ j if di ≤ dj . This preorder induces
itself an equivalence relation ∼ defined by i ∼ j iff i ⪯ j and j ⪯ i ,
which means that the positions i and j carry the same datum. Hence,

a typed data word will equivalently be seen as a structure with

letter predicates γ ∈ Γ, σ ∈ Σ, the linear order over positions and
the total preorder ⪯ previously defined.

The logic ℒD for typed data words. It is known from [7] that

the logic MSO over untyped data words (i.e. ∣Σ∣ = 1) is undecid-

able (even the first-order fragment). We consider here a decidable

fragment, over typed data words, called ℒD . A formula of ℒD can

be seen as an FO
2

formula using the linear order of the positions

and some additional binary data predicates. The logic ℒD is indeed

built on top of MSO n-ary predicates, for n ≤ 2, which are allowed

to speak only about the data. Precisely, we define MSObin[Σ,⪯] to
be the set of n-ary predicates written {ϕ}, for n ≤ 2, where ϕ is

an MSO-formula with n-free first-order variables, over the unary
predicates σ(x) and the preorder ⪯, with the following semantic

restriction
4

: second-order variables are interpreted by ∼-closed sets

of positions. Over typed data words, predicates {ϕ} are interpreted
by relations on positions defined by formulas ϕ.

Due to the semantic restriction, formulas in MSObin[Σ,⪯] can-
not distinguish positions with the same data and therefore, they

can be thought of as formulas which quantify over data and sets

of data. As an example, the formula ∀y x ⪯ y expresses that the

datum of position x is the smallest, and it holds true for any x
′
with

the same datum. Then, the logic ℒD is defined as ℒD ∶= FO
2[Γ,≤

,MSObin[Σ,⪯]].

3

We make this assumption without loss of generality, because the logic we define will

only be able to compare the order of data, and so cannot distinguish typed datawords up

to renaming of data, as long as the order is preserved. E.g. (a, b, 1)(c, d, 3)(e, f , 2)
and (a, b, 2)(c, d, 5)(e, f , 4) will be indistinguishable by the logic.

4

Note that the semantic restriction could also be enforced in the logic by guarding

quantifiers ∃Xψ with ∃X [∀x∀y x ∈ X ∧ y ∼ x) → y ∈ X ] → ψ .

Example 12. First, let us mention that MSObin[Σ,⪯] predicates
can express any regular properties about the data, in the follow-

ing sense. Given a typed data word w , the total preorder ⪯ over

positions ofw can be seen as a total order ≤∼ over the equivalence

classes of dom(w)/∼, by [i]∼ ≤∼ [j]∼ if i ⪯ j. Then, any typed

data word induces a word σ1 . . . σn ∈ Σ
∗
such that σi is the type

of the elements of the ith equivalence class of ≤∼. Any regular

property of these induced words over Σ transfers into a regular

property about the data of typed data words (it suffices to replace

in the MSO-formula on Σ-words expressing the property, the linear
order by ⪯ and the equality by ∼). Examples of properties are: n is

even, which transfers into “there is an even number of pieces of

data”, or σ1 . . . σn contains an even number of σ ∈ Σ, for some σ ,
meaning “there is an even number of pieces of data of type σ ”.

From transductions to datawords and back. There is a straight-
forward encoding t2d of non-erasing o-graphs into typed data

words, and conversely. A non-erasing o-graph (u, (v,o)), with
v = v1 . . .vn and u = u1 . . .um is encoded as the typed data word

t2d((u, (v,o))) = (v1,o(1),uo(1)) . . . (vn ,o(n),uo(n)). Given a

typed data wordsw = (γ1,d1,σ1) . . . (γn ,dn ,σn), we set t2d−1(w)
the non-erasing o-graph t2d

−1(w) = (u, (v,o)) such that v =

γ1 . . .γn , o(i) = di , and if we write di j = j then u = σi
1
⋯σim

wherem = maxi di . We give here an example of this transforma-

tion:

# $ @ # #

a b c c a b

(a, 3,@)(b, 2, $)(c, 1, #)(c, 3,@)(a, 5, #)(b, 4, #)

Theorem 13. Non-erasing o-graphs of 𝒪𝒢(Σ, Γ) and typed data
words of 𝒯 𝒟𝒲(Σ, Γ) are in bijection by t2d. Moreover, a non-erasing
o-transduction τ is ℒT -definable iff t2d(τ ) is ℒD -definable. Con-
versely, a language of typed data words L isℒD -definable iff t2d

−1(L)
is ℒT -definable.

The main idea of the proof is to make a bijective syntactic trans-

formation that mimics the encoding t2d: once inconsistent use of

terms have been removed (such as e.g., o(x) ≤out y), terms o
n(x)

are replaced by x , predicates ≤in by ⪯ and ≤out by ≤. Hence, this

theorem and the decidability of ℒT (Thm. 8) gives the following

corollary.

Corollary 14. Over typed data words, the logic ℒD has a decidable
satisfiability problem.

As a remark, we also note that thanks to the correspondence be-

tween transductions and data words and someminormanipulations,

we can also obtain the decidability of FO
2[≤in,≤out, Sin, o] (for in

the input successor), which is a strict fragment ofℒT , over o-graphs
from the decidability of FO

2[≤,⪯, S⪯] over data words, proved in

[30]. However, the logic FO
2[≤,⪯, S⪯] is a strict fragment of ℒD .

6 Complexity of satisfiability
To achieve decidability results for ℒT , the binary MSO predicates

over the input of ℒT -formulas are decomposed into MSO-types,

that we handle using query automata, as explained in the sketch of

proof in Section 4. A query automaton for a binary MSO formula

ψ (x ,y) is a non-deterministic finite automaton 𝒜 = (Q, Σ, I ,∆, F)
equipped with a set SP ⊆ Q

2

of selecting pairs with the following

8
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property: for any word u ∈ Σ
∗
and any pair of positions (i, j) of

u, we have u ⊧ ψ (i, j) if, and only if, there exists an accepting run

π of 𝒜 and a pair (p,q) ∈ SP such that π reads u(i) in state p and

u(j) in state q. Due to the MSO-formulas and their translation into

query automata, the complexity of the satisfiability of ℒT is non-

elementary, and this is unavoidable [31]. However, if the binary

MSO-formulas are already given as query automata, we get a tight

elementary complexity. Likewise, the binary MSO predicates of the

data word logic ℒD can be also represented as query automata, and

we get the same complexity as ℒT .

Theorem 15. The satisfiability problem ofℒT andℒD is ExpSpace-
complete when the binary MSO predicates are given as query au-
tomata.

Sketch of proof. First, as the translation between ℒT and ℒD is

linear, the complexity of both logics is equivalent. In showing de-

cidability of the satisfiability of ℒT , we obtain that the set of "good"

profile sequences is effectively regular by Prop. 7. With a careful

analysis it is possible to construct a doubly exponential determinis-

tic automaton recognising the good sequences. By checking empti-

ness on-the-fly instead of constructing the automaton, we get the

NLogSpace emptiness of the automaton, and hence the ExpSpace

complexity. Finally, since the logic FO
2[Γ,⪯, S⪯,≤] is ExpSpace-

complete [30], we get ExpSpace-hardness as this logic is a syntactic

fragment of ℒD . □

7 Decidable Extensions of ℒT
We present here two main extensions to ℒT showing its robustness.

The first one consists in adding a block of existential monadic

second-order quantifiers in front of the formula while the second

one consists in adding new predicates to the logic; both extensions

preserve many properties of the logic which we describe below.

Existential ℒT . This new logic is denoted by ∃ℒT and allows us

to capture all non-deterministic MSO-transductions, but we lose

the closure under negation of the logic. Formally, we consider all

formulas of the form ∃X1 . . .∃Xnϕ where ϕ is a formula of ℒT
which can additionally use predicates of the form x ∈ Xi . The
variables Xi range over sets of output, and also input positions.

Proposition 16. Any NMSO-transduction is ∃ℒT -definable.

The synthesis result extends to ∃ℒT using a quite common trick

of considering for a formula ∃X1 . . .∃Xnϕ, the formula ϕ but over

an extended alphabet.

Proposition 17. Any ∃ℒT -transduction can be (effectively) realised
by a regular function.

One result of ℒT does not carry over to ∃ℒT , namely the decid-

ability of the equivalence problem. Indeed ∃ℒT is not closed under

negation and thus equivalence of formulas cannot be reduced to

satisfiability. Equivalence turns out to be undecidable for ∃ℒT and

in fact the validity problem, which asks given a formula if it is

satisfied by all o-graphs and which can be seen as the particular

case of the equivalence with the formula ⊤, is itself undecidable

for ∃ℒT .

Proposition 18. The validity and equivalence problems for ∃ℒT
over o-graphs are undecidable.

Single-origin predicates. One “weak” point of ℒT is that if the

input is restricted to, for instance, a single position, then the ex-

pressive power over the output is only FO
2[≤out]. For instance

the transduction {a} × L is not definable if L not an FO
2[≤out]-

definable language. A more general expression of this problem is

that the class of transductions definable by one-way transducers,

also known as rational transductions [23], is incomparable with

the class of ℒT (resp. ∃ℒT ) transductions. The following extension,
called ℒso

T adds new predicates, called here single-origin predicates,
and we show that it captures all the rational transductions. These

new predicates allow to test any regular property of a subword of

the output word restricted to positions with a given origin position.

Given an o-graph (u, (v,o)) and an input position i of u, we
denote by v∣i the subword of v consisting of all the positions of v
whose origin is i , and we call this word the single-origin restriction
of v to i .

Given any regular language L (represented as an MSO formula

for instance), we define a unary input predicate L(x), whose se-
mantics over an o-graph (u, (v,o)) is the set of input positions

i ∈ dom(u) such that v∣i ∈ L. The logic ℒso

T (resp. ∃ℒso

T ) is

the extension of ℒT (resp. ∃ℒT ) with the predicates L(x), for
any regular language L. These predicates can be used just as the

other unary input predicates and using the previous notation we

have ℒso

T ∶= FO
2[Γ,≤out, o,MSObin[≤in, Σ ⊎ {L(x)∣ L regular}]].

For instance, let L denote the language (ab)∗ then the formula

∀out
x a(x) → {even(o(x)) ∧ L(o(x))} states that the origin of

each output position x labelled by a must be even and that the

subword of origin o(x) must be in L.

Proposition 19. Any rational transduction is ℒso

T definable.

Our synthesis result transfers to ℒso

T (and ∃ℒso

T ):

Proposition 20. Any∃ℒso

T -transduction can be (effectively) realised
by a regular function.

Remark 21. From the regular synthesis of ∃ℒso

T , we can deduce

several results which we express in their strongest form: The input

domain of any ∃ℒso

T -transduction is effectively regular, the satisfia-

bility problem for ∃ℒso

T is decidable, the equivalence problem for

ℒso

T is decidable. Finally, given a functional transduction, it is regu-

lar if and only if it is ∃ℒso

T -definable, and, given an ∃ℒso

T sentence

ϕ, it is decidable whether ⟦ϕ⟧o is functional.

Extended logics over data words.We define similarly the exten-

sions ∃ℒD , ℒ
sd

D and ∃ℒsd

D of the logic ℒD and we obtain the same

transfer results as in Thm. 13. In terms of data, the single-origin

predicates become single datum predicates (sd) which can specify

any regular property over a subword induced by a single datum.

8 Summary and Discussion
In this paper, we have introduced an expressive logic to define trans-
ductions, which we believe is a great tool from both a theoretical

and a more practical point of view. It allows for high-level speci-

fication of transductions, while having some good properties for

synthesis. As an interesting side contribution, we obtain a new char-

acterisation of the class of regular transductions, as the (functional)

transductions definable in ℒT (and its extensions up to ∃ℒso

T ). The

expressiveness and decidability frontiers on the logic ℒT and its

extensions are summarised in Fig. 4. We obtained tight complex-

ity results for satisfiability of ℒT both in the case of binary input
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Figure 4. Summary of models for transductions and their inclu-

sions. The lines are decidability frontiers.

predicates given by MSO-formulas (non-elementary) or automata

(ExpSpace). We have also shown that slightly extending the ex-

pressiveness by adding the successor over output positions leads

to undecidability.

Another question is the definition of an automata model equiva-

lent to ℒT , or even to MSOo. Automata for data words have been

defined [7, 26], but none of these models capture ℒD .

The equivalence problem for ℒT is origin-dependent. One could

relax it by projecting away the origin information: given two ℒT -
formulas ϕ1,ϕ2, are the origin-free transductions they define equal,

i.e. ⟦ϕ1⟧ = ⟦ϕ2⟧ ? This (origin-free) equivalence problem is known

to be decidable for regular functions [21], and undecidable for

1NFT (and hence 2NFT) [20] as well as NMSOT [3]. It is shown

by reduction from the Post Correspondence Problem and it turns

out that the transductions constructed in the reduction of [20] are

definable in ℒT , proving undecidability for ℒT as well. An inter-

esting line of research would be to consider less drastic relaxations

of the equivalence problem with origin, by comparing transduc-

tions with similar origin, as done for instance in [17] for rational

relations. Similarly, the model-checking of two-way transducers

against MSOo-sentences is decidable, but it is again origin-sensitive.

Instead, the origin-free version of this problem is to decide whether

for all the pairs of words (u,v) defined by a two-way transducerT ,
there exists some origin mapping o such that the o-graph (u,v,o)
satisfies some formula ϕ . Once again, it is possible to show, by

reducing PCP, that this relaxation yields undecidability, but it could

be interesting to consider a stronger problem where the origin

of T is “similar” to the origin specified in ϕ. A related problem is

the satisfiability of logics where two or more origin mappings are

allowed.

Another direction would be extending the logic to other struc-

tures (e.g. trees or infinite words), and other predicates over output

positions. However, one has to be careful since the data point of

view shows how close we are to undecidability (e.g. over data words,
FO

2

with successor over data and positions is undecidable [25]).

Finally, we have established a tight connection between trans-

ductions and data words, and thus a new decidable logic for data

words. The data point of view allowed us to get decidability of the

transduction logic ℒT , inspired by the decidability result of [30].

Conversely, the logic ℒD extends the known results on data words

by adding MSO predicates on the ordered and labelled data. We

would like to investigate if further results from the theory of trans-

ductions can be translated into interesting results in the theory of

data words.
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