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Abstract
We study the category Cstabm of measurable cones and measurable
stable functions—a denotational model of an higher-order language
with continuous probabilities and full recursion [7]. We look at
Cstabm as a model for discrete probabilities, by showing the exis-
tence of a cartesian closed, full and faithful functor which embeds
probabilistic coherence spaces—a fully abstract denotational model
of an higher language with full recursion and discrete probabili-
ties [8]—into Cstabm. The proof is based on a generalization of
Bernstein’s theorem from real analysis allowing to see stable func-
tions between discrete cones as generalized power series.
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1 Introduction
Probabilistic reasoning allows us to describe the behavior of sys-
tems with inherent uncertainty, or on which we have an incomplete
knowledge. To handle statistical models, we can employ probabilis-
tic programming languages: they give us tools to build, evaluate and
transform those models. While it is sometimes enough to consider
discrete probabilities, we may also want to model systems where
the underlying space of events has inherent continuous aspects: for
instance in hybrid control systems [1], as used e.g. in flight man-
agement. In the machine learning community [10, 12], statistical
models are also used to express our beliefs about the world, that we
may then update using Bayesian inference—the ability to condition
values of variables via observations.

As a consequence, several probabilistic continuous languages
have been introduced and studied, such as Church [11], Angli-
can [19], as well as formal operational semantics for them [2].
Giving a fully abstract denotational semantics to a higher-order
probabilistic language with full recursion, however, has proved to
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be harder than in the non-probabilistic case. For discrete probabili-
ties, there are two known such fully abstract models: in [5], Danos
and Harmer introduced a fully abstract denotational semantics of a
probabilistic extension of idealized Algol, based on game semantics;
and in [4] Ehrhard, Pagani and Tasson showed that the category
Pcoh of probabilistic coherence spaces gives a fully abstract model
for PCF⊕ , a discrete probabilistic variant of Plotkin’s PCF.

While we currently don’t know any fully abstract denotational
semantics for a higher-order language with full recursion and con-
tinuous probabilities, several denotational models have been in-
troduced. The pioneering work of Kozen [13] gave a denotational
semantics to a first-order while-language endowed with a random
real number generator. In [18], Staton et al give a denotational
semantics to an higher-order language: they first develop a dis-
tributive category based on measurable spaces as a model of the
first-order fragment of their language, and then extend it into a
cartesian closed category using a standard construction based on
the functor category. Recently, Ehrhard, Pagani and Tasson intro-
duced in [7] the category Cstabm, as a denotational model of an
extension of PCF with continuous probabilities. It is presented as a
refinement with measurability constraints of the category Cstab of
abstract cones and so-called stable functions between cones, con-
sisting in a generalization of absolutely monotonic functions from
real analysis.

Here, we look at the category Cstabm from the point of view
of discrete probabilities. It was noted in [7] that there is a natural
way to see any probabilistic coherent space as an object of Cstab.
In this work, we show that this connection leads to a full and
faithful functor F from Pcoh!—the Kleisli category of Pcoh—into
Cstab. We do that by showing that every stable function between
probabilistic coherent spaces can be seen as a power series, using
McMillan’s extension [15] to an abstract setting of Bernstein’s
theorem for absolutely monotonic functions. We then show that
this functor F is cartesian closed, i.e. respects the cartesian closed
structure of Pcoh!. In the last part, we turn F into a functor Fm :
Pcoh! → Cstabm, and we show that Fm too is cartesian closed.
To sum up, the contribution of this paper is the construction of
a cartesian closed full embedding from Pcoh! into Cstabm. Since
Pcoh! is known to be a fully abstract denotational model of PCF⊕ ,
an immediate corollary is that Cstabm too is a fully abstract model
of PCF⊕ .

An extended version of this paper with more details is available
online [3].

2 Discrete and Continuous Probabilistic
Extension of PCF: an Overview.

A simple way to add probabilities to a (higher-order) programming
language is to add a fair probabilistic choice operator to the syntax.
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Such an approach has been applied to various extensions of the
λ-calculus [14]. To fix ideas, we give here the syntax of a (minimal)
probabilistic variant of Plotkin’s PCF [16], that we will call PCF⊕ .
It is a typed language, whose types are given by: A ::= N | A→
A, where N is the base type representing naturals numbers. The
programs are generated by the following grammar:

M,N ∈ PCF⊕ ::= x | λxA ·M | (MN ) | (YN ) | let(x ,M,N )

| ifz (M,N ,L) | n | succ (M ) | pred (M ) | M ⊕ N .

The operator ⊕ is the fair probabilistic choice operator, Y is a recur-
sion operator, and n ranges over natural numbers. The ifz construct
tests if its first argument (of type N ) is 0, reduces to its second
argument if it is the case, and to its third otherwise. We endow this
language with a natural operational semantics [8], that we choose
to be call-by-name. However, for expressiveness we need to be able
to simulate a call-by-value discipline on terms of ground type N : it
is enabled by the let-construct.

We can see that the kind of probabilistic behavior captured by
PCF⊕ is discrete, in the sense that it manipulates distributions on
countable sets. In [4], Ehrhard and Danos introduced a model of
Linear Logic designed to model discrete higher-order probabilistic
computations: the category Pcoh of probabilistic coherence spaces
(PCSs). It has been shown in [8] that Pcoh!, the Kleisli category of
Pcoh is a fully abstract model of PCF⊕ , while the Eilenberg-Moore
category of Pcoh is a fully abstract model of a probabilistic variant
of Levy’s call-by-push-value calculus.

We give here some examples to illustrate the denotational se-
mantics of PCF⊕ in Pcoh!. Basically, the denotation of a program
consists of a vector on RX+ , where X is the countable set of possible
outcomes. For instance, the denotation of the program 0⊕ 1 of type
N is the vector x ∈ RN+ , defined by x0 = 1

2 , x1 =
1
2 , and xk = 0 for

k < {0, 1}. Morphisms in Pcoh!, on the other hand, can be seen as
analytic functions (i.e. power series) between real vector spaces.
Let us look at the denotation of the simple PCF⊕ program below:

M := λxN ·
(
0 ⊕ ifz(x , 1, ifz(x , 0,Ω))

)
,

where Ω is the usual encoding of a never terminating term using the
recursion operator. The denotation ofM consists of the following
function RN+ → RN+ :

f (x )k =




1
2 +

1
2
∑
i,0 xi · x0 if k = 0;

1
2x0 if k = 1;
0 if k < {0, 1}.

We can see that f (x )k coincides with the probability of obtaining
k if we pass toM a term N with x as denotation. A monomial of the
form α ·xi1 . . . xin expresses that the following event has probability
α to occur: M extracts n samples from N , and the result of these
(potentially distinct) samplings, seen as a multiset, is [i1, . . . , in].
Observe that f here is a polynomial in x ; however since we have
recursion in our language, there are programs that do an unbounded
number of calls to their arguments: then their denotations are not
polynomials anymore, but they are still analytic functions. It has to
be noted that the analytic nature of Pcoh! morphisms plays a key
role in the proof of full abstraction for PCF⊕ .

Observe that this way of building a model for PCF⊕ is utterly
dependent on the fact that we consider discrete probabilities over a
countable sets of values. In recent years, however, there has been
much focus on continuous probabilities in higher-order languages,

with the aim of handling classical mathematical distributions on
reals, as for instance normal or Gaussian distributions, that are
widely used to build generic physical or statistical models, as well
as expressing transformations over these distributions. An example
of such language is PCFsample, defined by Ehrhard, Pagani and
Tasson in [7], that can be seen as a continuous counterpart to
PCF⊕ . The base type of PCFsample is the real type R, and types are
generated by: A ::= R | A → A. The programs are generated by
the grammar below:

M,N ∈ PCFsample ::= x | λxA ·M | (MN ) | (YN )

| let(x ,M,N ) | ifz (M,N ,L) | r | sample | f (M1, . . . ,Mn ),

where r is any real number, and f is in a fixed countable set of
measurable functions Rn → R. The constant sample stands for
the uniform distribution over [0, 1]. Observe that since we can
choose arbitrarily the countable set of measurable functions we
take as primitives, we can encode classical probability distribu-
tions as soon as they can be obtained in a measurable way from
the uniform distribution, as verified for instance by Gaussian or
normal distributions. This language is actually expressive enough
to simulate other probabilistic features, as for instance Bayesian
conditioning, as highlighted in [7]. Moreover, we can argue it is also
more general than PCF⊕ : first it allows to encode integers (since
N ⊆ R) and basic arithmetic operations over them. Secondly, since
the orders operator ≥: R × R→ {0, 1} ⊆ R is measurable, we can
construct in PCFsample terms like this one:

ifz(≥(sample,
1
2
),M,N ), (1)

which encodes a fair choice betweenM and N .
We see, however, that Pcoh! cannot be a model for PCFsample:

indeed it would only allow to represent discrete distributions over
reals, but not continuous ones. In [7], Ehrhard, Pagani and Tasson
introduced the cartesian closed category Cstabm of measurable
cones and measurable stables functions, and showed that it pro-
vides an adequate and sound denotational model for PCFsample.
The denotation of the base type R is taken as the set of finite mea-
sures over reals, and the denotation of higher-order types is then
built naturally using the cartesian closed structure. From there,
it is natural to ask ourselves: how good Cstabm is as a model of
probabilistic higher-order languages ?

The present paper is devoted to give a partial answer to this ques-
tion: in the case where we restrict ourselves to a discrete fragment
of PCFsample. To make more precise what we mean, let us consider
a continuous language with an explicit discrete fragment which has
both R and N as base types: we consider the language PCF⊕,sample
with all syntactic constructs of both PCF⊕ and PCFsample, as well
as an operator real with the typing rule:

Γ ⊢ M : N
Γ ⊢ real(M ) : R

designed to enable the continuous constructs to act on the discrete
fragment, by giving a way to see any distribution on N as a distri-
bution on R. The language PCF⊕,sample is designed to talk about
approximating by discrete tests the programs in PCFsample: for in-
stance if we consider a PCFsample program M : R → R, we can
approximate its behavior by considering all programs λx ·KM (Lx ) :
N → N , where L and K are PCF⊕,sample programs of type respec-
tivelyN → R, andR → N . Observe that the programK may be built
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using for instance the order operators as in (1), while the existence
of such programs L is guarantee by our real(·) construct. We can
extend in a natural way the denotational semantics of PCFsample
given in [7] to PCF⊕,sample: in the same way that the denotational
semantics of R is taken as the set of all finite measures on R, we
take the denotational semantics of N as the set Meas(N) of all finite
measures overN. We take as denotational semantics of the operator
real the function: ⟦real⟧Cstabm : µ ∈ Meas(N) 7→ (A ∈ ΣR 7→∑
n∈N∩A µ (n)) ∈ Meas(R).We will see later that this function is in-

deed a morphism in Cstabm (Meas(N),Meas(R)). What we would
like to know is: what is the structure of the sub-category of Cstabm
given by the discrete types of PCF⊕,sample, i.e generated inductively
by ⟦N ⟧Cstabm ,⇒, × ?

The starting point of our work is the connection highlighted
in [7] between PCSs and complete cones: every PCSs can be seen as
a complete cone, in such a way that the denotational semantics of
N in Pcoh! becomes the set of finite measures overN. We formalize
this connection by a functor Fm : Pcoh! → Cstabm. However, to
be able to use Pcoh! to obtain information about the discrete types
sub-category of Cstabm, we need to know whether this connec-
tion is preserved at higher-order types: does the⇒ construct in
Cstabm make some wild functions not representable in Pcoh! to
appear, e.g. not analytic? In this paper, we show that this is not the
case, meaning that the functor Fm is full and faithful, and cartesian
closed. Since Pcoh! is a fully abstract model of PCF⊕ , it means that
the discrete fragment of PCF⊕,sample is fully abstract in Cstabm.
More generally, it tells us also that for any PCFsample programM ,
regardless of the continuous computations it does, every approxi-
mation ofM by discrete tests has for denotation in Cstabm a power
series: hence we are able to gather information on the behavior of
M by looking only at power series, that are much easier to handle
that general functions between cones.

3 Cones and Stable Functions
The category of measurable cones and measurable, stable functions
(Cstabm), was introduced by Ehrhard, Pagani, Tasson in [7] as a
model for PCFsample. They actually introduced it as a refinement of
the category of complete cones and stable functions, denoted Cstab.
Stable functions on cones are a generalization of well-known abso-
lutely monotonic functions in real analysis: they are those functions
f : [0,∞) → R+ which are infinitely differentiable, and such that
moreover all their derivatives are non-negative. The relevance of
such functions comes from a result due to Bernstein: every abso-
lutely monotonic function coincides with a power series. Moreover,
it is possible to characterize absolutely monotonic functions with-
out explicitly asking for them to be differentiable: it is exactly those
functions such that all the so-called higher-order differences, which
are quantities defined only by sum and subtraction of terms of the
form f (x ), are non-negative. (see [20], chapter 4). The definition of
pre-stable functions in [7] generalizes this characterization.

In this section, we first recall basic facts about cones and stable
functions, all extracted from [7]. Then we will prove a generaliza-
tion of Bernstein’s theorem for pre-stable functions over a particular
class of cones, which is the main technical contribution of this paper.
We will do that following the work of McMillan on a generalization
of Bernstein’s theorem for functions ranging over abstract domains
endowed with partition systems, see [15].

3.1 Cones
The use of a notion of cones in denotational semantics to deal with
probabilistic behavior goes back to Kozen in [13]. We take here the
same definition of cone as in [7].

Definition 3.1. A coneC is a R+-semimodule given together with
an R+ valued function ∥ · ∥C called norm of C , and verifying:(

x + y = x + y′
)
⇒ y = y′ ∥αx ∥C = α ∥x ∥C

∥x + x ′∥C ≤ ∥x ∥C + ∥x
′∥C ∥x ∥C = 0⇒ x = 0

∥x ∥C ≤ ∥x + x
′∥C

The most immediate example of cone is the non-negative real
half-line, when we take as norm the identity. Another example is
the positive quadrant in a 2-dimensional plan, endowed with the
euclidian norm. In a way, the notion of cones generalizes spaces
where all elements are non-negative. This analogy gives us a generic
way to define a pre-order, using the + of the cone structure.

Definition 3.2. Let be C a cone. Then we define a partial order
⪯C on C by: x ⪯C y if there exists z ∈ C , with y = x + z.

We define BC as the set of elements in C of norm smaller or
equal to 1. We will sometimes call it the unit ball of C . Moreover,
we will also be interested in the open unit ball B◦C , defined as the
set of elements of C of norm smaller than 1.

In [7], the authors restrict themselves to cones verifying a com-
pleteness criterion: it allows them to define the denotation of the
recursion operator in PCFsample, thus enforcing the existence of
fixpoints.

Definition 3.3. A cone C is said to be:
• sequentially complete if any non-decreasing sequence (xn )n∈N
of elements ofBC has a least upper bound supn∈N xn ∈ BC ;
• directed complete if for any directed subset D of BC , D has
a least upper bound supD ∈ BC;
• a lattice cone if any two elements x ,y ofC have a least upper
bound x ∨ y.

Observe that a directed-complete cone is always sequentially
complete. We illustrate Definition 3.3 by giving the cone used in [7]
as the denotational semantics of the base type R in PCFsample.

Example 3.4. We take Meas(R) as the set of finite measures over
R, and the norm as ∥µ∥Meas(R) = µ (R). Meas(R) is a directed-
complete cone. For every r ∈ R, the denotational semantics of the
term r in [7] is δr , the Dirac measure with respect to r defined by
taking δr (U ) = 1 if r ∈ U , and δr (U ) = 0 otherwise.

In a similar way, we define Meas(X ) as the directed-complete
cone of finite measures over X , for any measurable space X .

In [7], the authors ask for the cones they consider only to be
sequentially complete. It is due to the fact they want to add mea-
surability requirements to their cones, and as a rule, sequential
completeness interacts better with measurability than directed com-
pleteness since measurable sets are closed under countable unions,
but not general unions. In this work however, we are only interested
in cones arising from probabilistic coherence spaces in a way we
will develop in Section 4. Since those cones have an underlying
discrete structure, we will be able to show that they are actually
directed complete. We will need this information, since we will apply
McMillan’s results [15] obtained in the more general framework
of abstract domains with partitions, in which he asks for directed
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completeness. That’s because directed completness for cones also
enforces the existence of infinum, as stated in the lemma below,
whose proof can be found in the long version.

Lemma 3.5. If a cone C is:

• sequentially complete, then every non-increasing sequence
(xn )n∈N has a greatest lower bound inf (xn )n∈N;
• directed complete, then for everyD ⊆ C directed for the reverse
order, D has a greatest lower bound inf D.

3.2 Pre-Stable Functions between Cones
As said before, the notion of pre-stable function is a generalization
of the notion of absolutely monotonic real functions.

First, we want to be able to talk about those u⃗ = (u1, . . . ,un ),
such that ∥x +

∑
ui ∥C ≤ 1 for a fixed x ∈ BC , and n ∈ N. To

that end, we introduce a cone Cnx whose unit ball is exactly such
elements. It is an adaptation of the definition given in [7] for the
case where n = 1, and we show in the same way that it is indeed a
cone.

Definition 3.6 (Local Cone). Let beC a cone, n ∈ N, and x ∈ B◦C .
We call n-local cone at x , and we denote Cnx the cone Cn endowed
with the following norm:

∥ (u1, . . . ,un )∥Cn
x
= inf {

1
r
| x + r ·

∑
1≤i≤n

ui ∈ BC ∧ r > 0}.

We can show that whenever C is a directed-complete cone, Cnx
is also directed-complete. We first give an inductive definition of
pre-stability, following [7].

Definition 3.7. A function f : BC → D is n-pre-stable when:
• f is non-decreasing;
• if n > 0, ∀x ∈ BC , y ∈ BC1

x 7→ f (x + y) − f (x ) is (n − 1)
pre-stable.

f is pre-stable if it is n-pre-stable for every n ∈ N.

In [7], the authors also give an alternative, handier to use, char-
acterization of pre-stable functions, which is the one that we will
use in the following. The idea, similarly to what is done in real
analysis, is to define so-called higher-order differences, and force
them to be non-negative. For n ∈ N, we use P+ (n) (respectively
P− (n)) for the set of all subsets I of {1, . . . ,n} such that n − card(I )
is even (respectively odd). Since we have only explicit addition,
not subtraction, we define separately the positive part ∆n+ and the
negative part ∆n− of those differences: For f : BC → D, x ∈ BC ,
u⃗ ∈ BCnx , and ϵ ∈ {−,+}, we define:

∆nϵ ( f ) (x | u⃗) =
∑

I ∈Pϵ (n)

f (x +
∑
i ∈I

ui ).

Definition 3.8. We say that f : BC → D is pre-stable if, for every
n ∈ N, for every x ∈ BC , u⃗ ∈ BCnx , it holds that:

∆n− ( f ) (x | u⃗) ≤ ∆n+ ( f ) (x | u⃗).

If f is pre-stable, we will set ∆n f (x | u⃗) = ∆n+ f (x | u⃗)−∆
n
− f (x |

u⃗). Observe that the quantity ∆n f (x | u⃗) is actually symmetric in
u⃗, i.e. stable under permutations of the coordinates of u⃗.

Definition 3.9. A function f : BC → D is called a stable function
from C to D if it is pre-stable, sequentially Scott-continuous, and
moreover there exists λ ∈ R+ such that f (BC ) ⊆ λ ·BD.

Definition 3.10. Cstab is the category whose objects are sequen-
tially complete cones, and morphisms from C to D are the stable
functions f from C to D such that f (BC ) ⊆ BD.

In [7], the authors endow Cstabwith a cartesian closed structure.
The product cone is defined as

∏
i ∈I Ci = {(xi )i ∈I | ∀i ∈ I ,xi ∈ Ci },

and ∥x ∥∏
i∈I Ci = supi ∈I ∥xi ∥Ci . The function cone C ⇒ D is the

set of all stable functions, with ∥ f ∥C⇒D = supx ∈BC ∥ f (x )∥D . It
was also shown in [7] that these cones are indeed sequentially
complete, and that the least upper bound in C ⇒ D is computed
pointwise. We will use also the cone of pre-stable functions fromC
to D, which is also sequentially complete.

3.3 A generalization of Bernstein’s theorem for pre-stable
functions

In [15], McMillan generalized Bernstein’s Theorem on absolutely
monotonic function from real analysis to general domains with
partitions systems. Here, we present its result in the more restricted
setting of pre-stable functions on directed-complete lattice cones.
Its approach consists in first defining an analogue of derivatives for
pre-stable functions, and then showing that pre-stable functions
can be written as the infinite sum generated by an analogue of
Taylor expansion on B◦C . We give here the main steps of the
construction directly on cones, and highlight some properties of
the Taylor series which are true for cones, but not in the general
framework McMillan considered.

3.3.1 Derivatives of a pre-stable function
We are now going, following McMillan [15], to construct deriva-
tives for pre-stable functions on directed complete cones. This
construction is based on the use of a notion of partition: a par-
tition of x ∈ BC is a multiset π = [u1, . . . ,un] ∈ Mf (C ) such
that x =

∑
1≤i≤n ui . We write π ∼ x when the multiset π is a

partition of x . We will denote by + the usual union on multiset:
[y1, . . . ,yn]+[z1, . . . , zm] = [y1, . . . ,yn , z1, . . . , zm]. We call P (x )
the set of partitions of x .

Definition 3.11 (Refinement Preorder). If π1, π2 are in P (x ), we
says that π1 ≤ π2 if π1 = [u1, . . . ,un], and π2 = α1 + . . . + αn with
each of the αi a partition of ui .

Observe that when π1 and π2 are partition of x , π2 ≤ π1 means
that π1 is a more finely grained decomposition of x . If u⃗ is an n-tuple
in BC , we extend the refinement order to P (u⃗) = P (u1) × . . . ×
P (un ).

Lemma 3.12. Let C be a lattice cone, and x ∈ C . Then P (x ) is a
directed set.

The proof of Lemma 3.12 may be found in the long version.
Observe that, as a consequence, the refinement preorder turns also
P (u⃗) into a directed set.

Definition 3.13 (from [15]). LetC be a lattice cone, D a cone, and
let f : BC → D be a pre-stable function. Then for every x ∈ BC ,
and u⃗ = (u1, . . . ,un ) ∈ BCnx , we define Φ

f ,n
x,u⃗

: P (u⃗) → D as:

Φ
f ,n
x,u⃗

(π1, . . . πn ) =
∑
y1∈π1

. . .
∑

yn ∈πn

∆n f (x | y1, . . . ,yn ).

It holds (see [15] for more details) that Φf ,n
x,u⃗

is a non-increasing
function whenever f is pre-stable. Since P (u⃗) is a directed set (by
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Lemma 3.12), Φf ,n
x,u⃗

has a greatest lower bound whenever D is a
directed-complete cone.

Definition 3.14 (from [15]). Let be C a lattice cone, D a directed-
complete lattice cone, and f : BC → D a pre-stable function. Let
be u⃗ ∈ BCnx . Then the derivative of f in x at rank n towards the
direction u⃗ is the function Dn f (x | ·) : BCnx → D defined as

Dn f (x | u⃗) = inf
π⃗ ∈P (u⃗ )

Φ
f
x,u⃗

(π⃗ ).

In order to highlight the link with differentiation in real analysis,
we illustrate Definition 3.14 on the basic case where f : R+ → R+,

Example 3.15. We takeC and D as the positive real half-line, and
x ∈ [0, 1). Let be h such that x + h ≤ 1. Then:

D1 f (x | h) = inf
π with π∼h

∑
y∈π

f (x + y) − f (x ).

Since f is pre-stable hence an absolutely monotonic function on
reals, f is convex, and moreover differentiable (see [20]). From
there, by considering a particular family of partitions, we can show
that D1 f (x | h) = h · f ′(x ) (the proof can be found in the long
version).

Lemma 3.16 (from [15]). Let C be a lattice cone, D a directed com-
plete cone, f a pre-stable function fromC to D. Let be x ∈ B◦C . Then
Dn f (x | ·) is a symmetric function B(Cnx ) → D such that moreover:
• 0 ≤ Dn f (x | u⃗) ≤ ∆n f (x | u⃗);
• both u⃗ 7→ Dn f (x | u⃗) and u⃗ 7→ ∆n f (x | u⃗) −Dn f (x | u⃗) are
pre-stable functions from Cnx to D.

We have seen in Example 3.15 that our so-called derivatives
of pre-stable functions play the same role as the differential of a
differentiable function, which are actually linear operators d f nx :
Rn → R. While the abstract domains considered in [15] do not
have to be R+ semi-modules, so have no notion of linearity, we are
able to show in our case (see the long version for the proof) that
the Dn f are linear in the sense of Lemma 3.17 below.

Lemma 3.17. Let C , D be two directed complete lattice cones, x ∈
B◦C .
• Let f : BC → D be a pre-stable function. Then Dn f (x | ·) :

B(Cnx ) → D is n-linear, in the sense that:

Dn f (x | u1, . . . , λ · v +w, . . .un ) = λ · Dn f (x | u1, . . . ,v, . . .un )

+ Dn f (x | u1, . . . ,w, . . .un ).

• For any u⃗ ∈ B(Cnx ), the function f ∈ Cstab(C,D) 7→ Dn f (x |
u⃗) ∈ D is linear and directed Scott-continuous.

The proof of Lemma 3.17 can be found in the long version. The
linearity of the derivatives means that for every x ∈ B◦C , we can
extend Dn f (x | ·) to a function Cx

n → D. We will use implicitly
this extension in the following, especially in Definition 3.18.

3.3.2 Taylor Series for pre-stable functions
We have seen above that theDn f are a notion of differential for pre-
stable functions. Following further this idea, McMillan defined an
analogue to the Taylor expansion. We give here a slightly different,
but equivalent, formulation, taking advantage of the linearity of
the derivatives for cones (the original formulation, as well as the
proof of equivalence, are detailed in the long version). In all this
section C and D are going to be directed complete lattice cones,
and f : BC → D a pre-stable function.

Definition 3.18. Let be x ∈ B◦C . We call Taylor partial sum of f
in x at the rank N the function T f N (x | ·) : BC1

x → D defined as:

T f N (x | y) = f (x ) +
N∑
k=1

1
k!
Dk f (x | y, . . . ,y).

The next step consists in establishing that the TN f are actually
a non-increasing bounded sequence in the cone of pre-stable func-
tions from C to D, which will allow to define the Taylor series of f ,
as the supremum of the TN f (see the long version for more details
on the proof).

Lemma 3.19. Let be y is in B◦C , and x in BC1
y . Then ∀N ∈ N,

T f N (x | y) ≤ f (x + y), and the function (x ∈ BC1
y 7→ f (x + y) −

T f N (x | y)) is pre-stable.

Since we have shown that the partial sum of the Taylor series
of f was a bounded non-decreasing sequence in the sequentially
complete cone of pre-stable functions from C1

x to D, we can now
define the Taylor series of f as its supremum.
Definition 3.20. We define T f (x | ·) : BC1

x → D the Taylor
series of f in x as: T f (x | y) = supN ∈NT f N (x | y).

3.3.3 Extended Bernstein’s theorem
McMillan’s main result is to show that f coincides with its Taylor
series in 0 on the open unit ball of the cone. The proofs are done
in [15], and a sketch can be found in the long version.

Proposition 3.21 (Extended Bernstein’s Theorem). Let be C , D
directed-complete lattice cones, and f : BC → D a pre-stable func-
tion. Then for every x ∈ B◦C , it holds that f (x ) = T f (0 | x ).

4 Cstab is a conservative extension of Pcoh!
Probabilistic coherence spaces (PCS) were introduced by Ehrhard
and Danos in [4] as a model of higher-order probabilistic computa-
tion. It was successful in giving a fully abstract model both of PCF⊕ ,
and of a discrete probabilistic extension of Levy’s Call-by-Push-
Value. In this section, we present briefly basic definitions from [4]
and highlight an embedding from PCSs into cones.

4.1 Probabilistic Coherence Spaces
The definition of the PCSmodel of Linear Logic follows the tradition
initiated by Girard with Coherence Spaces in [9], and followed for
instance by Ehrhard in [6] when defining hypercoherence spaces.
A coherent space interpreting a type can be seen as a symmetric
graph, and the interpretation of a program of this type is a clique
of this graph. Interestingly, such a graph A can be alternatively
characterized by giving its set of vertices (that we will call web),
and a family of subsets of this web, meant to be the family of the
cliques of A. Then we know that an arbitrary family of subsets of a
given web arises indeed as a family of cliques for some graph when
some duality criterion is verified.

PCSs are designed to express probabilistic behavior of programs.
As a consequence, a clique is not a subset of the web anymore, but
a quantitative way to associate a non-negative real coefficient to
every element in the web.

Definition 4.1 (Pre-Probabilistic Coherent Spaces). A Pre-PCS is
a pair X = ( |X |, PX ), where |X | is a countable set called web of X ,
PX is a subset of ⊆ R |X |+ whose elements are called cliques of X .
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We need here to introduce some notations to deal with infinite
dimensional R-vector spaces. Given a countable web A, and a an
element of A, we denote ea the vector in RA+ which is 1 in a, and
0 elsewhere. We are also going to introduce a scalar product on
vectors in RA+ : if u,v ∈ RA+ , we will denote ⟨u,v⟩ =

∑
a∈ |X | uava ∈

R ∪ {∞}. Moreover, if A and B are countable sets, x ∈ RA×B+ , and
u ∈ RA+ , we denote by x · u the vector in (R+ ∪ {∞})

B given by
(x · u)b =

∑
a∈A xa,bua for every b ∈ B.

We are going to give examples of pre-PCS modeling discrete
data-types. First, we define a pre-PCS 1 to correspond to unit type.
Since unit-type programs have only one possible outcome (that
they can reach or not), 1 has only one vertex: |1| = {⋆}. We want
the denotation of a unit-type program to express its probability
of termination: consequently, we take the set of cliques P1 as the
interval [0, 1]. Let us now look at what happens when we consider
programs of type N : a program can now have a countable numbers
of possible outcomes, so the web will consist of N, and cliques will
be sub-distributions on these vertices.

Example 4.2 (Pre-PCS of Natural Numbers). We define the Pre-
PCS NPcoh by taking |N|Pcoh = N, and PNPcoh = {u ∈ RN+ |∑
n∈N un ≤ 1}. It corresponds to the denotational semantics of the

base type N of PCF⊕ in Pcoh!.

We now need to give a quantitative bi-duality criterion, to specify
which one of the PX ⊆ R |X |+ are indeed valid families of cliques.
To do that, we first define a duality operator : if X = ( |X |, PX ) is
a pre-PCS, we define the pre-PCS (X )⊥ = ( |X |, {u ∈ R |X |+ | ∀v ∈
PX , ⟨u,v⟩ ≤ 1}).

Definition 4.3 (Probabilistic Coherent Spaces). A pre-PCS X is a
PCS if ((X )⊥)⊥ = X and moreover the following technical condi-
tions hold:
• ∀a ∈ |X |, ∃λ > 0 such that λea ∈ PX ;
• ∀a ∈ |X |, ∃M ≥ 0, such that ∀u ∈ PX , ua ≤ M .

We may see easily that both 1 and NPcoh are indeed PCSs.
As highlighted in Example 4.4 from [7], we can associate in

a generic way a cone to any PCS: we consider the extension of
the space of cliques by all uniform scaling by positive reals. We
formalize this idea in Definition 4.4 below.

Definition 4.4. Let be X a PCS. We define a cone CX as the R+
semi-module {α · x | α ≥ 0,x ∈ PX } where + is the usual addition
on vectors. We endow it with ∥ · ∥CX defined by:

∥x ∥CX = sup
y∈P (X )⊥

⟨x ,y⟩ = inf {
1
r
| r · x ∈ PX }.

It is easily seen that it is indeed a cone (the proof uses the so-
called technical conditions from Definition 4.3); we will call discrete
cones all cones obtained from some PCS. We can see that BCX
consists exactly of the set PX of cliques of X . Looking at the cone
order ⪯CX , as defined in Definition 3.2, we see that it coincides on
PX with the pointwise order in R |X |+ . It is relevant since we know
already from [4] that PX is a bounded-complete and ω-continuous
cpo with respect to this pointwise order.

Lemma 4.5. For every PCSX ,CX is a directed-complete lattice cone.

4.2 The Category Pcoh.

Intuitively a morphism in Pcoh(X ,Y ) is a linear map from R |X |+ to
R |Y |+ preserving the cliques.

Definition 4.6 (Morphisms of PCSs). Let X , Y be two PCSs. A
morphism of PCSs between X and Y is a matrix x ∈ R |X |× |Y |+ such
that for every u ∈ PX , it holds that x · u ∈ PY .

We now illustrate Definition 4.6 by looking at the morphisms
from Bool to itself: they are the x ∈ R{t,f}×{t,f}+ with xt,t + xt,f ≤ 1,
and similarly xf,t + xf,f ≤ 1, i.e. those matrices specifying the tran-
sitions for a probabilistic Markov chain with two states t and f.

We call Pcoh the category of PCSs and morphisms of PCSs. In [4],
it is endowed with the structure of a model of linear logic. We are
only going to recall here partly the exponential structure, since
our main focus will be on the Kleisli category associated to Pcoh.
The construction of the exponential structure is done by defining a
functor !, as well as dereliction and digging making Pcoh a Seely
category, and consequently a model of linear logic. Here, we are
only going to recall explicitly the effect of ! on PCSs. We denote by
Mf ( |X |) the set of finite multisets over the web of X , and we take it
as the web of the PCS !X . If µ ∈ Mf (A), we call support of µ, and we
denote Supp(µ ), the set of elements a is A such that a appears in µ.
Moreover, we will use the following notation: for every x ∈ R |X |+ ,
and µ ∈ Mf ( |X |), we denote x µ =

∏
a∈Supp(µ ) x

µ (a)
a ∈ R+.

Definition 4.7. Let be X a PCS. We define the promotion of x ∈
PX , as the element x ! ∈ RMf ( |X |)

+ given by x !µ = x µ . We define
!X = (Mf ( |X |), {x

! | x ∈ X }⊥⊥).

4.3 The Kleisli Category of Probabilistic Coherence
Spaces

Morphisms in the Kleisli category represent programs that can
use several times their argument, while morphisms in the original
category are linear. The Kleisli category for Pcoh, denoted Pcoh!,
has also PCSs for objects, while Pcoh! (X ,Y ) = Pcoh(!X ,Y ). We
give here a direct characterization of Pcoh! morphisms.

Lemma 4.8 (from [4]). Let be f ∈ RMf ( |X |)×|Y |
+ . Then f is a mor-

phism in Pcoh! (X ,Y ), if and only if for every x ∈ PX , f · x ! ∈ PY .

What Lemma 4.8 tells us is that any f ∈ Pcoh! (X ,Y ) is en-
tirely characterized by the map f̃ : x ∈ PX → f · x ! ∈ PY . We
call f̃ the functional interpretation of the morphism f , and denote
by EX ,Y the set of all functional interpretations of morphisms in
Pcoh! (X ,Y ). It has been shown in [4] that (̃·) is actually a bijec-
tion from Pcoh! (X ,Y ) to EX ,Y ; we will denote by (̃·)

−1
its inverse.

Observe that we can see the maps in EX ,Y as entire series, in the
sense that they can be written as the supremum of a sequence of
polynomials. Indeed, for any morphism f , and x ∈ PX , we can
write:

f̃ (x ) = sup
N ∈N

∑
b ∈ |Y |

(
∑

µ with card(µ )≤N
fµ,b · x

µ ) · eb

As the Kleisli category of the comonad ! in a Seely category,
Pcoh! is a cartesian closed category. We give here explicitly the
construction of the product and arrow constructs: if X and Y are
PCSs, X ⇒ Y is defined by |X ⇒ Y | = Mf ( |X |) × |Y | and P (X ⇒
Y ) = Pcoh! (X ,Y ). If (Xi )i ∈I is a family of PCSs,

∏
i ∈I Xi is defined

by |
∏

i ∈I Xi | = ∪i ∈I {i} × |Xi | and PX = {x ∈ R
|
∏
i∈I Xi |

+ | ∀i ∈
I , πi (x ) ∈ PXi }, where πi (x )a = x (i,a) .
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4.4 A fully faithful functor F : Pcoh! → Cstab.
Recall that Definition 4.4 gave a way to transform a PCS into a cone.
Moreover, as stated in Proposition 4.9 below, a morphism in Pcoh!
can also be transformed into a stable function:
Proposition 4.9. For every f ∈ Pcoh! (X ,Y ), f̃ is a stable function
from CX to CY .

Proof. We know from [4] that f̃ : PX → PY is sequentially Scott-
continuous with respect to the orders ⪯CX , ⪯CY . Moreover f̃ is
pre-stable: it comes from the fact that f̃ can be written as a power
series with all its coefficients non-negative. Finally, we have to
show that f̃ (BCX ) ⊆ BCY . Since BCX = PX , BCY = PY , and
moreover f ∈ Pcoh! (X ,Y ), the result holds by Lemma 4.8. □

Thus we can define a functor F : Pcoh! → Cstab, by taking
F X = CX , and F f = f̃ . As mentioned before, it was shown in [4]
that ·̃ is an injection from Pcoh! (X ,Y ), hence F is a faithful functor.
In the remainder of this section, we are going to show that F is
actually also full, hence makes Cstab a conservative extension of
Pcoh!.

In the following, we fix X and Y two PCSs, and a stable function
д ∈ Cstab(F X ,F Y ). Our goal is to show that there exists a mor-
phism f ∈ Pcoh! (X ,Y ), with д as functional interpretation. First,
recall that we have shown in Lemma 4.5 that for every PCS Z , the
cone F Z is a directed complete lattice cone. It means that all results
in Section 3.3 can be used here: in particular, д has higher-order
derivatives Dnд, which makes Definition 4.10 below valid.

Definition 4.10. We define f ∈ R
Mf ( |X |)×|Y |
+ by taking:

f[a1, ...,ak ],b =
α[a1, ...,ak ]

k!
(
Dkд(0 | ea1 , . . . eak )

)
b
∈ R+,

where αµ = #{(c1, . . . , ck ) ∈ |X |k with µ = [c1, . . . , ck ]}.
We want to show now that f ∈ Pcoh! (X ,Y ), and that f has д as

functional interpretation. The key observation here is that f has
been built in such a way that its functional interpretation coincides
with Tд(0 | ·)—the Taylor series of д defined in Definition 3.20—on
all elements in PX with finite support.
Lemma 4.11. Let be x ∈ PX , such that Supp(x ) = {a ∈ PX | xa >
0} is finite. Then it holds that f · x ! is finite (i.e for every b ∈ |Y |,
( f · x !)b < ∞), and moreover f · x ! = Tд(0 | x ).

Proof. Let A = {a1, . . . ,am } ⊆ |X | be the set Supp(x ). For any
b ∈ |Y |, we can deduce from the definition of f that:

( f · x !)b =
∞∑
k=0

∑
µ=[c1, ...,ck ]∈Mk

f (A)

αµ

k!
· Dkд(0 | ec1 , . . . eck )b · x

µ ,

whereMk
f (A) stands for the set of multisets over A of cardinality k .

Looking at the definition of αµ , we see that this implies:

( f · x !)b =
∞∑
k=0

∑
(c1, ...,ck )∈Ak

1
k!
Dkд(0 | ec1 , . . . eck )b ·

k∏
i=1

xci . (2)

By Lemma 3.17, we know that Dkд(0 | ·) is k-linear. As a conse-
quence, and since x =

∑m
i=1 xci · eci and that moreover A is finite,

we see that (2) implies the result:

( f · x !)b =
∞∑
k=0

1
k!
Dkд(0 | x , . . . x )b = (Tд(0 | x ))b .

□

Since д is a stable function between directed complete lattice
cones, we can apply the generalized Bernstein’s Theorem as stated
in Proposition 3.21.

Lemma 4.12. ∀x ∈ B◦CX such that Supp(()x ) is finite, f · x ! =
д(x ).

Proof. Proposition 3.21 tells us: ∀x ∈ B◦CX , д(x ) = Tд(0 | x ).We
conclude by using Lemma 4.11. □

Using Lemma 4.12, we show now that f̃ and д coincide on PX .

Lemma4.13. ∀x ∈ PX , f ·x ! = д(x ), andmoreover f ∈ Pcoh! (X ,Y ).

Proof. Let be x ∈ PX . We define a sequence (yn )n ∈ N of el-

ements in PX , by taking: (yn )a =



(1 − 1
2n ) · xa if λ(a) ≤ n

0 otherwise,
,

where we have fixed λ an arbitrary enumeration of the elements
of |X |—λ exists since |X | is a countable set. Observe that the se-
quence (yn )n∈N is non-decreasing, with x = supn∈N yn . Since д
is a morphism in Cstab, д is sequentially Scott-continuous, hence
д(x ) = supn∈N д(yn ). Moreover, for every n, yn has finite support
and ∥yn ∥CX < 1. So by using Lemma 4.12: we see thatд(yn ) = f ·y!n .
As a consequence, д(x ) = supn∈N f · y!n . Since moreover, we know
from [4] that both x 7→ x ! and x 7→ u · x are Scott continu-
ous, supn∈N f · y!n = f · x !, and finally we obtain f · x ! = д(x ).
Since д(BCX ) ⊆ BCY , it implies also that f̃ (PX ) ⊆ PY . Thus by
Lemma 4.8 f ∈ Pcoh! (X ,Y ). □

Lemma 4.13 shows that for any morphism д in Cstab(F X ,F Y ),
there exists an f ∈ Pcoh! (X ,Y ) such that F f = д, thus it shows
that F is full.

4.5 F preserves the cartesian structure.
We want now to show that the functor F is cartesian closed, mean-
ing that it embeds the cartesian closed category Pcoh! into the
cartesian closed category Cstab in such a way that:
• F preserves the product: for every family (Xi )i ∈I of PCSs,
F (
∏Pcoh!

i ∈I Xi ) is isomorphic to
∏Cstabm

i ∈I F Xi ;
• F preserves function spaces: for everyX ,Y PCSs,F (X ⇒ Y )
is isomorphic to F X ⇒ F Y .

Lemma 4.14. F preserves cartesian products.

Proof. We fix a family I = (Xi )i ∈I of PCSs. In order to construct
an isomorphism, we have a canonical candidate, given by:

ΨI = ⟨F (πi ) | i ∈ I ⟩ ∈ Cstab(F (

Pcoh!∏
i ∈I

Xi ),

Cstabm∏
i ∈I

F Xi ), (3)

where ⟨·⟩ is the cartesian product on morphisms in Cstab. We show
that ΨI is an isomorphism, i.e. that it has an inverse. The only can-
didate is ΘI : y ∈ B(

∏Cstab
i ∈I F Xi ) 7→ Θ(y) ∈ (F (

∏Pcoh!
i ∈I Xi )),

defined by: ∀i ∈ I ,a ∈ |Xi |,Θ(y)i,a = (yi )a . We see immedi-
ately that ΘI is linear, hence pre-stable, and that moreover it is
Scott-continuous. Besides, it is also preserves the unit ball, since
∀y ∈ BD, ∥ΘI (y)∥

F (
∏Pcoh!
i∈I Xi )

= ∥y∥∏Cstab
i∈I F Xi

(the proof can

be found in the long version). ThusΘI is a morphism inCstab. □

Lemma 4.15. F preserves function spaces.
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Proof. Let X ,Y two PCSs. As previously, there is a canonical candi-
date for the isomorphism: we define ϒX ,Y as the currying in Cstab
of the morphism:

F (X ⇒ Y ) × F X
ΘX⇒Y ,X

−−−−−−−−−→ F (X ⇒ Y × X )
F (evalX ,Y )

−−−−−−−−−−→ F Y ,

where ΘX⇒Y ,X is as defined in the proof of Lemma 4.14 above. Un-
folding the definition, we see that actually: ϒX ,Y : f ∈ BF (X ⇒

Y ) 7→ f̃ ∈ (F X ⇒ F Y ). In section 4.4 we have shown that (̃·)
is a bijection from Pcoh! (X ,Y ) into Cstab(CX ,CY ): it means we
can define ΞX ,Y = (̃·)

−1
the inverse function of ϒX ,Y . From there,

we only have to show that ΞX ,Y is a morphism in Cstab(F X ⇒
F Y ,F X ⇒ Y ). Recall from Section 4.4 that for every multiset
µ = [a1, . . . ,ak ] ∈ Mf ( |X |), and b ∈ |Y |:

ΞX ,Y ( f )µ,b =
αµ

k!
·
(
Dk f (0 | ea1 , . . . eak )

)
b
.

By Lemma 3.17, it holds that for any u⃗ ∈ B(F X )k0 , the func-
tion f ∈ Cstab(F X ,F Y ) 7→ Dk f (0 | u⃗) ∈ F Y is linear and
Scott-continuous. As a consequence, ΞX ,Y too is linear and Scott-
continuous. Moreover, it also preserves the unit ball (see the proof in
the long version), hence is in Cstab(F X ⇒ F Y ,F (X ⇒ Y )). □

As a direct consequence of Lemma 4.14 and Lemma 4.15, we can
state the following theorem:

Theorem 4.16. F is full and faithful, and it respects the cartesian
closed structures.

5 Adding Measurability Requirements
In [7], the authors developed a sound model of PCFsample based on
stable functions. However, as explained in more details in [7], they
need to add to their morphisms some measurability requirements,
both on cones and on functions between them, since the denota-
tional semantics of the let(x ,M,N ) construct uses an integral, to
model the fact thatM is evaluated before being passed as argument
to N .

We call Borel-measurable functions Rn → Rk those functions
which are measurable when both Rn and Rk are endowed with the
Borel Σ-algebra associated with the standard topology of R. The
relevant properties of the class of measurable functions Rn → Rk
is that they are closed by arithmetic operations, composition, and
pointwise limit, see for example Chapter 21 of [17].

5.1 The category Cstabm
Cstabm is built as a refinement of the category Cstab. The objects
of Cstabm are going to be complete cones, endowed with a family
of measurability tests.

If C is a complete cone, we denote by C ′ the set of linear and
Scott-continuous functions C → R+.

Definition 5.1. A measurable cone (MC) is a pair consisting of a
coneC , and a collection ofmeasurability tests (Mn (C ))n∈N), where
for every n,Mn (C ) ⊆ C ′R

n
, such that:

• for every n ∈ N, 0 ∈ Mn (C );
• for every n,p ∈ N, if l ∈ Mn (C ), and h : Rp → Rn is
Borel-measurable, then l ◦ h ∈ Mp (C );
• for any l ∈ Mn (C ), and x ∈ C , the function u ∈ Rn 7→
l (u) (x ) ∈ R is Borel-measurable.

Example 5.2 (from [7]). Let X be a measurable space. We endow
the cone of finite measures Meas(X ) with the family M (X ) of
measurable tests defined as:

Mn (X ) = {ϵU | U ∈ ΣX } where ϵU (r⃗ ) (µ ) = µ (U ),

where ΣX is the set of all measurable subsets of X . Observe that
in this case, the measurable tests correspond to the measurable
sets. In the following, we will denote Meas(X ) the measurable cone
(Meas(X ), (Mn (X ))n∈N).

We define now measurable paths, which are meant to be the
admissible ways to send Rn into a MC C .

Definition 5.3 (Measurable Paths). Let (C, (Mn (C ))n∈N) be a MC.
A measurable path (MP) of arity n on C is a function γ : Rn → C ,
such that γ (Rn ) is bounded in C , and ∀k ∈ N, ∀l ∈ Mk (C ), the
function (r⃗ , s⃗ ) ∈ Rk+n 7→ l (r⃗ ) (γ (⃗s )) ∈ R+ is Borel-measurable.

We denote Pathsn (C ) the set of MPs of arity n for the MC C .
When a MP γ verifies γ (Rn ) ⊆ BC , we say it is unitary. In [7], the
authors add measurability requirements to their definition of stable
functions: they ask them to preserve measurable paths.

Definition 5.4. Let beC,D two MCs. A stable function f : BC →
D ismeasurable if for all unitary γ ∈ Pathsn (C ), f ◦γ ∈ Pathsn (D).

The category Cstabm is therefore the category whose objects
are MCs, and whose morphisms are measurable stable functions
between MCs.

Example 5.5. Recall the function ⟦real⟧Cstabm : Meas(N) →
Meas(R), defined in Section 2 as:

⟦real⟧Cstabm : µ 7→ (U ∈ ΣR 7→
∑

n∈N∩U
µ (n)).

⟦real⟧Cstabm is linear, Scott-continuous, and norm-preserving, and
moreover it is a measurable function from Meas(N) into Meas(R),
hence it is a morphism in Cstabm. In the same way, taking Meas(N)
as the denotational semantics of type N , we could complete the
denotational semantics given in [7] for PCFsample in Cstabm into
a denotational semantics for PCF⊕,sample.

Observe that ⟦real⟧Cstabm would not be measurable, if we en-
dowed Meas(N) with for instance {0} as measurability tests instead
ofM (N): indeed in that case, every γ : Rn → Meas(N) would be a
MP. As a consequence, to be a measurable function, ⟦real⟧Cstabm
should verify: for every arbitrary function γ : Rn → Meas(N),
⟦real⟧Cstabm ◦ γ is a MP on Meas(R). However, we can see this
is not the case, for instance by considering γ of the form γ (s ) =
α (s ) · {0}1, where α : R→ R+ is not Borel-measurable.

In [7], the cartesian closed structure of Cstabm is derived from
the one of Cstab by endowing its exponentials and products with
the measurability tests presented in Figure 1.

Mn (
∏
i∈I

C i ) = {
⊕
i∈I

li | ∀i ∈ I, li ∈ Mn (C i ) } with I finite set.

Mn (C ⇒m D ) = {γ ▷m | γ ∈ Pathsn (C ),m ∈ Mn (D ) },

with (
⊕

i∈I li (r⃗ )) ((xi )i∈I ) =
∑
i∈I li (r⃗ ) (xi ) ∈ R+;

and (γ ▷m) (r⃗ ) (f ) =m (r⃗ ) (f (γ (r⃗ ))).

Figure 1. Cartesian Closed structure of Cstabm.
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5.2 Pcoh! is a full subcategory of Cstabm
We want now to convert the functor F : Pcoh! → Cstab into
a functor Fm : Pcoh! → Cstabm. To build Fm , we are going to
endow each F X with measurability tests, in such a way that for any
morphism f ∈ Pcoh!, F ( f ) will become measurable. Observe that
we have an additional requirement, which would not be verified
if we take for instance {0} as measurability tests for every F X : as
explained in Section 2, we want also Fm (NPcoh) to be isomorphic
to ⟦N ⟧Cstabm = Meas(N), and (as highlighted in Example 5.5), we
need to have enough measurable tests on Meas(N) to guarantee
the existence of ⟦real⟧Cstabm as a morphism.

Definition 5.6. For anyX ∈ Pcoh, we defineCX as themeasurable
cone CX endowed with the familyMn (X )n∈N of measurability
tests defined asMn (X ) = {0}∪ {ϵa | a ∈ |X |}, where ϵa (r⃗ ,x ) = xa .

We see that the ϵa are indeed linear (i.e commuting with lin-
ear combinations), and moreover Scott-continuous: hence they are
indeed elements of C ′X . It is easy to verify that the other condi-
tions are verified, and so CX is indeed a MC. We give below a
characterization of measurable paths on CX .

Lemma 5.7. Let be X a PCS. Then Pathsn (CX ) is the set of all γ :
Rn → CX such that:
• ∃λ ∈ R,γ (Rn ) ⊆ λBCX ;
• ∀a ∈ |X |, γa : r⃗ ∈ Rn 7→ γ (r⃗ )a ∈ R+ is Borel-measurable.

Two MCs with the same underlying cone, but different measura-
bility tests may be isomorphic in Cstab: it is enough for them to
have the same measurable paths. It is what happens in the exam-
ple below, where we consider CNPcoh and Meas(N). It is actually
also what happens at higher-order types, as we will explain in
Section 5.3.

Example 5.8. The two measurable cones CNPcoh and Meas(N)
have the same underlying cone, but they do not have the same
measurability tests. Indeed Mn (CNPcoh ) = {ϵn | n ∈ N}, while
Mn (Meas(N)) = {ϵU | U ⊆ N}. However, we can prove that
they have the same MPs. First, Pathsn (Meas(N)) ⊆ Pathsn (CNPcoh ),
sinceMn (CNPcoh ) is a subset ofMn (Meas(N)). We detail now the
proof of the reverse inclusion. Let γ ∈ Pathsn (CNPcoh ). We have
to show that for every U ⊆ N, the function (r⃗ , s⃗ ) ∈ Rk+n 7→
ϵU (r⃗ ) (γ (⃗s )) is Borel measurable. The key observation here is that
ϵU (r⃗ ) (γ (⃗s ) =

∑
m∈U ϵm (r⃗ ) (γ (⃗s )). Sinceγ ∈ Pathsn (CNPcoh ) it holds

that for everym ∈ N, the function ((r⃗ , s⃗ ) ∈ Rk+n 7→ ϵm (r⃗ ,γ (⃗s )) ∈
R+) is Borel measurable. Since the class of Borel measurable func-
tions is closed by finite sum and pointwise limit, it leads to the
result.

Lemma 5.9. Let X ,Y be two PCSs, and f ∈ Pcoh! (X ,Y ). Then F f

is measurable from CX into CY .

The proof can be found in the long version. It uses the charac-
terization of Pathsn (CX ) given in Lemma 5.7.

Theorem 5.10. The functor Fm : Pcoh! → Cstabm defined as
FmX = CX , and Fm f = F f , is full and faithful.

Proof. Observe that we can decompose the functor F as F =
Forget ◦ Fm , where Forget is the forgetful functor from Cstabm
to Cstab. As shown in Section 4.4, F is full and faithful. Moreover,

Forget is faithful. From there, we are able to deduce the result (see
the long version for more details). □

5.3 Fm is cartesian closed.
Wewant now to show that Fm is cartesian closed too. Since Forget
is cartesian closed, and is the identity function on morphisms, it
is enough to show that the Cstab-morphisms ΨI , ΘI , ϒX ,Y and
ΞX ,Y defined in Lemmas 4.14 and Lemma 4.15 proofs, are also
morphisms in Cstabm.

Lemma 5.11. Let X be a PCS, C any MC, and f a morphism in
Cstab(Forget(C ),F X ). We suppose that for every γ a unitary MP
on C , ∀a ∈ |X | it holds that ( f ◦ γ )a is Borel-measurable. Then
f ∈ Cstabm (C,FmX ).

Proof. We already know that f is a morphism in Cstab, hence
we have only to show that it preserves MPs. Let γ be unitary in
Pathsn (C ). Since both f and γ are bounded, f ◦ γ is bounded too.
Using the characterization of MPs on FmX given in Lemma 5.7,
we obtain that f ◦ γ ∈ Pathsn (FmX ). □

Lemma 5.12. For all I = (Xi )i ∈I a finite family of PCSs:

• ΨI ∈ Cstabm (Fm (
∏Pcoh!

i ∈I Xi ),
∏Cstabm

i ∈I FmXi );

• ΘI ∈ Cstabm (
∏Cstabm

i ∈I FmXi ,F
m (
∏Pcoh!

i ∈I Xi )).

Proof. • Recall that ΨI = ⟨F (πi ) | i ∈ I ⟩Cstab. Since the
cartesian product on morphisms in Cstabm is the same as
the one in Cstab (see [7]), and moreover F (πi ) = F

m (πi ),
we see that ΨI is also a morphism of Cstabm.
• Let γ be any unitary MP on

∏Cstabm
i ∈I FmXi , and (i,ai ) ∈

|
∏Pcoh!

i ∈I Xi | = ∪i ∈I {i}×|Xi |. We see that (ΘI ◦γ )(i,ai ) (r⃗ ) =

(γ (r⃗ )i )a . We consider themeasurability test of arity 0 defined
bym = ⊕j ∈I lj :

∏Cstabm
i ∈I FmXi → R+, with lj = 0 if j , i ,

and li = ϵai . Since γ is a MP on
∏Cstabm

i ∈I FmXi , and m

a measurability test on the same cone, the function (r⃗ ∈
Rn 7→m(γ (r⃗ )) ∈ R+) is Borel-measurable. Sincem(γ (r⃗ )) =

(γ (r⃗ )i )a = (ΘI ◦ γ )(i,ai ) (r⃗ ), it holds that (Θ
I ◦ γ )(i,ai ) is

Borel-measurable, and by Lemma 5.11 the result holds.
□

Lemma 5.12 allows us to see that Fm is a cartesian functor. We
want now to show that it also respects the⇒ construct. First, we
show that the Cstabmorphism ϒX ,Y is also a morphism in Cstabm.

Lemma 5.13. For all X , Y PCSs,

ϒX ,Y ∈ Cstabm (Fm (X ⇒ Y ),FmX ⇒ FmY )

Proof. Recall that ϒX ,Y is defined using currying inCstab,ΘX⇒Y ,X ,
and the eval morphism in Cstab. Since currying and structural mor-
phisms are the same in Cstabm as in Cstab, and moreover we have
shown in Lemma 5.12 that ΘX⇒Y ,X is a morphism in Cstab, we
have the result. □

Our goal now is to show that ΞX ,Y also is a Cstabm morphism,
again by using Lemma 5.11. However, the proof is going to be more
involved as in the previous cases. By looking at the definition of
ΞX ,Y , we see that we need to show that for every unitary MP γ on
FmX ⇒ FmY , and any (µ,b) ∈ Mf ( |X |) × |Y |, the function r⃗ 7→

(γ̃ (r⃗ )
−1
)µ,b is Borel-measurable. But contrary to what we’ve done
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in the proof of Lemma 5.12 for ΘI , the function f ∈ (FmX ⇒

FmY ) 7→ ( f̃
−1
)µ,b ∈ R+ cannot be written as a measurability test.

We solve this problem by showing that we can write it as some
partial derivative of a measurability test, as expressed in Lemma 5.14
below.

Lemma5.14. LetX be a PCS, µ ∈ Mf ( |X |),b ∈ |Y |, and {a1, . . . ,ap }
the support of µ. There exists a measure-ability testm of arity p on
FmX ⇒ FmY , and c, β > 0 such that ∀f ∈ B(FmX ⇒ FmY ),
the function ϕf : r⃗ ∈ Rp 7→ m(r⃗ ) ( f ) ∈ R+ admits a partial de-

rivative ∂(ϕ f )
card(µ )

∂r1µ (a1 ) ...∂rp µ (ap ) on [0, c]p , and moreover its value in 0⃗ is

β · ( f̃
−1
)µ,b .

Proof. We takem = δ ▷ ϵb , where δ is the MP on F X defined as:

δ : t⃗ ∈ Rp 7→



∑
1≤i≤m ti · eai if ti ≥ 0∀i and

∑
1≤i≤m ti ≤ 1;

0 otherwise.

ϵb is a measurability test on FmY , and moreover by Lemma 5.7, we
can see that δ is indeed in Pathsp (FmX ), hencem is a measurability
test on FmX ⇒ FmY built following the rules of Figure 1. We
see that ϕf (r⃗ ) =

∑
ν |Supp(ν )⊆{a1, ...,an } fν,b · r⃗

ν . From there, by
using theorems of real analysis for normally convergent series of
functions, we can deduce the result (the complete proof may be
found in the long version). □

Lemma 5.15. For every unitary γ ∈ Pathsn (FmX ⇒ FmY ), and
(µ,b) ∈ |X ⇒ Y |, it holds that (ΞX ,Y ◦γ )µ,b is Borel measurable for
every (µ,b) ∈ |X ⇒ Y |.

Proof. Let {a1, . . . ,ap } the support of µ. We takem, c as given by
Lemma 5.14. Sincem is a measurability test for (FmX ⇒ FmY ),
the function (r⃗ , s⃗ ) ∈ Rp+n 7→ ϕγ (s⃗ ) (r⃗ ) ∈ R+ is Borel-measurable
(where ϕγ (s⃗ ) was defined in Lemma 5.14). Since K = [0, c )p ×Rn is
an element of the Borel algebra over Rp+n , the restriction (that we
denoteψ ) of this function to K is measurable too. Since γ is unitary,
γ (Rn ) ⊆ B(FmX ⇒ FmY ), and as a consequence Lemma 5.14
tells us that ∂ψ card(µ )

∂r1µ (a1 ) ...∂rp µ (ap ) exists, and moreover it holds that:

γ̃ (⃗s )
−1
µ,b =

1
β ·

∂ψ card(µ )

∂r1µ (a1 ) ...∂rp µ (ap ) (⃗0, s⃗ ). From there, we can deduce

that s⃗ ∈ Rn 7→ γ̃ (⃗s )
−1
µ,b ∈ R+ is Borel-measurable. It comes from

the fact that whenever a Borel-measurable function has a partial
derivative, this derivative is measurable too, since the class of real-
valued measurable functions is closed by addition, multiplication
by a scalar and pointwise limit (more details can be found in the
long version). Since (ΞX ,Y ◦ γ )µ,b = γ̃ (⃗s )

−1
µ,b , the result holds.

□

Lemma 5.16. For all X , Y PCSs,

ΞX ,Y ∈ Cstabm (FmX ⇒ FmY ,Fm (X ⇒ Y )).

Theorem 5.17. Fm is a cartesian closed full and faithful functor.

6 Conclusion
Our full embedding of Pcoh! into Cstab implies that every stable
function f from PX to PY can be characterized by an element
ΞX ,Y ( f ) ∈ RMf ( |X |)×|Y | , that has to be seen as a power series. It
gives us a concrete representation of stable functions on discrete
cones, similar to the notion of trace introduced by Girard in [9] for

stable functions on quantitative domains. There are well-known
real analysis results on power series, as for instance the uniqueness
theorem—any power series which is null on an open subset has
all its coefficients equal to 0—on which is based the proof of full
abstraction for PCF⊕ in Pcoh! [8]. While we have not been able
to extend such a concrete representation to cones which are not
directed-complete, as for instance the cone Meas(R) ⇒m Meas(R),
our result could hopefully be a first step in this direction. This kind
of characterization could lead to a way towards a full abstraction
result for the continuous language PCFsample in Cstabm, and more
generally gives us new tools to reason about continuous probabilis-
tic programs.
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