
Strong Sums in Focused Logic
Karl Crary

Carnegie Mellon University
crary@cs.cmu.edu

Abstract
A useful connective that has not previously been made to work in
focused logic is the strong sum, a form of dependent sum that is
eliminated by projection rather than pattern matching. This makes
strong sums powerful, but it also creates a problem adapting them
to focusing: The type of the right projection from a strong sum
refers to the term being projected from, but due to the structure of
focused logic, that term is not available.

In this work we confirm that strong sums can be viewed as a
negative connective in focused logic. The key is to resolve strong
sums’ dependencies eagerly, before projection can see them, using
a notion of selfification adapted from module type systems. We val-
idate the logic by proving cut admissibility and identity expansion.
All the proofs are formalized in Coq.
ACM Reference Format:
Karl Crary. 2018. Strong Sums in Focused Logic. In LICS ’18: 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, July 9–12, 2018, Oxford,
United Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3209108.3209145

1 Introduction
The power of a logical framework comes not from what can be
written, but rather from what cannot be written. The theory of
adequacy of the representation of a deductive system in a logical
framework [10] works by drawing an isomorphism between ex-
pressions in the object language (the system being represented) and
canonical forms in the logical framework. But this relies on the ex-
istence of strong canonical forms. It is essential that there not exist
exotic terms that are not the representation of an object-language
expression.

The classic example is the representation of lambda terms in the
LF logical framework [10]. In it, terms are represented using a type
exp and two constants:

lam : (exp -> exp) -> exp
app : exp -> exp -> exp

For instance, the lambda term λx . xx is represented
lam (λx :exp. appx x). It is important that one cannot write some-
thing like lam(λx . casex of . . .), because such a term is not within
the range of the representation. (Note that the pattern match itself
is the problem, not any ability to branch.)

Thus, the suitability of a logical framework stems from the code
that cannot be written. In the case of LF, the only supported non-
atomic type is a dependent function space, and pattern matching on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00
https://doi.org/10.1145/3209108.3209145

atomic types is not supported. Thus, no types that involve pattern
matching are supported.

Later, when LF was generalized to Linear LF [3], it added the
linear function space ((), additive conjunction (&), and its unit
(⊤). However, it did not support other important types such as
multiplicative conjunction (⊗) or exponentials because they involve
pattern matching and would therefore spoil the canonical forms.

In retrospect, we can observe that these early logical frameworks
maintained strong canonical forms by supporting only negative
types [9], types that are invertible on the right but not on the left.
Positive types (the opposite) were excluded because left inversion
is pattern matching.1

Nevertheless, there are good reasons to want to support positive
types in a logical framework. One reason is that positive types
are essential to some applications, such as forward-chaining logic
programming, which gives a good treatment of the evolution of
concurrent stateful systems [24, 29], or session types [27]. Another
reason, which motivated this work, is we would like to integrate a
logical framework with a functional programming language, and
this requires richer programming facilities. (Existing approaches [8,
20, 21] have used separate logic and programming layers, rather
than a single integrated language.)

Focusing Intuitionistic focused logic [1, 15, 25, 30] can allow neg-
ative and positive types to coexist in a logical framework without
spoiling canonical forms. It derives from a restricted proof system
for linear sequent calculus:

The idea is one alternates between inversion and focus stages. In
an inversion stage, one applies all available invertible rules, decom-
posing negative connectives on the right and positive connectives
on the left. Once no invertible steps are left (so the conclusion is
positive or atomic, and all hypotheses are negative or atomic), one
enters a focus stage, by choosing a hypothesis or the conclusion
and taking focus on it. One then repeatedly decomposes the type
under focus, which always leaves exactly one type under focus in
each premise. This continues until the conclusion can be satisfied
by a hypothesis, or until focus is lost, which happens when the
type under focus has the wrong polarity for focus (i.e., it is positive
on the left, or negative on the right). At that point, one returns to
inversion.

Certainly this proof search strategy is sound, since every rule
is a valid sequent calculus rule. In its more general form, it is also
complete: every true sequent has a focused derivation. (For our
purposes—logical frameworks—it is preferable to restrict positive
types even further using a lax modality [29].) But, even in its most
general form, there are typically many fewer derivations, because
at any point in the derivation, many fewer steps are permitted. To
put this another way: a focused derivation has much more structure
than an ordinary sequent calculus derivation (and a lax modality

1Strictly speaking, one must be in a linear (or other substructural) setting for negative
and positive to align neatly with right-invertible and left-invertible. In a persistent
setting, some types turn out to be invertible on the “wrong side” by accident.

https://doi.org/10.1145/3209108.3209145
https://doi.org/10.1145/3209108.3209145
https://doi.org/10.1145/3209108.3209145

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Karl Crary

gives it more still), and this turns out to make it suitable for use as
a canonical form.

Suppose one is trying to derive Γ −→ A− in sequent calculus.
One can do a little work on A−, then a little work on a hypothesis
in Γ, then on A− some more, then on a different hypothesis in Γ,
and so on. There are fewer choices than in natural deduction, but
there remain many choices.

In a focused setting, one can prove Γ −→ A− in only one way.
One must first apply invertible rules to A− until no more apply,
thereby obtaining an atomic proposition P−. Then one must take fo-
cus on a hypothesis in Γ (or a constant) and work on that hypothesis
exclusively until P− is proved, or until focus is lost. If, additionally,
we restrict positive types using a lax modality, one cannot lose left
focus while deriving a negative goal, which eliminates the second
possibility. This means that a proof term for P− can have only one
form: a head variable/constant with zero or more (negative) elims
applied to it. We refer to such a proof term as a path.

A path corresponds precisely to an atomic object [12, 29] in a
logical framework. When a path is then wrapped with zero or more
negative intros, it is precisely a canonical form. Thus, the focused
setting allows us to maintain a strong notion of canonical forms,
which is essential for adequate representations [10], while also
admitting positive types.

In a conventional setting, one writes a path like (for example):
(π1 (x V))W . In focused logic, one separates the head from the
rest of the path, which is called the spine. The spine is written
in diagrammatic order, so the same path is written x · V ;π1;W .
Separating the path this way is important, because the spine can
also be considered in isolation. A spine, not a full path, is the proof
term for left focus.

Strong sums In logic there are (at least) two forms of dependent
sum: the weak sum (a.k.a. existential type) and the strong sum [13].2
The important difference between the weak and strong sum lies in
their elimination form:

Aweak sum (which wewrite using ∃) is eliminated by unpacking
it for a particular scope, and the carrier (the sum’s left-hand con-
stituent) is not permitted to leak from that scope. This closed-scope
elimination form makes the weak sum suitable for representing
abstract types [18].

In contrast, a strong sum (which we write using Σ) is eliminated
in the same open-scope fashion as a non-dependent product (& in a
linear setting), using left and right projection operations. Crucially,
the type of the right projection is permitted to refer to the left
projection. Thus, ifM : Σx :A.B then π2M : [π1M/x]B.

Both weak and strong sums have their uses. Weak sums are suit-
able for data abstraction. Also, they are suitable in a setting without
dependent types, but that is not an issue here. On the other hand,
they can be inconvenient. For example, consider an algebraic struc-
ture such as Semigroup = ∃α :Type.Σm:(α → α → α).Associativem .
If G is a semigroup, one can only use G by unpacking it in a large
enough scope to encompass all its uses. On the other hand, if ∃
is replaced by Σ, then one can simply obtain G’s components by
projection, whenever they are desired. (Data abstraction is compro-
mised, but it can be restored with additional type theory [5].)

There are some additional merits to strong sums that are par-
ticular to logical frameworks: In the presence of a lax modality
2Howard referred to them as weak and strong existentials, but the term existential
type has subsequently come to be identified [18] with the weak sum.

(which is needed to maintain strong canonical forms [28]), we will
see that existential types cannot contribute directly to any term of
negative type. If one wants a first-class dependent sum, one needs
a strong sum. Strong sums are also useful in meta-logical frame-
works that permit abstraction over types (such as Delphin [21] and
Beluga [20]), since a theorem whose inputs rely on a single depen-
dency can be instantiated with a strong sum to support multiple
dependencies. Thus, for instance, a strong sum can play the role of
a context (at least in the absence of linearity).

Using the language of polarity, we can characterize the two sums
another way: The weak sum is invertible on the left (i.e., eliminated
using pattern matching), so it is a positive type. On the other hand,
the strong sum seems to be focused on the left (i.e., eliminated using
projections that can appear in a path), so it should be a negative
type.

In fact, the weak sum works quite well as a positive type in a
focused logic [22, 24]. It poses no real difficulties beyond those that
stem from dependent types generally.

Alas, the same is not true for the strong sum. The difficulty arises
in the typing rule for spines (i.e., the left focus judgement).

When S is a spine, we write Γ ⊢ S : A− > U to mean that S
decomposes a head of type A− to derive a consequent U . (Think of
a consequent as a goal of either polarity.) Thus we have rules like:

Γ ⊢ V : A+ Γ ⊢ S : B− > U

Γ ⊢ V ; S : (A+→ B−) > U

Γ ⊢ S : A− > U
Γ ⊢ π1; S : (A− & B−) > U

Γ ⊢ S : B− > U
Γ ⊢ π2; S : (A− & B−) > U

For example, π1 projects out the left constituent of a pairA−&B−

and passes it on to the tail of the spine S , returning its result.
The left projection from a strong sum could work the same way:

Γ ⊢ S : A− > U
Γ ⊢ π1; S : (Σx :A−.B−) > U

But, in the right projection, B− could mention x and we have
nothing to substitute for it:

Γ ⊢ S : [???/x]B− > U

Γ ⊢ π2; S : (Σx :A−.B−) > U

If we knew the path R from which we are projecting, we would
substitute π1R for x . However, in a focused setting we must assign
a type to a bare spine, without reference to any head variable or
constant to which the spine might be attached.

At this point, it is natural to wonder whether we should abandon
spines, and simply work with paths instead. This is how Concurrent
LF was originally formulated [29], and strong sums have been
shown to be workable in such a setting [4]. But there are good
reasons to be dissatisfied with such a treatment: A system without
left focus simply is not focused logic, and it sacrifices important
advantages thereof.

One such advantage of focused logic (particularly relevant to
the author’s purposes) comes when the logic is combined with a
metalogic capable of analyzing canonical forms. When analyzing
a canonical form, one wants to begin with the most significant
information—the head—and then proceed down the spine. This
is what one gets in focused logic. In contrast, when analyzing
paths one is forced to begin with the least important information—
the end of the spine—and arrive at the head last of all. Also, for

Strong Sums in Focused Logic LICS ’18, July 9–12, 2018, Oxford, United Kingdom

much the same reason, representing terms in spinal form results
in a significant performance advantage in the implementation of a
logical framework [16, 17]. Moreover, for one connective to drive
the entire structure of the logic would seem to put the cart before
the horse, and we show here that it is not necessary to do so.

Our approach In this paper, we show how to incorporate strong
sums into focused logic, notwithstanding the difficulty discussed
above. The key insight comes from a very different setting: the type
theory of modules. In module calculi [7, 11, 14, 26], one can (in cer-
tain circumstances) rewrite the type of a module to refer the module
itself. This process is whimsically referred to as selfification [7]. For
example, when the module M has signature:

sig
type t
val x : t
...

end

it can be selfified to:

sig
type t = M.t
val x : M.t
...

end

Observe that after selfification, x’s type no longer depends on t.
The purpose of this is to circumvent a problem similar to our

current problem. In the strong-sum typing rule, we cannot substi-
tute the needed term for the dependency because the needed term
is unavailable. In module calculi, one cannot (in general) substi-
tute a module for a dependency because its type components are
unavailable (since they may not fully determined at compile time).

Selfification allows one to write a module’s signature in non-
dependent form, which allows one to project fields from a module
without needing to satisfy dependencies. We can do something
similar here:

Suppose x has type Σy:A−.B−. We can show that x has a more-
specific, selfified type that we can think of asA− & [π1x/y]B−.3 We
cannot give spine typing rules for Σ, but it is easy to give them for
&. Thus, when type-checking x · S , we check the spine S against
(A− & [π1x/y]B−) > U , instead of (Σy:A−.B−) > U . If S has the
form π2; S ′, then S ′ is checked against [π1x/y]B− > U .

In summary, we may not be able to resolve a strong sum’s de-
pendencies on-the-fly, but, using selfification, we can resolve them
at the outset, when the head is still available. Unlike in module
calculi, our selfification does not write in equality information (e.g.,
type t = M.t), but we do not need that for our purposes.

In the remainder of this paper, we develop a focused logic that
supports strong sums by using selfification. The issues of strong
sums are largely orthogonal to linear logic, so for most of the paper
we restrict our attention to intuitionistic persistent logic. To validate
our logic, we prove cut admissibility and identity expansion. All
the proofs are formalized in Coq.

3Precisely, x has the typeA− & [M/y]B− , whereM is the identity expansion of x ·π1 .

neg. types A− ::= a · S | ⃝A+ | Πp:A+.A−

| A− & A− | Σx :A−.A−

pos. types A+ ::= ↓A− | 1 | A+ ⊗ A+ | ∃p:A+.A+
kinds K ::= ty | Πp:A+.K
contexts Γ ::= ϵ | Γ,x :A−

heads h ::= x | c
results R ::= h · S | retV
values V ::= ↓M | ⋆ | V ⊗ V
spines S ::= nil | bindp.R

| V ; S | π1; S | π2; S
terms M ::= η(R) | circ R | λp.M | ⟨M,M⟩

patterns p ::= ↓x | ⋆ | p ⊗ p

Figure 1. Syntax

2 The logic
Our focused logic combines elements from Simmons [25] and
Schack-Nielsen [22]. For now, and for most of the paper, we re-
strict our attention to persistent logic (i.e., ordinary logic, which
enjoys weakening, contraction, and exchange); we touch on what
happens in the linear setting (not much) at the end. The syntax
appears in Figure 1.

Focused notation can be verbose, so in some examples we use
conventional, non-focused notation, for the sake of clarity. When
we do so, we underline the expression to avoid confusion. For
example, we might write a · ↓η(x · π1; nil); nil as a (π1x).

Types As usual, we categorize types as negative (A−) or positive
(A+). Negative types include dependent function spaces (Πp:A+.B−),
negative products (A− &B−), and strong sums (Σx :A−.B−). Positive
types include positive unit (1), positive products (A+ ⊗ B+), and
weak sums (∃p:A+.B+).

Although we are working in persistent logic, we use notation
from linear logic to distinguish between positive and negative prod-
ucts, and between positive and negative unit. (The latter would be
written ⊤, if we supported it.)

It is convenient to view the non-dependent function spaceA+→
B− as merely a degenerate form of the dependent function space. On
the other hand, we view negative and positive products as distinct
connectives from strong and weak sums, rather than as degenerate
forms.

Negative types are injected into the positive types by the down-
shift connective (↓A−), and positive types are injected into the
negatives types—for limited uses—by the monad connective (⃝A+).
We do not support an unrestricted upshift (↑A+) because it is in-
compatible with strong sums (as well as for other reasons).

Finally, negative types also include atomic propositions in the
form of a path a · S , where a is a type constant and S is a spine to
which a is applied. Each type constant is given a kind K , which is
either ty (the path is a type) or a dependent function space Πp:A+.K .

Omitted connectives Our system omits a number of types that
sometimes appear in focused logic. We omit upshift primarily be-
cause, as we show below, it is incompatible with strong sums. How-
ever, if not for that reason, we would probably still omit it because
it spoils the canonical forms on which logical frameworks rely [28].

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Karl Crary

We also omit par (`) and negative void (⊥) because we are working
in an intuitionistic setting.

We omit other common types for less fundamental reasons. We
omit disjoint sums (⊕) and positive void (0) because they would
necessitate a multi-clause pattern-matching syntax, which in turn
would require judgements expressing exhaustiveness and non-
redundancy. We leave them out for the sake of simplicity. We omit
positive atomic propositions because omitting them simplifies cut,
and because we see no vital use for them in logical frameworks.

Finally, we omit top (a.k.a. negative unit) because its absence
considerably simplifies one key lemma (Lemma 10). In a persistent
setting this is no loss, because one can simply define a trivial atomic
proposition. In a linear setting it is a loss, but since top causes severe
practical problems for a linear logic framework [22], it is a loss we
would suffer anyway. The Celf system [23] ameliorates the lack of
top by supporting affine hypotheses and an affine modality [22].

Proof terms Our proof terms are broken into five syntactic classes.
Terms (M) are the most general; they are the proof terms for right
(negative) inversion. Of particular interest to this work is ⟨M,N ⟩,
which is the introduction form for negative conjunction and for
strong sums. Patterns (p) are the proof term for left (positive) in-
version; they arise whenever a positive type come into scope (such
as in a lambda abstraction).

Results (R) are the proof term for when all available inversions
have been performed, but a focus has not been selected. A result
takes the form of a path (h · S) or a return of a value. A path’s type
may be negative or positive, but a return’s type is always positive.
The head of a path (h) is either a variable (x) or a term constant
(c). Note that, following Simmons [25], we distinguish between a
result R and its inclusion as a term, which is either η(R) (if R’s type
is negative) or circ R (if R’s type is positive).

Values (V) are the proof term for right (positive) focus. We write
the introduction form for positive products V ⊗W , and the intro-
duction form for positive unit ⋆. The introduction form for ↓A− is
written ↓M .

Spines (S) are the proof term for left (negative) focus. A spine
is made of applications and projections, terminated by either nil
or bindp.R. In the latter case, the type under focus when the end
is reached is ⃝A+. Then a value of type A+ is pattern-matched
against p, focus is lost, and a new result is computed using the
variables bound by p. For example, the result h · π1; bindp.R would
be written in non-focused notation as bindp = π1h in R.

A restricted form of spines (using application and nil only) are
also used to form atomic propositions (a · S).

2.1 Semantics
The logic’s typing rules are made up of six judgements for proof
terms, plus four more for types and kinds. We focus on the former
here:

right inversion Γ ⊢ M : A−

left inversion ⊢ p : A+ ⇒ Γ
choose focus Γ ⊢ R : U
right focus Γ ⊢ V : A+
left focus Γ ⊢ S : A− > U
head typing Γ ⊢ h : A−

The right inversion, right focus, and head typing judgements
are self-explanatory. The left inversion judgement ⊢ p : A+ ⇒ Γ
means that when the pattern p is matched against a value of type
A+, variables become bound with the negative types given by Γ.
The left focus judgement Γ ⊢ S : A− > U means S can operate on a
head belonging to A−, producing a result belonging toU .

A result’s type and a spine’s codomain can be either negative
or positive. To accommodate that, we have an additional syntactic
class of consequents (U):

U ::= A− tr− | A+ lax+

If R : U , the former indicates that R is a proof term for the truth
of a negative proposition, and the latter that R is a proof term for
the lax truth of a positive proposition.

A lax proof term can be used only to establish another lax judge-
ment [19]. In our setting, the ultimate effect of this is negative proof
terms cannot depend on variables introduced by bindp.R. However,
a negative proof term can depend on variables introduced by a
lambda abstraction, because lambda-bound variables never pass
through a lax judgement.

The full rules are given in Appendix A. They take as fixed a
signature Ξ, which assigns negative types to term constants and
kinds to type constants. In the results that follow, we implicitly
assume that Ξ is well-formed, meaning that every K or A− in Ξ’s
range is well-formed.

Of particular interest to our purposes are the typing rules for
results and spines, all but one of which we give in Figure 2. (The
remaining rule is central to our treatment of strong sums, and we
will discuss it in the next section.) Observe that several of the rules
are polymorphic over polarity; their consequent is arbitrary, so
they can produce a negative or positive result. The ret and nil rules
cannot be polymorphic this way, as they fundamentally work with
positive and negative objects.

On the other hand, the bind rule could conceivably be poly-
morphic, if we replaced B+ lax+ with U . The fact that it is not
polymorphic is how laxity (internalized by ⃝) is enforced. If it
were polymorphic, we would want to rename A+ lax+ to A+ tr+

and ⃝A+ to ↑A+. We do not do so for two reasons: relaxing the
laxity of positive types would break the canonical forms required
for a logical framework [28], and—even more importantly for our
purposes—it would break strong sums.

2.2 Substitution and cut
The logic’s typing rules rely on substitution and cut in several
places, including the typing rule for application given in Figure 2.
In it, the spine (V ; S) accepts Πp:A+.B−, and [V /p]B+ is passed on
to the tail S . Here, [V /p]B+ is a positive cut, in which the argument
V is matched against the pattern p, and the resulting bindings are
substituted into B+.

Substitution and cut are defined by four interdependent defini-
tions:

hereditary substitution [M/x]E = E ′

negative cut M • S = R
positive cut [V /p]E = E ′

commuting substitution [E \ p]R = E ′

Strong Sums in Focused Logic LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Γ ⊢ R : U
Γ ⊢ h : A− Γ ⊢ S : A− > U

Γ ⊢ h · S : U
Γ ⊢ V : A+

Γ ⊢ retV : A+ lax+

Γ ⊢ S : A− > U

Γ ⊢ nil : A− > A− tr−
⊢ p : A+ ⇒ Γ′ Γ, Γ′ ⊢ R : B+ lax+

Γ ⊢ bindp.R : ⃝A+ > B+ lax+

Γ ⊢ V : A+ Γ ⊢ S : [V /p]B− > U

Γ ⊢ V ; S : Πp:A+.B− > U
Γ ⊢ S : A− > U

Γ ⊢ π1; S : A− & B− > U
Γ ⊢ S : B− > U

Γ ⊢ π2; S : A− & B− > U

Figure 2. Result and spine typing

In each of these definitions, an expression (E) refers to any syn-
tactic class other than a head or a pattern:

E ::= A− | A+ | K | Γ | R | V | S | M

A substitution or cut may be undefined. For example, a required
cut may not exist, due to a type error. However, we will show (The-
orem 14) that substitutions and cuts always exist for appropriately
typed expressions.

Hereditary substitution [28], which corresponds to the right
commutative cuts in cut elimination, is the most familiar, in that it
largely resembles conventional substitution. It differs only in the
case for substitution into a path:

[M/x](x · S) = M • [M/x]S
[M/x](h · S) = h · [M/x]S (h , x)

When substituting for the head variable of a path, conventional
substitution would leave a term at the head, which is syntactically
prohibited. Instead, we cut the term into the (substituted) spine to
obtain a new result. This, in turn, may reinvoke substitution, which
is why it is called hereditary.

Positive cut matches a value against a pattern, and carries out
all the substitutions that implies:

[↓M/↓x]E = [M/x]E
[⋆/⋆]E = E
[V ⊗W /p ⊗ q]E = [W /q][V /p]E

For technical reasons, it is important that the substitutions be
carried out one-at-a-time, and not simultaneously.4

Negative cut operates on a term using a spine, thereby producing
a result:

η(R) • nil = R
circ R1 • bindp.R2 = [R1 \ p]R2
(λp.M) •V ; S = [V /p]M • S
⟨M,N ⟩ • π1; S = M • S
⟨M,N ⟩ • π2; S = N • S

Finally, commuting substitution5 corresponds to the left commu-
tative cuts in cut elimination. In it, the substitutend (which must
4It makes no difference for well-formed expressions, but for ill-formed expressions, a
sequential substitution can be well-defined when a simultaneous one would not be.
For example:

[↓(λz .η(c · nil)) ⊗ ↓η(c · nil) / ↓x ⊗ ↓y](x · ↓η(y · π1; nil); nil)
From this, one can obtain a counterexample to cut admissibility as it is stated in
Theorem 14. To prove cut admissibility with simultaneous substitution would require
stronger well-formedness conditions than it is convenient to maintain.
5Amore common name is leftist substitution, so called because it is defined by induction
on the syntax of the substitutend, rather than on the syntax of the expression being

be a result or a spine) is “substituted” for a pattern in a result, to
obtain the same syntactic class as the substitutend:

[h · S \ p]R = h · [S \ p]R
[retV \ p]R = [V /p]R

[bindp1.R1 \ p2]R2 = bindp1.[R1 \ p2]R2
[V ; S \ p]R = V ; [S \ p]R
[π1; S \ p]R = π1; [S \ p]R
[π2; S \ p]R = π2; [S \ p]R

Note that the substitutend must ultimately end in a ret. This
process can be understood as applying commuting conversions
until one uncovers the ret, thereby creating the opportunity for a
positive cut. For example, observe that [h · π1; bindp.R1 \ q]R2 =
h · π1; bindp.[R1 \ q]R2. If we write this in non-focused notation,
and write [R \q]R′ as letq = R inR′, this equation is the commuting
conversion:

letq = (bindp = π1h in R1) in R2
=

bindp = π1h in letq = R1 in R2

2.3 Suspension-normal consequents
Results can appear within terms either as η(R) (for negative results)
or as circ R (for positive results):

Γ ⊢ R : (a · S) tr−

Γ ⊢ η(R) : a · S

Γ ⊢ R : A+ lax+
Γ ⊢ circ R : ⃝A+

The η rule corresponds to the atomic initial sequent in sequent
calculus. In terms of proof terms, it means that proof terms for
negative types must be given in eta-long (i.e., fully applied) form.
This makes them suitable for use in logical frameworks [10].

Reading from conclusions backward to premises, these are the
only rules that bring consequents (U) into play. Thus, onemight sup-
pose that we need only consider consequents of the form (a · S) tr−

and A+ lax+. However, as Simmons observes [25], it is very useful
to be able to give types to incomplete results, even if incomplete
results cannot appear within terms. Thus, most of our theorems
involving consequents permit them to have the general form.

However, a few theorems apply only to the restricted form—cut
admissibility being the most important. SupposeM : A− and recall
that nil : A− > A− tr−. The cutM • nil is defined only ifM has the
form η(R), which happens only when A− is an atomic proposition.

substituted into. But that terminology relies on the notation (it only makes sense when
substitution is written prefix). We prefer a more descriptive term.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Karl Crary

We say that a consequent is suspension normal6 if it has the form
(a · S) tr− or A+ lax+. We write Ū to range over suspension-normal
consequents.

2.4 Expansion
Another important notion in the logic is expansion; its definition
appears in Figure 3. Negative expansion (Exp(R : A−)) takes a
result R belonging to A− tr− and eta-expands it into a term of type
A−. (In the base case, when A− is atomic, it uses the primitive η
form.) Positive expansion Exp(A+) produces a pattern and value
p.V , such that when a value is matched against p and the resulting
substitution is applied to V , the original value is reconstructed.

Note that expansion relies only on the structure of the type, not
on its dependencies. Therefore it is not necessary to maintain well-
formedness of the type throughout the definition. For example, we
define Exp(R : Σx :A−.B−) to be the same as Exp(R : A− &B−), even
though this means that B− may contain unbound variables.

Expansion utilizes the auxiliary notion of composition (written
R◦S or S ◦S ′), which appends a spine to the end of a path or another
spine.

3 Strong sums
The introduction rule for strong sums is unproblematic:

Γ ⊢ M : A− Γ ⊢ N : [M/x]B−

Γ ⊢ ⟨M,N ⟩ : Σx :A−.B−

We should observe, however, that the term “right inversion” is
no longer wholly appropriate once this rule is added. If proof terms
are omitted, this is the rule:

Γ −→ A− Γ −→ [M/x]B−

Γ −→ Σx :A−.B−

which is not invertible. Nevertheless, we retain the term “right
inversion” to maintain the connection to the roots of focused logic.

The problem lies in the elimination rules. As we have seen, we
could produce a left-projection rule, but in the right-projection rule
we have nothing to substitute for the dependent variable:

Γ ⊢ S : [???/x]B− > U

Γ ⊢ π2; S : (Σx :A−.B−) > U

Instead, we arrange things so that a spine never needs to see a
strong sum in the first place. Suppose M has type A−. We define
the selfification ofM at A− as follows:

Self(M : a · S) = a · S
Self(M : ⃝A+) = ⃝A+

Self(λp.M : Πp:A+.B−) = Πp:A+.Self(M : B−)
Self(⟨M,N ⟩ : A & B) = Self(M : A) & Self(N : B)
Self(⟨M,N ⟩ : Σx :A.B) = Self(M : A) &

Self(N : [M/x]B)

This has two important properties. First, Self(M : A−) contains
M :

Lemma 1. Suppose Self(M : A−) is defined. Then Γ ⊢ M : A− if and
only if Γ ⊢ M : Self(M : A−).

6This terminology is justified in Simmons [25].

Second, Self(M : A−) turns strong sums into non-dependent
negative products. Selfification resolves the dependent variable in
every strong sum with the actual term it represents. Any residual
strong sums in a selfified type lie within positive types, where they
cannot be reached without losing focus, so they pose no issue for
spine typing.

Our strategy for typing a path h · S is to selfify h’s type, and to
use the strong-sum-free selfified type as the domain when typing
S . Since the Self operation requires a term, rather than a head, we
apply h to nil to obtain a result, and then we expand that to its
equivalent term. This gives rise to the key rule that makes strong
sums work, the selfifying rule for typing paths:

Γ ⊢ h : A− Γ ⊢ S : Self(Exp(h · nil : A−) : A−) > U

Γ ⊢ h · S : U
For example, suppose a : ty andb : a → ty andC− = Σy:a.by and

x : C−. Then the expansion Exp(x · nil : C−) is ⟨η(x · π1; nil),η(x ·

π2; nil)⟩, and the selfification Self(Exp(x · nil : C−) : C−) works
out to a & b(π1x). Certainly (π2; nil) takes a & b(π1x) to b(π1x), so
(x · π2; nil) has type b(π1x), as one would expect.

It turns out that we also retain the old, non-selfifying rule for
typing paths, for an important technical reason. In the downshift
case of identity expansion (Theorem 15), to invoke the induction
hypothesis we need to use the fact that Γ,x :A− ⊢ x · nil : A− tr−. To
show that fact using the selfification rule, we would need to know
already that Exp(x · nil : A−) is well-typed, but that is exactly what
we are invoking the induction hypothesis to obtain. By retaining
the non-selfifying rule, we can obtain that fact directly. Fortunately,
having two rules for typing paths causes no problems.

3.1 The problem with upshift
For this strategy to work, we have to give up the upshift connective
in favor of the weaker monad connective. For logical frameworks
this is no loss, because one alreadymust sacrifice upshift tomaintain
strong canonical forms [28], but for other applications it may be
disappointing.

Suppose we had an upshift connective with the elimination rule:

⊢ p : A+ ⇒ Γ′ Γ, Γ′ ⊢ R : U
Γ ⊢ bindp.R : ↑A+ > U

(Observe that the B+ lax+ from the monad elimination rule
is replaced here by the general U .) Also suppose that we de-
fine selfification for upshift the same way as for the monad (i.e.,
Self(M : ↑A+) = ↑A+).

Suppose x : A−, where A− = ↑↓(B− & C−), and let Ri = x ·

bind↓y.(y · πi ; nil) (that is, bind↓y = x in πiy). It follows that R1
has type B− and R2 has type C−.

However, suppose we replace the non-dependent product with
a strong sum, so A− = ↑↓(Σz:B−.D−). Selfification does not reach
into the upshift, so Self(Exp(x · nil : A−) : A−) = A−. Consequently,
the inner spine (πi ; nil) sees a strong sum, so we cannot give a
type to either R1 or R2. By the same token we cannot give a type
to bind↓y = x in ⟨π1y,π2y⟩, which combines R1 and R2. This is
fatal, because the latter is the identity expansion of x , so identity
expansion fails to hold.

The problem is not merely an incompleteness in the rules. Yes,
in principle R1 could have type B−, and—as usual—we could obtain
that typing by adding a left projection rule for strong sums. But

Strong Sums in Focused Logic LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Exp(R : A−) = M (Negative expansion)

Exp(R : a · S) = η(R)
Exp(R : ⃝A+) = circ (R ◦ bindp. retV) (where Exp(A+) = p.V)

Exp(R : Πp′:A+.B−) = λp. Exp(R ◦ (V ; nil) : B) (where Exp(A+) = p.V)

Exp(R : A− & B−) = ⟨Exp(R ◦ π1; nil : A−), Exp(R ◦ π2; nil : B−)⟩
Exp(R : Σx :A−.B−) = Exp(R : A− & B−)

Exp(A+) = p.V (Positive expansion)

Exp(↓A−) = ↓x . ↓Exp(x · nil : A−)

Exp(1) = ⋆.⋆

Exp(A+ ⊗ B+) = p ⊗ q.V ⊗W (where Exp(A+) = p.V and Exp(B+) = q.W and BV (p) ∩ BV (q) = ∅)

Exp(∃p′:A+.B+) = Exp(A+ ⊗ B+)

R ◦ S = R′ S ◦ S ′ = S ′′ (Composition)

h · S ◦ S ′ = h · (S ◦ S ′)
retV ◦ S undefined

nil ◦ S = S
bindp.r ◦ S = bindp.(r ◦ S)

V ; S ◦ S ′ = V ; (S ◦ S ′)
π1; S ◦ S ′ = π1; (S ◦ S ′)
π2; S ◦ S ′ = π2; (S ◦ S ′)

Figure 3. Expansion and composition

for R2 there is nothing to write! We can say that π2y has type
[π1y/z]D−, but the full expression R2 is outside the scope of y, so
it cannot have type [π1y/z]D−.

There is another way to look at the problem, though it ultimately
amounts to the same thing: We might wish to change the definition
of selfification for upshift to do something more useful. For instance,
we might say something like Self(η(R) : ↑A+) = ↑Self(V : A+).
(Indeed, we could define Self(V : A+), were it any use to us.) But
what is theV ? We could certainly obtain one if R had the form retV ,
but R could also be a path, and indeed that is the case of interest to
us. If R were a path we would be stuck, because the only way to
obtain the components of a positive path is to pattern-match on it,
but any variables thus bound would be out of scope to us.

In retrospect, it seems significant that in themodule type theories
that inspired this work (particularly Stone and Harper [26]), all the
connectives are negative. This work helps explain why a workable
module type theory supporting both selfification and existential
signatures (whichwould be useful for circumventing the “avoidance
problem”) was elusive [7].

4 Validation
We validate our logic by proving cut admissibility (Theorem 14)
and identity expansion (Theorem 15). We summarize the proof here.
All the proofs are formalized in Coq (Section 5).

The most delicate aspect of the proof comes from the interde-
pendence of cut admissibility and identity expansion. Without de-
pendent types, these proofs are typically separate. With dependent
types, identity expansion depends on cut admissibility, because
in the function case one must show that a substitution into the
function’s codomain is defined. With strong sums, cut admissibility
also depends on identity expansion, since the selfification rule for
path typing employs expansion. Thus, both cut admissibility and
identity expansion need to be proven before the other.

We cut this knot by first proving that cut admissibility and iden-
tity expansion hold up to simple types. Each of those gives enough
to prove the full version of the other. Thus we begin by defining a

weak version of the static semantics, which ignores dependencies
and uses only the structure of types.

Definition 2. Two types, kinds, or consequents are similar (written
A− ∼ B−, etc.) if they differ only in dependencies and patterns. We
also say that A− & B− is similar to Σx :A−.B− and A+ ⊗ B+ is similar
to ∃p:A+.B+.

Definition 3. We write judgements that hold modulo dependencies
using . The key rules are:

Γ ⊢ h : A− A− ∼ B− Γ S : B− > U
Γ h · S : U

for paths, and a similar rule for type paths. These allow dependencies
to be altered as desired. The rules also omit all substitutions.

It will also prove to be convenient to have a notation for typing
expressions of arbitrary sort:

Definition 4. A generalized consequent J is given by the grammar:

J ::= Ū | A+ | A− > Ū | A−

| type− | type+ | kind | K > K ′ | context

We define Γ ⊢ E : J and Γ E : J and substitution/cut into J in the
obvious manner.

Now we can sketch the proof. We begin by establishing that
substitutions commute:

Lemma 5. Suppose x , y and x < BV (p) and BV (p) ∩ BV (q) = ∅.
Then each of the following equations hold, provided the inner cuts
and/or substitutions are defined:

• [M/x](N • S) = [M/x]N • [M/x]S
• [M/x][V /p]E = [[M/x]V /p][M/x]E
• [M/x][N /y]E = [[M/x]N /y][M/x]E
• [M/x][E \ p]R = [[M/x]E \ p][M/x]R
• [V /q][E \ p]R = [[V /q]E \ p][V /q]R
• M • [S \ p]R = [M • S \ p]R
• [E \ p][R \ q]R′ = [[E \ p]R \ q]R′

• [V /p][W /q]E = [[V /p]W /q][V /p]E

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Karl Crary

Proof sketch. We define an auxiliary version of cut/substitution in
which a derivation consumes one unit of fuel each time it substitutes
for a path’s head variable. It is easy to show that any cut/substitution
can be given enough fuel to complete. We then show, by induction
on the amount of fuel provided, that each of the equations holds,
and moreover that the outer cuts/substitutions can complete using
the same fuel as the inner ones. �

We also need to know that substitution commutes with selfifica-
tion:

Lemma 6. If Self(M : A−) and [N /x]M and [N /x]A− are defined,
then [N /x]Self(M : A−) = Self([N /x]M : [N /x]A−).

Next we need to show that negative expansions are equivalent
(in an appropriate sense) to the result being expanded, and that
positive expansions are equivalent to the identity. For example,
to show identity expansion for functions, we need to know that
if Exp(A+) = p.V then [V /p]E = E. To show these, we need to
make some auxiliary definitions, and to strengthen the induction
hypothesis considerably.

Definition 7. A spine is negative if it ends in nil (not bind). A result
is negative if it has the form h · S (not retV) and S is negative.

Lemma 8. If Γ ⊢ S : A− > B− tr− then S is negative. If Γ ⊢ R :
A− tr− then R is negative.

Definition 9. A partial cutM ;; S is defined as follows:

M ;; nil = M
(λp.M) ;;V ; S = [V /p]M ;; S
⟨M,N ⟩ ;; π1; S = M ;; S
⟨M,N ⟩ ;; π2; S = N ;; S

Now we can state the expansion lemma:

Lemma 10 (Expansion substitution).
• If Exp(A+) = p.V and [V /p]E is defined, then [V /p]E = E.
• If R is negative and Exp(R : A−) • S is defined, then Exp(R :
A−) • S = R ◦ S .

• If [Exp(x · nil : A−)/x]E is defined, then [Exp(x · nil :
A−)/x]E = E.

• If Exp(A+) = p.V and [(R◦bindp.retV)\q]R′ is defined, then
[(R ◦ bindp.retV) \ q]R′ = R ◦ bindq.R′.

• If S is negative and [M/x]Exp(x · S : A−) and [M/x]S are
defined, then [M/x]Exp(x · S : A−) = M ;; [M/x]S .

• If Exp(A+) = p.V and [W /p]V is defined, then [W /p]V =W .

Proof sketch. By induction on the size of A+ or A−. �

As remarked earlier, this lemma is false as stated if the logic
includes negative unit (⊤). The problem with negative unit is its
expansion rule Exp(R : ⊤) = ⟨⟩ throws away R entirely. This poses
problems if R is ill-formed. For example, suppose x : ⊤. Then
[⟨⟩/x]Exp(x · π1; nil : ⊤) = [⟨⟩/x]⟨⟩ = ⟨⟩ and [⟨⟩/x](π1; nil) =
π1; nil, but ⟨⟩ ;; π1; nil is undefined. This contradicts the fifth clause
of the lemma.

This is fixable by adding well-formedness conditions to the
lemma, but that would require cut admissibility tomaintain stronger
well-formedness conditions than it is convenient to maintain.

Next up are cut admissibility and identity expansion, modulo
dependencies:

Lemma 11 (Weak cut admissibility).
• If Γ M : A− and Γ,x :A− S : A− > Ū , then Γ M •S : Ū .
• If Γ1 V : A+ and p : A+ ⇒ Γ2 and Γ1, Γ2, Γ3 E : J , then
Γ1, Γ3 [V /p]E : J .

• If Γ1 M : A− and Γ1,x :A−, Γ2 E : J then Γ1, Γ2 [M/x]E :
J .

• If Γ R : lax+A+ and p : A+ ⇒ Γ′ and Γ, Γ′ ⊢ R′ :
B+ lax+, then Γ [R \ p]R′ : B+ lax+.

• If Γ S : C > lax+A+ and p : A+ ⇒ Γ′ and Γ, Γ′ ⊢ R :
B+ lax+, then Γ [S \ p]R : C > B+ lax+.

Proof sketch. By induction on the size of A− or A+, with an inner
induction on one of the derivations. �

Lemma 12 (Weak identity expansion).
• If Γ R : tr−A− then Γ Exp(R : A−) : A−.
• If Exp(A+) = p.V and p : A+ ⇒ Γ′, then Γ, Γ′ V : A+.

Proof sketch. By induction on the size of A− or A+. �

Now we can show the main selfification lemma:

Lemma 13. If Γ : context and Γ ⊢ R : tr−A−, then Γ ⊢ R :
Self(Exp(R : A−) : A−) tr− and Γ Self(Exp(R : A−) : A−) type−.

Proof sketch. The proof combines two auxiliary selfification results:
• If Γ M : A− and Γ A− : type−, then Γ Self(M : A−) :
type−.

• If Γ : context and Γ ⊢ R : Self(Exp(R : A−) : A−) tr− and
Γ ⊢ S : A− > B− tr−, then Γ ⊢ S : Self(Exp(R : A−) : A−) >

Self(Exp(R ◦ S : B−) : B−) tr−.
The former is proven by induction on the size of A−, the latter by
induction on the typing derivation of S . �

Whenever R’s type is a strong sum, this lemma allows us to
replace that strong sum with a negative product, which allows us
to make progress in the identity expansion case for strong sums.
Unfortunately, we cannot show that the new type is well-formed
until we have identity expansion in hand; we have to settle for
showing that it is well-formed modulo dependencies.

Finally we can establish our main results:

Theorem 14 (Cut admissibility).
• If Γ ⊢ M : A− and Γ ⊢ S : A− > Ū , then Γ ⊢ M • S : Ū .
• If Γ1 ⊢ V : A+ and ⊢ p : A+ ⇒ Γ2 and Γ1, Γ2, Γ3 ⊢ E : J and
[V /p]Γ3 is defined and [V /p]J is defined, then Γ1, [V /p]Γ3 ⊢

[V /p]E : [V /p]J .
• If Γ1 ⊢ M : A− and Γ1,x :A−, Γ2 ⊢ E : J and [M/x]Γ2 is defined
and [M/x]J is defined, then Γ1, [M/x]Γ2 ⊢ [M/x]E : [M/x]J .

• If Γ ⊢ R : lax+A+ and ⊢ p : A+ ⇒ Γ′ and Γ, Γ′ ⊢ R′ : B+ lax+,
then Γ ⊢ [R \ p]R′ : B+ lax+.

• If Γ ⊢ S : C > lax+A+ and ⊢ p : A+ ⇒ Γ′ and Γ, Γ′ ⊢ R :
B+ lax+, then Γ ⊢ [S \ p]R : C > B+ lax+.

Proof sketch. By induction on the size of A− or A+, with an inner
induction on one of the derivations. �

Observe that we do not assume that the contexts or the conclud-
ing types are well-formed. This formulation, due to Watkins, et
al. [28] appears to be the “sweet spot.” In each case we have just
enough well-formedness to push the proof through. If we make
any additional assumptions, the assumptions necessary to push the

Strong Sums in Focused Logic LICS ’18, July 9–12, 2018, Oxford, United Kingdom

induction through snowball rapidly, and consume the bulk of the
effort.

Theorem 15 (Identity expansion). Suppose Γ : context. Then:

• If Γ ⊢ R : tr−A− then Γ ⊢ Exp(R : A−) : A−.
• If Γ A+ : type+ and Exp(A+) = p.V and ⊢ p : A+ ⇒ Γ′,
then Γ, Γ′ ⊢ V : A+.

Proof sketch. By induction on the size of A− or A+. �

5 Formalization
All the results in this paper are formalized using Coq (version 8.4).
We implemented binding using deBruijn indices. The formalization
can be found at:

www.cs.cmu.edu/~crary/papers/2018/sigma.tgz

The full development is about 15.5k lines (counting comments
and whitespace). It takes just over 2 minutes to check using four
cores on a 3.4GHz PC with 8GB of RAM.

6 Conclusion
Although the roots of focused logic are in linear logic, we have not
said much here about linear logic, other than by way of motivation.
The reason is that strong sums do not seem to interact with linear
logic in an interesting way. In most linear logics, types are not
permitted to refer to linear resources. Suppose ⟨M,N ⟩ : Σx :A−.B−.
Since x stands forM and can appear within the type B−, that means
M cannot contain linear resources. But strong sums are a dependent
form of additive product, soM and N must use the same resources.
That means that linear resources cannot appear within N either.

Thus, strong sums cannot contain linear resources. In an adjoint
logic [2], it would be reasonable to put strong sums at the persistent
layer, for that reason. On the other hand, it does seem possible that
strong sums could have more interesting substructural behavior in
a strict logic (where there is contraction but no weakening), since
in strict logic types can refer to resources, but we have not explored
this.

Zeilberger [31] conjectures that a notion of concurrent equality
similar to CLF’s [28] could be used to draw a connection between
equivalence of focused proofs and normalization-by-evaluation [6]
for weak and strong sums. This would be interesting to explore,
but there are significant differences between Zeilberger’s logic and
ours (beyond strong sums). Most significantly, his logic is classical
while ours is intuitionistic.

In this work we have confirmed that strong sums can be viewed
faithfully as a negative type connective in a focused setting. This
has long been suspected, of course, but a workable type system
has been elusive. The key innovation is to adapt the concept of
selfification from module calculi, thereby eliminating strong sums
before spines ever see them.

The connection sheds light in the other direction as well: it
seems that polarity may explain why some connectives work in
module calculi and others do not. Perhaps a focused type system
may provide a way forward for positive connectives in module
calculi.

A Typing rules
⊢ p : A+ ⇒ Γ

⊢ ↓x : ↓A− ⇒ x :A− ⊢ ⋆ : 1 ⇒ ϵ

⊢ p : A+ ⇒ Γ ⊢ q : B+ ⇒ Γ′ BV (p) ∩ BV (q) = ∅

⊢ p ⊗ q : A+ ⊗ B+ ⇒ Γ, Γ′

⊢ p : A+ ⇒ Γ ⊢ q : B+ ⇒ Γ′ BV (p) ∩ BV (q) = ∅

⊢ p ⊗ q : ∃p:A+.B+ ⇒ Γ, Γ′

Γ ⊢ h : A−

(x : A−) ∈ Γ

Γ ⊢ x : A−

(c : A−) ∈ Const
Γ ⊢ c : A−

Γ ⊢ R : U

Γ ⊢ h : A− Γ ⊢ S : A− > U
Γ ⊢ h · S : U

Γ ⊢ h : A− Γ ⊢ S : Self(Exp(h · nil : A−) : A−) > U

Γ ⊢ h · S : U

Γ ⊢ V : A+
Γ ⊢ retV : A+ lax+

Γ ⊢ V : A+

Γ ⊢ M : A−

Γ ⊢ ↓M : ↓A− Γ ⊢ ⋆ : 1

Γ ⊢ V : A+ Γ ⊢W : B+
Γ ⊢ V ⊗W : A+ ⊗ B+

Γ ⊢ V : A+ Γ ⊢W : [V /p]B+

Γ ⊢ V ⊗W : ∃p:A+.B+

Γ ⊢ S : A− > U

Γ ⊢ nil : A− > A− tr−
⊢ p : A+ ⇒ Γ′ Γ, Γ′ ⊢ R : B+ lax+

Γ ⊢ bindp.R : ⃝A+ > B+ lax+

Γ ⊢ V : A+ Γ ⊢ S : [V /p]B− > U

Γ ⊢ V ; S : Πp:A+.B− > U

Γ ⊢ S : A− > U
Γ ⊢ π1; S : A− & B− > U

Γ ⊢ S : B− > U
Γ ⊢ π2; S : A− & B− > U

Γ ⊢ M : A−

Γ ⊢ R : (a · S) tr−

Γ ⊢ η(R) : a · S

Γ ⊢ R : A+ lax+
Γ ⊢ circ R : ⃝A+

⊢ p : A+ ⇒ Γ′ Γ, Γ′ ⊢ M : B−

Γ ⊢ λp.M : Πp:A+.B−

Γ ⊢ M : A− Γ ⊢ N : B−
Γ ⊢ ⟨M,N ⟩ : A− & B−

Γ ⊢ M : A− Γ ⊢ N : [M/x]B−

Γ ⊢ ⟨M,N ⟩ : Σx :A−.B−

www.cs.cmu.edu/~crary/papers/2018/sigma.tgz

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Karl Crary

Γ ⊢ S : K > K ′

Γ ⊢ nil : K > K

Γ ⊢ V : A+ Γ ⊢ S : [V /p]K > K ′

Γ ⊢ V ; S : Πp:A+.K > K ′

Γ ⊢ A− : type−

(a : K) ∈ Const Γ ⊢ S : K > ty
Γ ⊢ a · S : type−

Γ ⊢ A+ : type+

Γ ⊢ ⃝A+ : type−

Γ ⊢ A+ : type+ ⊢ p : A+ ⇒ Γ′ Γ, Γ′ ⊢ B− : type−

Γ ⊢ Πp:A+.B− : type−

Γ ⊢ A− : type− Γ ⊢ B− : type−

Γ ⊢ A− ⊗ B−

Γ ⊢ A− : type− Γ,x :A− ⊢ B− : type−

Γ ⊢ Σx :A−.B−

Γ ⊢ A+ : type+

Γ ⊢ A− : type−

Γ ⊢ ↓A− : type+ Γ ⊢ 1 : type+

Γ ⊢ A+ : type+ Γ ⊢ B+ : type+

Γ ⊢ A+ ⊗ B+ : type+

Γ ⊢ A+ : type+ ⊢ p : A+ ⇒ Γ′ Γ, Γ′ ⊢ B+ : type+

Γ ⊢ ∃p:A+.B+ : type+

Γ ⊢ K : kind

Γ ⊢ ty : kind

Γ ⊢ A+ : type+ ⊢ p : A+ ⇒ Γ′ Γ, Γ′ ⊢ K : kind

Γ ⊢ Πp:A+.K : kind

Γ ⊢ Γ′ : context

Γ ⊢ ϵ : context
Γ ⊢ Γ′ : context Γ, Γ′ ⊢ A− tr−

Γ ⊢ Γ′,x :A− : context

References
[1] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic.

Journal of Logic and Computation, 2(3), 1992.
[2] Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. In

Eighth International Workshop on Computer Science Logic, September 1994.
[3] Iliano Cervesato and Frank Pfenning. A linear logical framework. In Eleventh

IEEE Symposium on Logic in Computer Science, pages 264–275, New Brunswick,
New Jersey, July 1996.

[4] Karl Crary. A syntactic account of singleton types via hereditary substitution. In
2009 Workshop on Logical Frameworks and Meta-Languages: Theory and Practice,
Montreal, 2009.

[5] Karl Crary. Modules, abstraction, and parametric polymorphism. In Forty-Fourth
ACM Symposium on Principles of Programming Languages, Paris, France, January
2017.

[6] Olivier Danvy. Type-directed partial evaluation. In Twenty-Third ACMSymposium
on Principles of Programming Languages, St. Petersburg Beach, Florida, January
1996.

[7] Derek Dreyer, Karl Crary, and Robert Harper. A type system for higher-order
modules. In Thirtieth ACM Symposium on Principles of Programming Languages,
pages 236–249, New Orleans, Louisiana, January 2003.

[8] Andrew Gacek. The Abella interactive theorem prover (system description). In
International Joint Conference on Automated Reasoning, volume 5195 of Lecture
Notes in Computer Science. Springer, August 2008.

[9] Jean-Yves Girard. On the unity of logic. Annals of Pure and Applied Logic, 59(3),
1993.

[10] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the ACM, 40(1):143–184, January 1993.

[11] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order
modules with sharing. In Twenty-First ACM Symposium on Principles of Program-
ming Languages, pages 123–137, Portland, Oregon, January 1994.

[12] Robert Harper and Frank Pfenning. On equivalence and canonical forms in the
LF type theory. ACM Transactions on Computational Logic, 6(1), 2005.

[13] W. Howard. The formulas-as-types notion of construction. In J. P. Seldin and J. R.
Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda-Calculus
and Formalism, pages 479–490. Academic Press, 1980.

[14] Xavier Leroy. Manifest types, modules and separate compilation. In Twenty-
First ACM Symposium on Principles of Programming Languages, pages 109–122,
Portland, Oregon, January 1994.

[15] Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionistic,
and classical logic. Theoretical Computer Science, 410(46), 2009.

[16] Spiro Michaylov and Frank Pfenning. An empirical study of the runtime behavior
of higher-order logic programs. In Proceedings of the Workshop on the lambda-
Prolog Programming Language, July 1992.

[17] Spiro Michaylov and Frank Pfenning. Higher-order logic programming as con-
straint logic programming. In Position Papers for the First Workshop on Principles
and Practice of Constraint Programming, April 1993.

[18] John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type.
ACM Transactions on Programming Languages and Systems, 10(3):470–502, July
1988.

[19] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11(4):511–540, 2001.

[20] Brigitte Pientka and Joshua Dunfield. Beluga: A framework for programming
and reasoning with deductive systems (system description). In International Joint
Conference on Automated Reasoning, volume 6173 of Lecture Notes in Computer
Science. Springer, 2010.

[21] Adam Poswolsky and Carsten Schürmann. System description: Delphin — a
functional programming language for deductive systems. InWorkshop on Logical
Frameworks and Meta-Languages: Theory and Practice, Pittsburgh, Pennsylvania,
June 2008.

[22] Anders Schack-Nielsen. Implementing Substructural Logical Frameworks. PhD
thesis, IT University of Copenhagen, Copenhagen, Denmark, January 2011.

[23] Anders Schack-Nielsen and Carsten Schürmann. Celf — a logical framework for
deductive and concurrent systems. In International Joint Conference on Automated
Reasoning, volume 5195 of Lecture Notes in Computer Science. Springer, 2008.

[24] Robert J. Simmons. Substructural Logical Specifications. PhD thesis, Carnegie Mel-
lon University, School of Computer Science, Pittsburgh, Pennsylvania, November
2012.

[25] Robert J. Simmons. Structural focalization. ACM Transactions on Computational
Logic, 15(3), 2014.

[26] Christopher A. Stone and Robert Harper. Deciding type equivalence in a lan-
guage with singleton kinds. In Twenty-Seventh ACM Symposium on Principles of
Programming Languages, Boston, January 2000. Extended version published as
CMU technical report CMU-CS-99-155.

[27] Bernardo Toninho, Luís Caires, and Frank Pfenning. Dependent session types
via intuitionistic linear type theory. In Thirteenth ACM SIGPLAN Symposium on
Principles and Practice of Declarative Programming, Odense, Denmark, July 2011.

[28] KevinWatkins, Iliano Cervesato, Frank Pfenning, andDavidWalker. A concurrent
logical framework I: Judgments and properties. Technical Report CMU-CS-02-
101, Carnegie Mellon University, School of Computer Science, 2002. Revised May
2003.

[29] KevinWatkins, Iliano Cervesato, Frank Pfenning, andDavidWalker. A concurrent
logical framework: The propositional fragment. In S. Berardi, M. Coppo, and
F. Damiani, editors, Types for Proofs and Programs, volume 3085 of Lecture Notes
in Computer Science, pages 355–377. Springer, 2004. Papers from the Third
International Workshop on Types for Proofs and Programs, April 2003, Torino,
Italy.

[30] Noam Zeilberger. On the unity of duality. Annals of Pure and Applied Logic,
153(1–3), 2008.

[31] Noam Zeilberger. Polarity and the logic of delimited continuations. In Twenty-
Fifth IEEE Symposium on Logic in Computer Science, 2010.

	Abstract
	1 Introduction
	2 The logic
	2.1 Semantics
	2.2 Substitution and cut
	2.3 Suspension-normal consequents
	2.4 Expansion

	3 Strong sums
	3.1 The problem with upshift

	4 Validation
	5 Formalization
	6 Conclusion
	A Typing rules
	References

