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Abstract

The complexity of the parameterized halting problem for nonde-
terministic Turing machines p-Halt is known to be related to the
question of whether there are logics capturing various complexity
classes [10]. Among others, if p-Halt is in para-AC0, the parame-
terized version of the circuit complexity class AC0, then AC0, or
equivalently, (+,×)-invariant FO, has a logic. Although it is widely
believed thatp-Halt < para-AC0, we show that the problem is hard
to settle by establishing a connection to the question in classical
complexity of whether NE ⊈ LINH. Here, LINH denotes the linear
time hierarchy.

On the other hand, we suggest an approach toward provingNE ⊈
LINH using bounded arithmetic. More specifically, we demonstrate
that if the much celebrated MRDP (for Matiyasevich-Robinson-
Davis-Putnam) theorem can be proved in a certain fragment of
arithmetic, then NE ⊈ LINH. Interestingly, central to this result
is a para-AC0 lower bound for the parameterized model-checking
problem for FO on arithmetical structures.
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1 Introduction

The parameterized complexity of the following halting problem is
still wide open.

p-Halt
Instance: n ∈ N in unary and a nondeterministic Turing

machine (NTM)M.
Parameter: |M|, the size of the machineM.
Problem: Decide whether M accepts the empty input

tape in at most n steps.

The importance of p-Halt is derived from its close connections to
some prominent open problems in proof complexity and descriptive
complexity [10, 19]. Among others, if p-Halt can be decided by
an algorithm A in time nf ( |M |) for a function f : N → N, then
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there is a logic for PTIME. Although it is generally believed not to
be the case, now we can only rule out such an algorithm A under
some very strong non-standard complexity-theoretic assumption
and with a further restriction that the corresponding function f is
computable [9, 10]. On the other hand, for every fixed k ∈ N there
is a linear time algorithm Ak such that for every NTM M with
|M| = k the algorithm Ak decides whether M halts in at most n
steps. More precisely, for every k ∈ N we can enumerate all NTM’s

Mk,0, . . . ,Mk, ℓk−1

with |Mk,i | = k for every i ∈ [ℓk ]. Then let

sk,i :=


s Mk,i accepts the empty input tape,

and a minimum accepting run has s steps
∞ Mk,i does not accept the empty input tape.

The desired algorithm Ak accepts an input (M,n) ifM isMk,i for
some i ∈ [ℓk ] and n ≥ sk,i . Equivalently, it computes a simple
family of Boolean functions:

Fn,k (x0 . . . xn−1,y0 . . .yk−1)

=
∨

i ∈ [ℓk ] such
that n ≥ sk,i

(
x0 . . . xn−1 = 1n ∧ y0 . . .yk−1 = Mk,i

)
.

Observe that Fn,k can be understood as a circuit of depth 2 and
size O(k · ℓk · n). Thus, each slice of p-Halt is in the circuit com-
plexity class AC0. Hence, p-Halt is in a nonuniform version of
parameterized AC0.

Recall that AC0 is the class of classical problems that can be
decided by families of circuits of constant depth and polynomial size.
Parameterized AC0, or para-AC0, can be viewed as an analog of AC0

in the parameterized world. There is some recent interest in para-
AC0 [5, 6, 11, 13]. Just like whether p-Halt ∈ FPT, the question of
whether p-Halt ∈ para-AC0 can be related to open problems in
proof complexity and descriptive complexity as well. Following [10],
it is not hard to see that p-Halt ∈ para-AC0 implies that there
is a logic capturing (+,×)-invariant FO. Recall that para-AC0 ⊆

FPT [13], and there is good evidence that p-Halt < FPT [9], so the
conjecture below seems highly plausible.

Conjecture 1.1. p-Halt < para-AC0.

Given that AC0 is well understood, one would expect that Con-
jecture 1.1 should be within our reach. In fact, [11] establishes
(unconditional) para-AC0 lower bounds for many well-studied pa-
rameterized problems. It also shows that p-Halt is not in a natu-
ral subclass of para-AC0. However, we show that settling Conjec-
ture 1.1 either in the positive or the negative leads to the resolution
of long standing open problems in complexity theory. On the posi-
tive side, we observe that if nondeterministic exponential time with
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linear exponent NE is contained in the linear time hierarchy LINH,
then p-Halt ∈ para-AC0. This connection can be further tightened
by considering the following variant of p-Halt.

p-Halt=
Instance: n ∈ N in unary and an NTMM.

Parameter: |M|.
Problem: Decide whether M has an accepting run on

the empty input tape of exactly n steps.

Theorem 1.2.

(i) p-Halt= ∈ para-AC0 if and only if NE ⊆ LINH.
(ii) p-Halt= ∈ para-AC0 implies p-Halt ∈ para-AC0.

Thus, to settle Conjecture 1.1 one might try to first separate NE
from LINH. Perhaps surprisingly, we tie this question to the prov-
ability of the MRDP (for Matiyasevich-Robinson-Davis-Putnam)
theorem [12] in bounded arithmetic. The MRDP theorem states
that every Σ1-definable arithmetic relation of natural numbers is
Diophantine. It has been long realized that proving MRDP in certain
fragments of arithmetic has complexity-theoretic consequences.
Based on [18], Wilkie [23] observed that, assuming NP , coNP,
MRDP is not provable in I∆0, the fragment of Peano arithmetic
where the induction scheme only applies to ∆0-formulas.

We show that:

Theorem 1.3. If I∆0 proves MRDP for small numbers, then NE ⊈
LINH.

Basically, I∆0 proves MRDP for small numbers1 means that the
equivalence of any ∆0-formula φ(x̄) to some Diophantine formula
is proved in I∆0 for all x̄ of logarithmic order. Model-theoretically,
the equivalence holds in any I∆0-model for all x̄ from the initial
segment of numbers x such that 2x exists, while proof-theoretically,
we allow the I∆0-proof to use exponentiation, but only once. Gaif-
man and Dimitracopoulos [15] showed that I∆0 + ∀x∃y (2x = y)
does prove MRDP. Kaye [17] proved MRDP using only induction
for bounded existential formulas plus an axiom stating the totality
of a suitable function of exponential growth. It is a standing open
question [15] whether I∆0 or I∆0 plus the totality of some subex-
ponential function can prove MRDP. In fact, if the latter holds, then
I∆0 proves MRDP for small numbers.

Our proof of Theorem 1.3 relies on an analysis of the parameter-
ized model-checking problem for FO(+,×), i.e., first-order logic on
arithmetical structures:
p-MC

(
FO(+,×)

)
Instance: n ≥ 2 in unary and φ ∈ FO(+,×).

Parameter: |φ |.
Problem: Decide whether

(
[n],+,×

)
|= φ.

Theorem 1.4. p-MC
(
FO(+,×)

)
< para-AC0.

Could Conjecture 1.1 be false? We establish a connection be-
tween p-Halt ∈ para-AC0 and the existence of AC0-bi-immune
sets in NP. Let C be a complexity class. A problem Q ⊆ {0, 1}∗ is
C-bi-immune, if neitherQ nor {0, 1}∗ \Q contains an infinite subset
that belongs to C. In [9] it is shown that p-Halt ∈ FPT implies that
NP does not have any P-bi-immune set. We prove a similar result
with regard to AC0:
1See Section 5 for the precise definition.

Theorem 1.5. If p-Halt ∈ para-AC0, then NP contains no AC0-bi-
immune set.

An infinite setQ ⊆ {0, 1}∗ is AC0-immune if every infinite subset
of Q is not in AC0. In particular, every AC0-bi-immune set is also
AC0-immune. The question of whether NP has an AC0-immune set
is another long standing open question and has been asked once
it became known that the separations of standard time and space
hierarchy theorems hold with bi-immunity, or, equivalently [4],
almost everywhere [1, 16].While Zimand [24] obtained some partial
positive answers, Allender and Gore showed [2] that the answer
to this question relativizes. That is, with the presence of different
oracles, NP might or might not have AC0-immune sets. Their oracle
constructions can be adapted to the case of AC0-bi-immunity. So
Theorem 1.5 gives some evidence that also a negative solution of
Conjecture 1.1 could be hard to obtain.

Organization of the paper

We recall some basic notions of complexity and logic in Section 2.
The connection betweenp-Halt and the complexity classes NE and
LINH is then discussed in Section 3. After that, Section 4 proves the
para-AC0 lower bound for the problem p-MC

(
FO(+,×)

)
. Building

on this lower bound, in Section 5 we show that proving MRDP in
an appropriate fragment of arithmetic separates NE from LINH.
Section 6 is devoted to a proof of Theorem 1.5. Finally, we conclude
in Section 7.

2 Preliminaries

N denotes the set of natural numbers, i.e., non-negative integers.
For every n ∈ N let [n] := {0, . . . ,n − 1}. The length of n ∈ N, i.e.,
the length of the binary expansion n, is |n | := ⌈log(n + 1)⌉.

We assume that the reader is familiar with basic notions in logic
and complexity theory, so the following only covers those central
to our purposes.

2.1 Complexity

We view (classical) problems as subsets of {0, 1}∗, the set of binary
strings; the length of a binary string s is denoted |s |. For n ∈ N we
let 1n denote the binary string consisting ofnmany 1’s. We use mul-
titape Turing machines as our basic model of computation. When
considering dlogtime Turing machines, i.e. deterministic machines
running in time O(logn), it is understood that they access their
input via an address tape (cf. e.g. [7]). As usual, P and NP denote de-
terministic and nondeterministic polynomial time nO (1), and E and
NE denote deterministic and nondeterministic exponential time
with linear exponent, i.e., 2O (n). The linear time hierarchy LINH is
the set of problems acceptable by alternating Turing machines in
linear time O(n) with O(1) alternations. Clearly,

LINH ⊆ E ⊆ NE.

Following [7] we define (dlogtime uniform) AC0 as the set of
problems decided by AC0-circuit families

(
Cn

)
n∈N:

– Cn is a circuit (with ∧,∨,¬ gates and unbounded fan-in)
with n variables, size ≤ nc and depth ≤ d , where c,d ∈ N
are two constants independent of n;

– there is a dlogtime Turing machine which given ⟨1n , i,b⟩
where n, i ∈ N and b ∈ {0, 1} decides whether the i-th bit of
the binary encoding of Cn is b.
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Here, for two binary strings s = s0 · · · s |s |−1 and r = r0 · · · r |r |−1
we use a standard pairing function

⟨s, r ⟩ := s0s0 · · · s |s |−1s |s |−101r0r0 · · · r |r |−1r |r |−1, (1)

and similarly for more arguments.
For s ∈ {0, 1}∗ let num(s) be the natural number with binary

expansion 1s . For a problem Q let

un(Q) :=
{
1num(s) | s ∈ Q

}
.

The last statement of the following is [2, Proposition 5], and the
first two are trivial:

Proposition 2.1 ([2]). Let Q be a problem. Then:

(i) Q ∈ NE if and only if un(Q) ∈ NP.
(ii) Q ∈ E if and only if un(Q) ∈ P.
(iii) Q ∈ LINH if and only if un(Q) ∈ AC0.

A parameterized problem is a pair (Q,κ) of an underlying classical
problem Q ⊆ {0, 1}∗ and a polynomial time computable parame-
terization κ : {0, 1}∗ → N mapping an instance s ∈ {0, 1}∗ to its
parameter κ(s) ∈ N. As mentioned in the Introduction, the central
parameterized complexity class in this paper is para-AC0. Instead
of its original definition using the para-operator of [14], we use the
following characterization of para-AC0.

Proposition 2.2 ([11]). Let (Q,κ) be a parameterized problem such
that Q is decidable and κ is computable by an AC0-circuit family.
Then the following are equivalent.

(i) (Q,κ) ∈ para-AC0.
(ii) There is a family (Cn,k )n,k ∈N of circuits such that

- there is a computable function f : N → N and constants
c,d ∈ N such that for all n,k ∈ N the circuit Cn,k has n
variables, size ≤ f (k) · nc , and depth ≤ d ;

- for all s ∈ {0, 1}∗ we have

s ∈ Q ⇐⇒ C |s |,κ(s)(s) = 1;

- there is a deterministic Turing machine which given as input〈
1n , 1k , i,b

〉
wheren,k, i ∈ N andb ∈ {0, 1} decides in time

д(k) +O(logn) whether the i-th bit of the binary encoding
of Cn,k is b, where д : N→ N is a computable function.

(iii) There is a computable h : N→ N and an AC0-circuit family
(Cn )n∈N such that for all s ∈ {0, 1}∗ with |s | > h(κ(s)):
s ∈ Q ⇐⇒ C |s |(s) = 1.

2.2 Logic

A vocabulary τ is a finite set of relation symbols and constants.
Each relation symbol has an arity. A τ -structure A consists of a
nonempty universe A, an r -ary relation RA ∈ Ar for each relation
symbol R ∈ τ of arity r , and an element cA ∈ A for each constant
c ∈ τ .

The set of τ -formulas φ of first-order logic FO is built up from
atomic τ -formulas using Boolean connectives ¬,∨,∧ and the ex-
istential ∃ and universal ∀ quantifiers. An atomic τ -formula is of
the form either t0 = t1 or Rt0 . . . tr−1, where t0, . . . , tr−1 are either
variables or constants in τ , and where R is an r -ary relation symbol
in τ . When the vocabulary τ is clear from context, we simply call φ
a formula. In case it has no free variables, then φ is a sentence. On
the other hand, writing φ as φ(x0, . . . ,xk−1) means that the free
variables in φ are among x0, . . . ,xk−1. And A |= φ(a0, . . . ,ak−1)

for a τ -structure A and a0, . . . ,ak−1 ∈ A means that the assign-
ment of a0, . . . ,ak−1 to x0, . . . ,xk−1 satisfies φ in A. Formally,
φ(a0, . . . ,ak−1) is a sentence in the language τ plus the ai ’s as new
constants understood to be interpreted by themselves in A.

An arithmetical structure is of the form either
(
N,+,×

)
or

(
[n],+,

×
)
for some n ≥ 2.2 More precisely, they are τarith-structures A

with τarith = {+,×, 1} where both + and × are ternary relations,
and where 1 is a constant. The universe ofA is either N or [n] with
n ≥ 2,

+A :=
{
(a,b, c) ∈ A3 �� a + b = c},

×A :=
{
(a,b, c) ∈ A3 �� a × b = c

}
,

and 1A = 1. A binary string s = s0 . . . sn−1 with n ≥ 2 can be
naturally viewed as the arithmetical structure

(
[n],+,×

)
expanded

with a unary relation ONEs containing those positions i ∈ [n] with
si = 1. More precisely, we define the string structure S(s) of s:

S(s) :=
(
[n],+,×,ONEs

)
,

where ONEs =
{
i ∈ [n]

�� si = 1
}
.

A τarith-formula is also called an FO(+,×)-formula. To improve
readability, atomic FO(+,×)-formulas +t1t2t3 and ×t1t2t3 are writ-
ten as t3 = t1 + t2 and t3 = t1 × t2. Similarly, FO(+,×,ONE)-
formulas refer to the FO-formulas of vocabulary τarith ∪ {ONE}.
It is well known that definability in FO(+,×,ONE) coincides with
computability by

(
dlogtime uniform

)
AC0-circuit families:

Theorem 2.3 ([7]). A problem Q is in AC0 if and only if there is an
FO(+,×,ONE)-sentence φ such that for every string s ∈ {0, 1}∗ with
|s | ≥ 2

s ∈ Q ⇐⇒ S(s) |= φ.

2.3 Bounded formulas and the MRDP Theorem

Let p(x̄) be a polynomial with natural coefficients. It is straightfor-
ward to define a quantifier-free formula polyp (x̄ ,y, z̄) such that for
every ā ∈ N |x̄ | and b ∈ N

p(ā) = b ⇐⇒
(
N,+,×

)
|= ∃z̄ polyp (ā,b, z̄).

For example, for p(x) = x2
1 + x2 + 1 we let

polyp := (z1 = x1 × x1) ∧ (z2 = z1 + x2) ∧ (y = z2 + 1).

Then for every formula φ(x̄ ,y) and every polynomial p(x̄) with nat-
ural coefficients we use ∃y<p φ to denote the self-evident formula

∃y (∃x ′∃z̄ polyp(x̄ )+x ′+1(x̄ ,x
′,y, z̄) ∧ φ

)
.

Here, x ′ is a new variable distinct from x̄ , y and z̄. Similarly we can
define ∀y<p φ as

∀y (∃x ′∃z̄ polyp(x̄ )+x ′+1(x̄ ,x
′,y, z̄) → φ

)
.

We call ∃y<p and ∀x<p bounded quantifiers.

Definition 2.4. An FO(+,×)-formula φ is in ∆0 if it can be con-
structed from atomic FO(+,×)-formulas using the Boolean connec-
tives and the bounded quantifiers.

Theorem 2.5 (Gödel). Let f : N → N be a computable function.
Then there is a ∆0-formula φf (x ,y, z̄) such that for every a,b ∈ N

f (a) = b ⇐⇒
(
N,+,×

)
|= ∃z̄ φf (a,b, z̄).

2Thus, 1 is always an element in [n].
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We use the following version of the MRDP theorem.

Theorem 2.6. For every ∆0-formula φ(x̄) there are two polynomials
p(x̄ , ȳ) and q(x̄ , ȳ) with natural coefficients such that(

N,+,×
)
|= ∀x̄ (φ(x̄) ↔ ∃ȳ p(x̄ , ȳ) = q(x̄ , ȳ)),

where p(x̄ , ȳ) = q(x̄ , ȳ) denotes the formula

∃w∃z̄∃z̄′ (polyp (x̄ , ȳ,w, z̄) ∧ polyq (x̄ , ȳ,w, z̄
′)
)
.

Since both polyp and polyq are quantifier-free, Theorem 2.6 im-
plies that the formula φf in Theorem 2.5 can be further simplified:

Corollary 2.7. Let f : N→ N be a computable function. Then there
is a quantifier-free formula φf (x ,y, z̄) such that for every a,b ∈ N

f (a) = b ⇐⇒
(
N,+,×

)
|= ∃z̄ φf (a,b, z̄).

3 p-Halt, NE, and LINH

Recall that E and NE denote deterministic and nondeterministic
exponential time with with linear exponent, i.e., the classes of prob-
lems decidable by deterministic/nondeterministic Turing machines
in time 2O (n). Whether p-Halt and p-Halt= are fixed-parameter
tractable is closely related to the relationship between E and NE.

Theorem 3.1 ([3, 8]).
(i) p-Halt= ∈ FPT if and only if E = NE.
(ii) p-Halt= ∈ FPT implies p-Halt ∈ FPT.

As a matter of fact, the proof of Theorem 3.1 can be adapted to
show Theorem 1.2.

Proof of Theorem 1.2: (i) Consider the classical problem:

Q
Instance: n ∈ N in binary and an NTMM.
Problem: Decide whether M accepts the empty input

tape in exactly n steps.

Clearly, Q ∈ NE. Thus, assuming NE ⊆ LINH, we conclude that
un(Q) ∈ AC0 by Proposition 2.1 (iii). Observe that

un(Q) =
{
1num(⟨n,M⟩)

��� n ∈ N in binary and the NTMM accepts

the empty input tape in exactly n steps
}
,

where���1num(⟨n,M⟩)
��� = ℓ, where ℓ is the natural number

with binary expansion 1 ⟨n,M⟩

= O
(
2 | ⟨n,M⟩ |

)
= O

(
22· |M | · n2

)
(
by n in binary and (1)

)
.

Then from the circuits witnessing un(Q) ∈ AC0, it is routine to
construct a family

(
Cn,k

)
n,k ∈N of circuits such that

– for every n,k ∈ N, the circuit Cn,k has constant depth and
size 2O ( |M |) · nO (1);

– for every n ∈ N and every NTM M, the machine M ac-
cepts the empty input tape in exactly n steps if and only if
Cn, |M |(⟨n,M⟩) = 1;

– the circuit Cn,k is easy to construct from n and k .

Thus, Proposition 2.2 implies that p-Halt= ∈ para-AC0, which
establishes the direction from right to left in (i).

Conversely, assume that p-Halt= ∈ para-AC0. Let Q ⊆ {0, 1}∗
be a problem in NE. To show that Q ∈ LINH, it suffices to prove
un(Q) ∈ AC0 again by Proposition 2.1 (iii). Recall that

un(Q) =
{
1num(s) �� s ∈ Q

}
.

Also observe that

num(s) , num(s ′) for every s, s ′ ∈ Q with s , s ′. (2)

As Q ∈ NE there is an NTMM and a constant c ∈ N such thatM
decides whether s ∈ Q in time 2c · |s | and every run ofM on input s
has length at most 2c · |s | . It is clear that

2c · |s | ≤ num(s)c . (3)

We define a nondeterministic Turing machineM∗ that started
with empty input tape runs as follows:

1. guess a string t ∈ {0, 1}∗
2. simulateM on input t for num(t)c many steps
3. if M rejects, then reject
4. make some additional dummy steps such that so far

the total running time ofM∗ is 2 · num(t)c − 1
5. accept.

By (2) and (3) we have for every s ∈ {0, 1}∗:

s ∈ Q ⇐⇒ M∗ accepts the empty input tape
in exactly 2 · num(s)c many steps. (4)

Now, we apply the assumption that p-Halt ∈ para-AC0 to obtain
a family of circuits (

Cn, |M∗ |

)
n∈N

with the following properties.

(C1) The circuits Cn, |M∗ | have constant depth and size bounded
by f (|M∗ |) ·nO (1) for a computable function f : N→ N. But
sinceM∗ is a fixed machine, we have

��Cn, |M∗ |

�� = nO (1).
(C2) For every n ∈ N the NTMM∗ accepts the empty input tape

in exactly n steps if and only if Cn, |M∗ |(⟨1n ,M∗⟩) = 1.
(C3) We can construct the circuits Cn, |M∗ | easily from n.

Then we define for every n ∈ N a circuit Dn (t) with t ∈ {0, 1}n as
follows. For s ∈ {0, 1}∗ with num(s) = n we have

Dn

(
1num(s)

)
:= C2·num(s)c , |M∗ |

(〈
12·num(s)c ,M∗

〉)
.

Note that 2 · num(s)c = 2 · nc . For t , 1num(s) let

Dn (t) := 0.

It is routine to see that the circuits(
Dn

)
n∈N
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can be chosen in AC0. Moreover, for every t ∈ {0, 1}n

Dn (t) = 1

⇐⇒ for some s ∈ {0, 1}∗: t = 1num(s) and

C2·num(s)c , |M∗ |

(〈
12·num(s)c ,M∗

〉)
= 1

by (C2)
⇐⇒ for some s ∈ {0, 1}∗: t = 1num(s) andM∗ accepts the

empty input tape in exactly 2 · num(s)c steps
by (4)
⇐⇒ for some s ∈ {0, 1}∗: t = 1num(s) and s ∈ Q

⇐⇒ for some s ∈ {0, 1}∗: t = 1num(s) and 1num(s) ∈ un(Q)

⇐⇒ t ∈ un(Q).

In other words,
(
Dn )n∈N decides un(Q). Hence un(Q) ∈ AC0.

(ii) follows easily from the equivalence that for every n ∈ N and
every NTMM

M accepts the empty input tape in at most n steps
⇐⇒ M accepts the empty input tape

in exactly n′ steps for some n′ ≤ n. 2

Remark 3.2. The reader might notice that in the proof of the
direction from left to right in (i) all we need is that for every fixed
NTMM the problem

Instance: n ∈ N in unary.
Problem: Decide whetherM has an accept run on

the empty input tape of exactly n steps.

is in AC0. Or equivalently, we might say that p-Halt= is in nonuni-
form slicewise AC0. Hence, NE = LINH if an only if nonuniform
slicewise AC0 contains p-Halt=. In contrast, as noted in the Intro-
duction, this class trivially contains p-Halt.

4 The complexity of p-MC

(
FO(+,×)

)
In this section we prove Theorem 1.4. Some further preparations
are in order.

Elementary extension

Recall that a structure M is an elementary extension of
(
N,+,×

)
if

N ⊆ M , and if for every FO(+,×)-formulas φ(x̄) and n̄ ∈ N |x̄ | we
have (

N,+,×
)
|= φ(n̄) ⇐⇒ M |= φ(n̄). (5)

Furthermore, if N ⊊ M , thenM is a proper elementary extension
of

(
N,+,×

)
. It is well known that such an M exists.

Let φ(x̄) be a formula and u a variable not occurring in φ(x̄).
Then the formula φ<u (x̄) is obtained from φ(x̄) by replacing every
quantifier ∃y and ∀y by the bounded one ∃y<u and ∀y<u.
Lemma 4.1. Let f : N→ N be a computable function. Then there
is a formula χf (x ,y) satisfying the following two properties.

(i) For every n,b ∈ N

f (n) = b ⇐⇒
(
N,+,×

)
|= χf (n,b).

(ii) LetM be a proper elementary extensionM of
(
N,+,×

)
and

a ∈ M \ N. Then for every n ∈ N and every b ∈ M with 3

b < a

f (n) = b ⇐⇒ M |= χ<af (n,b).

Proof: By Corollary 2.7, there is a quantifier-free formula φf (x ,y, z̄)
such for every n,b ∈ N

f (n) = b ⇐⇒
(
N,+,×

)
|= ∃z̄ φf (n,b, z̄). (6)

We define
χf (x ,y) := ∃z̄ φf (x ,y, z̄).

And hence (6) proves (i). Note with (5) this also implies thatM |=

χf (n, f (n)) for every n ∈ N.

Since φf is quantifier-free, the formula φ<uf (x ,y, z̄) is equivalent
to φf (x ,y, z̄) ∧ u = u. Therefore4

χ<uf (x ,y) ≡ ∃z̄<u φf (x ,y, z̄).
Let n ∈ N and b := f (n) ∈ N. Then (6) implies that

(
N,+,×

)
|=

φf (n,b,m̄) for some m̄ ∈ N |z̄ | . It follows that

M |=φf (n,b,m̄) ∧ a = a, i.e., M |= φ<af (n,b,m̄).

Thus M |= ∃z̄<a φ<af (n,b, z̄).
Conversely, let n ∈ N and b ∈ M with b < a and M |=

∃z̄<a φ<af (n,b, z̄). Thus

M |= ∃z̄ φf (n,b, z̄), i.e., M |= χf (n,b).

As we have already seen thatM |= χf (n, f (n)), so if b , f (n), then
M satisfies

∃y1∃y2
(
y1 , y2 ∧ χf (x ,y1) ∧ χf (x ,y2)

)
.

By (5), also
(
N,+,×

)
satisfies this sentence. But this contradicts (6),

as f (n) is unique. 2

Let n ∈ N. It is easy to write a formulaψn (x) such that for every
elementary extension M of

(
N,+,×

)
and b ∈ M

M |= ψn (b) ⇐⇒ b = n.

Then for every formula φ(x , ȳ)we use φ(n, ȳ) to denote the formula

∃x (ψn (x) ∧ φ(x , ȳ)) .
Hence, for every b̄ ∈ M |ȳ | we have the equivalence

M |= φ(n, b̄) ⇐⇒ M |= φ(n, b̄).

Moreover, ifM is a proper elementary extension, a ∈ M \ N, and
b̄ < a,5 then

M |= φ<a (n, b̄) ⇐⇒ M |= φ<a (n, b̄). (7)

3The natural order < onN can be FO-defined in
(
N, +, ×

)
by the formula φ< (x, y) =

∃z x + z + 1 = y . Thus φ< also defines an order onM , which is an extension of <.
For simplicity we denote this order again by <.
4∃z̄<u means ∃z0<u . . . ∃zk−1<u , where z̄ = z0 . . . zk−1 .
5b̄ < a is understood as bi < a for every i ∈ [k ], where b̄ = b0, . . . , bk−1 .
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Interpretation

Letτ andτ ′ be two vocabularieswithτ =
{
R0, . . . ,Rm−1, c1, . . . , cℓ−1

}
,

where each Ri is an ri -ary relation symbol, and each ci is a constant.
An FO-interpretation I of τ in τ ′ of width w consists of FO[τ ′]-
formulas

φuni(x̄), φR0

(
x̄0, . . . , x̄r1−1

)
,

. . . ,φRm−1

(
x̄0, . . . , x̄rm−1

)
,φc0 (x̄), . . . ,φcℓ−1 (x̄),

where all tuples x̄ , x̄0, . . . , x̄rm−1 have lengthw . In a τ ′-structureA
the interpretation I induces the τ -structure AI with universe

AI :=
{
ā ∈ Aℓ

�� A |= φuni(ā)
}
, ∅,

with
RAI

i :=
{
(ā0, . . . ,āri−1) ∈ (AI )ri�� A |= φRi (ā0, . . . , āri−1)

}
,

and with
cA

I

i := ā where ā is the unique element in AI with A |= φci [ā].

In case the set defining AI is empty, or there are more than one
tuple ā satisfying φci , then the structure AI is undefined.

The following is standard.

Lemma 4.2. Let I be an interpretation of τ in τ ′. Then for every
FO[τ ]-sentence φ there is an FO[τ ′]-sentence φI such that for all
τ ′-structures A such that AI is defined we have

AI |= φ ⇐⇒ A |= φI .

Among others, the next lemma implies that for every fixed d ≥

1 the string structures S
(
1nd

)
can be interpreted in the string

structures S(1n ). Its proof can be founded in [22, Appendix] and
in [7, Lemma 10.5].

Lemma 4.3. For every d ∈ N there is an interpretation Id of width
d such that for every n ≥ 2 the structure

(
[n],+,×

)Id is defined and
isomorphic to

(
[nd ],+,×

)
.

Let n ≥ 2. It is often very useful to consider the BIT predicate, a
binary relation, on the arithmetical structures

(
[n],+,×

)
. That is

BIT [n] =
{
(i, j) ∈ [n]2

�� the j-th bit
of the binary expansion of i is 1

}
.

We omit the superscript [n] in case it is clear from the context. It
turns out that the BIT predicate is definable in FO(+,×).

Proposition 4.4.

[
cf. [22, Theorem 3.2]

]
There is a formula φ(x ,y)

such that for every n ≥ 2 and i, j ∈ [n](
[n],+,×

)
|= φ(i, j) ⇐⇒ (i, j) ∈ BIT .

Now we are ready to prove Theorem 1.4, which for the reader’s
convenience is repeated below.

Theorem 4.5. p-MC
(
FO(+,×)

)
< para-AC0.

Proof: Towards a contradiction, let us assume that p-MC
(
FO(+,×)

)
∈ para-AC0. By Proposition 2.2 (iii) and Theorem 2.3, there is an
increasing computable function h : N→ N and an FO-sentence sat
such that for every n ∈ N and φ ∈ FO(+,×) with n ≥ h(num(φ))
we have (

[n],+,×
)
|= φ ⇐⇒ S

( 〈
1n ,φ

〉 )
|= sat.

Then, using Lemma 4.3 and Proposition 4.4 it is routine to define
an FO(+,×)-formula form-sat(x) such that

S
( 〈

1n ,φ
〉 )

|= sat ⇐⇒
(
[n],+,×

)
|= form-sat

(
num(φ)

)
for n ≥ h(num(φ)) ≥ num(φ).

By definition, form-sat<u (x) is obtained from form-sat(x) by
replacing every quantifier occurrence of the form ∀z and ∃z by
∀z<u and ∃z< u. Thus(

[n],+,×
)
|= form-sat

(
num(φ)

)
⇐⇒

(
N,+,×

)
|= form-sat<n

(
num(φ)

)
for every FO(+,×)-sentence φ and every n ≥ 1.

Since h : N→ N is computable, Corollary 2.7 implies that there
is a formula h-bound(x ,y) such that

n ≥ h(num(φ)) ⇐⇒
(
N,+,×

)
|= h-bound

(
num(φ),n

)
for every n ∈ N and every FO(+,×)-sentence φ.

Combining all the above together, for every FO(+,×)-sentence φ
we obtain a sentence

h-satφ := ∀u (h-bound(num(φ),u)

→
(
φ<u ↔ form-sat<u (num(φ))

) )
.

Thereby,
(
N,+,×

)
|= h-satφ .

Now let M be a proper elementary extension of
(
N,+,×

)
and

a ∈ M \ N. In particular, M |= n < a for every n ∈ N. As a
consequence, for every φ

M |= h-bound
(
num(φ),a

)
.

By our definition of h-satφ ,
(
N,+,×

)
|= h-satφ , and by (5)

M |=
(
φ<a ↔ form-sat<a (num(φ))

)
. (8)

As stated in [21, proof of Proposition 3] this contradicts Tarski’s
undefinability of truth. We include the details as they are omitted
in [21].

It is clear that the functionwhich for every FO(+,×)-formulaφ(x)
maps num(φ) to

num(φ(num(φ)))

is computable. So by Lemma 4.1, there is a formula sub(x ,y) with
the following properties.
(S1) Let φ(x) be an FO(+,×)-formula and n ∈ N. Then(

N,+,×
)
|= sub

(
num(φ),n

)
⇐⇒ n = num(φ(num(φ))).

(S2) For every formula φ(x) and every b ∈ M with b < a we have

M |= sub<a (num(φ),b)

⇐⇒ b = num(φ(num(φ))).

Let θ := χ (num(χ )), where

χ (x) = ∀y (sub(x ,y) → ¬form-sat(y)
)

and note
num(θ ) = num(χ (num(χ ))). (9)
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Then we can deduce

M |= θ<a

⇐⇒ M |= ∀y<a (sub<a (num(χ ),y) → ¬form-sat<a (y)
)(
by (7)

)
⇐⇒ M |=

(
sub<a (num(χ ),b) → ¬form-sat<a (b)

)
for all b ∈ M with b < a

⇐⇒ M |= ¬form-sat<a (num(θ ))
(
by (S2) and (9)

)
⇐⇒ M |= ¬θ<a

(
by (8)

)
.

This is the desired contradiction. 2

5 The provability of MRDP and LINH vs. NE

Definition 5.1. A set of FO(+,×)-sentences T is often called a
theory. A theory T is true if(

N,+,×
)
|= φ

for every φ ∈ T .T is Π1 if every sentence inT is of the form ∀x̄ψ (x̄)
whereψ is a ∆0-formula.

Theorem 5.2 (Parikh [20]). Let T be a Π1-theory and φ(x̄ , ȳ) a ∆0-
formula withT ⊢ ∀x̄∃ȳ φ(x̄ , ȳ). Then there is a polynomial p(x̄) with
natural coefficients such that

T ⊢ ∀x̄∃ȳ<p(x̄) φ(x̄ , ȳ).
It is well known

(
see, e.g., [15]

)
that there is a ∆0-formula

exp(x ,y) such that for every n,m ∈ N(
N,+,×

)
|= exp(n,m) ⇐⇒ 2n =m.

Again for simplicity we identify the formula exp(x ,y) with 2x = y.

Definition 5.3. Let T be a theory. We say that T proves MRDP if
for every ∆0-formula φ(x̄) there are two polynomials p(x̄ , ȳ) and
q(x̄ , ȳ) with natural coefficients such that

T ⊢ ∀x̄ (φ(x̄) ↔ ∃ȳ p(x̄ , ȳ) = q(x̄ , ȳ)
)
.

As mentioned in the Introduction, Gaifman and Dimitracopou-
los showed that I∆0 + ∀x∃y exp(x ,y) proves MRDP. Additionally
they observed [15, p.204] that the existential quantifier ∃ȳ can
be bounded by 22p(x̄ ) for some polynomial p(x̄) (depending on φ).
As noted by Wilkie [23] this bound could be improved to p(x̄) if
MRDP would be provable in I∆0 alone

(
by Parikh’s theorem 5.2

)
.

In this case LINH equals nondeterministic linear time NLIN and
thus NE ⊈ LINH by the nondeterministic time hierarchy theorem.
Theorem 1.3 derives this conclusion from a weaker provability
assumption, defined next.

Definition 5.4. Let T be a theory. We say that T proves MRDP
for small numbers if for every k ∈ N and every ∆0-formula φ(x̄) =
φ(x0, . . . ,xk−1) there are two polynomials p(x̄ , ȳ) and q(x̄ , ȳ) with
natural coefficients such that

T ⊢ ∀x̄
(( ∧

i ∈[k ] ∃y 2xi = y
)

→
(
φ(x̄) ↔ ∃ȳ p(x̄ , ȳ) = q(x̄ , ȳ)

) )
.

Intuitively, provability of MRDP for small numbers, say in I∆0,
seems to be much weaker than provability in I∆0. Indeed, I∆0
proves MRDP for small numbers if I∆0 + ∀x∃y (

f (x) = y
)
proves

MRDP for some subexponential f .6 It is asked in [15, p.188] whether
this holds for f (x) = x log x or f (x) = x log log x etc.

We prove the following slightly more general version of Theo-
rem 1.3.

Theorem 5.5. Let T be a true Π1-theory. Moreover, assume that T
is recursively enumerable. If T proves MRDP for small numbers, then
NE ⊈ LINH.

The proof uses the following two lemmas, both easy to show.

Lemma 5.6. The problem

Instance: A polynomial p(x) and n ∈ N.
Problem: Output p(n).

can be computed in time (
|p | + logn

)O (1)
,

where we encode p by a list of its natural coefficients, and |p | is the
length of this encoding. (As consequences, the degree of p is bounded
by O(|p |), and any coefficient in p is bounded by O(2 |p |)).

Lemma 5.7. The following functions are all computable by AC0-
circuit families.

(i) (x ,y) 7→ ⟨x ,y⟩, ⟨x ,y⟩ 7→ x , ⟨x ,y⟩ 7→ y, where x ,y ∈ {0, 1}∗.
(ii) x 7→ num(x) for x ∈ {0, 1}∗.
(iii) 1n 7→ n for n ∈ N, that is, mapping every unary n to its binary

expansion.
(iv) The mapping (n,x) 7→ 1n , where n ∈ N and x ∈ {0, 1}∗ with

n ≤ |x |O (1).

Proof of Theorem 5.5: Assume that both T proves MRDP for small
numbers and NE ⊆ LINH. Our goal is to derive a contradiction to
Theorem 1.4. To that end, let n ≥ 2 and φ be an FO(+,×)-sentence,
i.e.,

(
1n ,φ

)
is an instance of the problem p-MC

(
FO(+,×)

)
. Then for

the ∆0-formula φ<x , we have(
[n],+,×

)
|= φ ⇐⇒

(
N,+,×

)
|= φ<n . (10)

Claim 1. There are polynomials pφ (x , ȳ), qφ (x , ȳ), and uφ (x , z) such
that

T ⊢ ∀x∀z
(
2x = z →(

φ<x ↔ ∃ȳ<uφ (x , z) pφ (x , ȳ) = qφ (x , ȳ)) ) .
Moreover, pφ (x , ȳ), qφ (x , ȳ), and uφ (x , z) can be computed from φ.
Proof of the claim: Since T proves MRDP for small numbers and
φ<x ∈ ∆0, there are polynomials pφ (x , ȳ) and qφ (x , ȳ) such that

T ⊢ ∀x∀z
(
2x = z →(

φ<x ↔ ∃ȳ pφ (x , ȳ) = qφ (x , ȳ)
) )
. (11)

This shows that for any polynomialu(x , z)with natural coefficients
we have

T ⊢ ∀x∀z
(
2x = z

→
(∃ȳ<u(x , z) pφ (x , ȳ) = qφ (x , ȳ) → φ<x

) )
. (12)

6i.e., for any n ∈ N, there exists anm ∈ N such that I∆0 proves that ∀x ≥m f n (x ) ≤
2x . Here, f n (x ) denotes the value f (f (· · · f︸     ︷︷     ︸

n times

(x ) · · · )).
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Next, observe that the sentence

∀x∀z
(
2x = z →

(
φ<x → ∃ȳ pφ (x , ȳ) = qφ (x , ȳ)

) )
is equivalent to

∀x∀z∃ȳ
(
¬2x = z ∨ ¬φ<x ∨ pφ (x , ȳ) = qφ (x , ȳ)

)
︸                                                ︷︷                                                ︸

a ∆0-formula

.

Thus by Theorem 5.2 and (11) there is a polynomial uφ (u, z) with
natural coefficients such that

T ⊢ ∀x∀z∃ȳ<uφ (x , z)(
¬2x = z ∨ ¬φ<x ∨ pφ (x , ȳ) = qφ (x , ȳ)

)
,

i.e.,

T ⊢ ∀x∀z
(
2x = z →(

φ<x → ∃ȳ<uφ (x , z) pφ (x , ȳ) = qφ (x , ȳ)) ) .
Together with (12)

T ⊢ ∀x∀z
(
2x = z →(

φ<x ↔ ∃ȳ<uφ (x , z) pφ (x , ȳ) = qφ (x , ȳ)) ) .
SinceT is recursively enumerable, we conclude that pφ , qφ , and uφ
all can be computed from φ by the Completeness Theorem. ⊣

Claim 2. There is a computable function f : N→ N and an NTMM
such that for every n ≥ 2 and FO(+,×)-formula φ the machineM
decides whether

(
[n],+,×

)
|= φ in time

f (|φ |) · nO (1).

Proof of the claim: By Claim 1 we can compute from φ three poly-
nomials pφ , qφ , and uφ such that

(
N,+,×

)
satisfies

∀x∀z
(
2x = z →

(
φ<x ↔ ∃ȳ<uφ (x , z)

pφ (x , ȳ) = qφ (x , ȳ)
) )
. (13)

Let
s := uφ

(
n, 2n

)
.

Then by (10) and (13) we conclude that
(
[n],+,×

)
|= φ if and only

if there is some m̄ ∈ [s] |ȳ | such that

pφ (n,m̄) = qφ (n,m̄).

By first guessing m̄, Lemma 5.6 implies that all these can be tested
in nondeterministic time(

|uφ | + |pφ | + |qφ | + n
)O (1)

.

This proves the claim. ⊣

Without loss of generality, we choose the function f : N→ N
in Claim 2 to be time constructible and f (n) ≥ 2n for every n ∈ N.
It follows that the following classical problem Q is in NE.

Q
Instance: n ≥ 2 in binary and φ ∈ FO(+,×) with n ≥

f (|φ |).
Problem: Decide whether

(
[n],+,×

)
|= φ.

Since NE = LINH by assumption, Q ∈ LINH, and thus

un(Q) =
{
1num(⟨n,φ ⟩)

��� n ≥ f (|φ |) and
(
[n],+,×

)
|= φ

}
is in AC0 by Proposition 2.1 (iii).

Observe that Lemma 5.7 implies that the mapping〈
1n ,x

〉
7→ 1num(⟨n,x ⟩),

where n ∈ N and x ∈ {0, 1}∗ with n ≥ 2 |x | , is computable in AC0.
Thus, {〈

1n ,φ
〉 ��� n ≥ f (|φ |) and

(
[n],+,×

)
|= φ

}
is in AC0, too. Then Proposition 2.2 (iii) implies that

p-MC
(
FO(+,×)

)
∈ para-AC0,

which contradicts Theorem 1.4. 2

6 p-Halt and a universal AC
0
-easy set in NP

Recall that we can identify every natural number n ∈ N with the
string of its binary expansion. And in case n ≥ 2, it can be further
identified with the string structure S(n). The next lemma is an easy
consequence of the definability of the BIT predicate in FO(+,×),
i.e., Proposition 4.4.

Lemma 6.1. Let U ⊆ N. If
{
S(n)

�� n ∈ U and n ≥ 2
}
is definable

in FO(+,×,ONE), then the class{
S(1n )

�� n ∈ U and n ≥ 2
}

is also definable in FO(+,×,ONE).

Lemma 6.2. Let f : N→ N be a computable function. Then there
is an increasing function h : N → N that satisfies the following
properties.

(i) h(n) ≥ f (n2) for every n ∈ N.
(ii) The mapping 1n 7→ 1h(n) can be computed in time h(n)O (1).
(iii) The class of string structures{

S
(
1h(n)

) ��� n ≥ 2
}

is definable in FO(+,×,ONE).
(iv) There is an FO(+,×,ONE)-formula φ(x) such that for every

n ≥ 2 and a ∈ [h(n)]

S
(
1h(n)

)
|= φ(a) ⇐⇒ a = n.

Proof: Given a deterministic Turing machine M and an input s ∈

{0, 1}∗ we let wM,s be a binary string encoding the computation
ofM on s . It is well known that the encoding can be chosen in such
a way that:
(E1) The function s 7→ wM,s is computable in time |wM,x |O (1).
(E2) The problem

{ 〈
s,wM,s

〉 �� s ∈ {0, 1}∗
}
is in AC0.

From (E2) it is straightforward to define an FO(+,×,ONE)-sentence
compM by Theorem 2.3 such that for every s,w ∈ {0, 1}∗

S(num(⟨s,w⟩)) |= compM ⇐⇒ w = wM,s (14)
Now let Mf be a Turing machine that computes the mapping

1n 7→ 1f (n). We consider the following simple machine.

M(1n ) // n ∈ N

1. for all 0 ≤ i ≤ n do

2. run the machineMf on input 1i2 .
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Then we define the increasing function h : N→ N by

h(n) = num
( 〈

1n ,wM,1n
〉 )

(15)

It should be clear that the stringw
Mf ,1n2 encoding the computation

ofMf on input 1n2 has length at least f (n2). Similarly, |wM,1n | ≥
f (n2). Thus h(n) ≥ f (n2) for every n ∈ N, i.e., (i) holds.

(ii) is also immediate by (E1). By (14) and our definition (15) of h
the class {

S(h(n))
�� n ≥ 2

}
is definable in FO(+,×,ONE). Thus (iii) follows from Lemma 6.1.

Finally, on the structure S
(
1h(n)

)
we can first define the string

of the binary expansion of h(n) using the BIT predicate by Propo-
sition 4.4. Then by (15) we can obtain the string 1n , from which n
can be defined using the BIT predicate again. 2

Theorem6.3. Assumep-Halt ∈ para-AC0. Then there is an infinite
set I ⊆ {0, 1}∗ such that for every NP-problem Q ⊆ {0, 1}∗ we have
Q ∩ I ∈ AC0.

Proof: Let us assume that p-Halt ∈ para-AC0. By Proposition 2.2
and Theorem 2.3 there is a computable and increasing function
f : N → N and an FO(+,×,ONE)-sentence φ such that for every
⟨1n ,M⟩ with n ≥ f (|M|)

S
( 〈

1n ,M
〉 )

|= φ

⇐⇒ M accepts the empty input tape in at most n steps.
(16)

Now leth : N→ N be the increasing function as stated in Lemma 6.2.
In particular, there is a deterministic Turing machine Mh and a
constant c ≥ 1 such that on input 1m the machineMh outputs the
string 1h(m) in time h(m)c . The desired set I is defined by

I :=
{
1h(m)

��m ≥ 2
}
.

By Lemma 6.2 (iii), there is an FO(+,×,ONE)-sentence φI such that
for every string s ∈ {0, 1}∗ with |s | ≥ 2

S(s) ∈ I ⇐⇒ S(s) |= φI . (17)

Now letQ ⊆ {0, 1}∗ be a problem in NP. In particular, there is an
NTMMQ and a constant d ≥ 1 such that on input s ∈ {0, 1}∗ the
machine MQ decides whether s ∈ Q in time |s |d . Then for every
m ≥ 2 we define the following nondeterministic Turing machine:

MQ,h,m

1. run the machineMh on 1m to output 1h(m)

2. run the machineMQ on 1h(m) to decide whether
1h(m) ∈ Q , then accept and reject accordingly.

Let
n := h(m)c + h(m)d .

The following equivalences are immediate.

1h(m) ∈ Q ⇐⇒ MQ,h,m accepts the empty input tape
⇐⇒ MQ,h,m accepts the empty input tape

in at most n steps. (18)

Also observe that the size ofMQ,h,m is��MQ,h,m
�� = |Mh | + |MQ | +m + e .

for some constant e ∈ N. Hence, ifm ≥ |Mh | + |MQ | + e ≥ 2, we
have

n = h(m)c + h(m)d ≥ h(m) ≥ f (m2)

≥ f (|Mh | + |MQ | +m + e) = f (|MQ,h,m |).

Then (16) and (18) imply that

1h(m) ∈ Q ⇐⇒ S
( 〈

1n ,MQ,h,m
〉 )

|= φ. (19)

On the other hand, using Lemma 6.2 (iv) it is easy to construct
an interpretation I such that for everym ∈ N

I

(
S
(
1h(m)

) )
= S

( 〈
1n ,MQ,h,m

〉 )
.

Thus by Lemma 4.2

S
( 〈

1n ,MQ,h,m
〉 )

|= φ ⇐⇒ S
(
1h(m)

)
|= φI .

Combined with (17) and (19), for every string s ∈ {0, 1}∗ with
|s | ≥ h(|Mh | + |MQ | + e)

S(s) |= φI ∧ φ
I

⇐⇒ s = 1h(m) for somem ≥ |Mh | + |MQ | + e and s ∈ Q,

i.e., s ∈ Q ∩ I .

Since there are only finitely many strings in Q ∩ I with length
smaller than h(|Mh | + |MQ | + e), the class{

S(s)
�� s ∈ Q ∩ I

}
is definable in FO(+,×,ONE). So Theorem 2.3 implies that Q ∩ I is
in AC0. 2

Proof of Theorem 1.5: Assume that p-Halt ∈ para-AC0 and an
NP-problem Q ⊆ {0, 1}∗ is an AC0-bi-immune set. Let I be the
infinite set as stated in Theorem 6.3. Then either Q ∩ I or ({0, 1}∗ \
Q) ∩ I is infinite. And by Theorem 6.3 they are both in AC0, which
contradicts the AC0-bi-immunity of Q . 2

.

7 Conclusions

Our initial goal was to prove unconditionally thatp-Halt < para-AC0,
but without success after several years’ attempt. The results of the
current paper show why. On the positive side, p-Halt < para-AC0

would lead to the separation of NE from LINH, a long standing
open problem in complexity theory. On the negative side, p-Halt ∈

para-AC0 implies that NP has no AC0-bi-immune set, which is also
an open question.

Since it is generally believed that p-Halt < para-AC0, one could
try to settle the conjecture NE ⊈ LINH first. Here, we provide an ap-
proach using bounded arithmetic. In particular, we showed that if a
true Π1 theory of arithmetic can prove the MRDP theorem for small
numbers, then LINH , NE. At the core of our proof, it is a para-
AC0 lower bound for the parameterized problem p-MC

(
FO(+,×)

)
,

which might be of some independent interest.
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