
Tree-depth, quantifier elimination, and quantifier rank
Yijia Chen

School of Computer Science
Fudan University

China
yijia.chen@fudan.edu.cn

Jörg Flum
Mathematisches Institut

Albert-Ludwigs-Universität Freiburg
Germany

joerg.flum@math.uni-freiburg.de

Abstract

For a class K of finite graphs we consider the following three state-
ments. (i) K has bounded tree-depth. (ii) First-order logic FO has an
effective generalized quantifier elimination on K . (iii) The parame-
terized model checking for FO on K is in para-AC0. We prove that
(i) ⇒ (ii) and (ii) ⇔ (iii). All three statements are equivalent if K is
closed under taking subgraphs, but not in general.

By a result due to Elberfeld et al. [12] monadic second-order
logic MSO and FO have the same expressive power on every class
of graphs of bounded tree-depth. Hence the implication (i) ⇒ (iii)
holds for MSO, too; it is the analogue of Courcelle’s Theorem for
tree-depth (instead of tree-width) and para-AC0 (instead of FPT).
In [13] it was already shown that the model-checking for a fixed
MSO-property on a class of graphs of bounded tree-depth is in AC0.
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1. Introduction

If a problem Q can be defined by a sentence φ of first-order logic
FO, then Q can be computed by a family of circuits (Cn )n∈N of
bounded depth and size polynomial in n. Even more, the depth
of the circuits Cn can be linearly bounded by the quantifier rank
qr(φ) of the formula φ. Therefore, O(qr(φ)) bounds the running time
of a parallel computer simulating the circuits Cn . Hence, finding
an FO-sentence with small quantifier rank defining Q has pleasant
computational consequences.

Let us look at the k-vertex-cover problem, where k is a natural
number. That is, given a graph G, we want to decide whether there
is a k-vertex-cover, i.e., a set of k vertices of G which contains at
least one end of every edge in G. It is straightforward to write an
FO-sentence of quantifier rank k + 2 for the k-vertex-cover problem.
Perhaps surprisingly, in [10] it was shown that (for every k) this
can be improved to quantifier rank 17 (see below for the precise
statement). The main difficulty was to show how to express the
existence of a k-element subset with a small number of quantifiers.
Other graph-theoretic problems have been shown to exhibit similar
phenomena [2, 4, 10].
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Central to this paper is the question for which classes K of graphs

every FO-definable problem can be defined by an
FO-formula φ whose quantifier rank is bounded
by a constant depending only on K?

(1)

In classical model theory “in a few fortunate cases” [7] a first-order
theory (or equivalently, its class K of models) allows the elimination
of quantifiers (i.e., we can choose 0 as constant in (1)). The theory
of the ordered field of the reals or the theory known as Presburger
arithmetic are prominent examples.

For the class of all graphs without edges already the existence
of at least k vertices cannot be expressed by an FO-sentence of
quantifier rank k − 1. It is reasonable (see below) to circumvent this
difficulty by allowing in (1) the use of built-in arithmetic. If then (1)
holds for the class K , we say that FO has generalized quantifier
elimination on K (see Definition 3.3 for the precise definition).

Already for the result on the k-vertex-cover problem mentioned
above we use built-in arithmetic: In [10] a sentence φk of quantifier
rank 17 is presented such that for every graph G with vertex set
G = [n] (:= {0, 1, . . . ,n − 1}),

G has a k-vertex-cover ⇐⇒ (G, <,+,×, 1, . . . ,k ′) |= φk , (2)

where < is the natural ordering on [n] and + and × are ternary
relations representing addition and multiplication on [n], and where
1, . . . ,k ′ are constants with k ′ only depending on k.

Built-in arithmetic is a basic tool in the study of the descrip-
tive complexity of FO. Barrington et al. [5] showed that with built-
in arithmetic, the expressive power of FO coincides exactly with
dlogtime-uniform AC0. This logical characterization can be ex-
tended to para-AC0, the parameterized version of dlogtime-uniform
AC0.

In [10] it was shown that a parameterized problem is in para-AC0

if and only if it is slicewise definable with bounded quantifier rank
in FO with built-in arithmetic. The equivalence (2) shows that the
kth slice of the parameterized vertex cover problem is definable
with quantifier rank 17 and hence, the parameterized vertex cover
problem is in para-AC0 [2].

For a class K of graphs the parameterized model-checking prob-
lem p-MC(K ,FO) asks, for a graph G ∈ K , vertices ū of G, and
an FO-formula φ(x̄), whether ū has the property φ in G. We prove
that the effective version of (1) is equivalent to p-MC(K ,FO) ∈

para-AC0 (see Theorem 3.1).
Furthermore we prove that p-MC(K ,FO) ∈ para-AC0 if the

class K has bounded tree-depth. The tree-depth td(G) of a graph G

measures how close G is to a star [17]. Various model-theoretic
results on classes of bounded tree-depth relevant to our context have
been obtained. For example, in [12], it was shown that monadic
second-order logic MSO and FO have the same expressive power on
any such class. Combined with the result p-MC(K ,FO) ∈ para-AC0

just mentioned, we get that the model-checking problem for MSO-
sentences on any class of graphs of bounded tree-depth is in para-AC0

(see Theorem 5.1). This means that for every d ∈ N there exists a
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uniform family (Cn,k )n,k ∈N of circuits such that for all graphs G

with td(G) ≤ d and all MSO-sentences φ the circuit C∥G ∥, |φ | de-
cides whether G is a model of φ (here ∥G∥ denotes the size of G and
|φ | the length of φ). Moreover, the depth of the circuits is bounded
by a fixed constant and the size of Cn,k is bounded by f (k) · nO (1)

for some computable function f : N → N. This is the analogue
of Courcelle’s Theorem for tree-depth (instead of tree-width) and
para-AC0 (instead of FPT).

In [13] the authors prove that for a fixed sentence of MSO the
model-checking problem on any class K of bounded tree-depth is in
AC0. Contrary to our result, the depth of the circuits depends on the
MSO-sentence. The same applies to the result obtained in [3] where
it is shown that the MSO model-checking on any class of graphs
can be done by a uniform family of circuits of depth bounded by
f (td(G)+ |φ |) and size bounded by f (td(G)+ |φ |) · |G |O (1), where φ
is any MSO-sentence and f is a computable function.

There are classesK of graphs with unbounded tree-depth and with
p-MC(K ,FO) ∈ para-AC0, e.g., the class K of all complete graphs.
However, we prove that if K is closed under taking subgraphs, then
p-MC(K ,FO) ∈ para-AC0 if and only if K has bounded tree-depth
(see Theorem 7.1). Interestingly, in [12] it was shown that under the
same closure condition the logic MSO collapses to FO if and only if
K has bounded tree-depth.

We study the parameterized model-checking problem for a set of
FO-sentences of bounded tree-depth. The tree-depth of a sentence is
tightly connected to its quantifier rank (see Theorem 8.2).

Organization of this paper. In Section 2 we fix some notations
and introduce the logics and parameterized classes relevant to the
paper. Section 3 contains a proof of the equivalence between (ii)
and (iii) mentioned in the Abstract. As a first step towards a proof
of Courcelle’s Theorem for tree-depth (proven in Section 5 and
Section 6), in Section 4 we show that FO has generalized quantifier
elimination on any class of rooted labelled trees of bounded tree-
depth. Section 7 we deal with classes of graphs closed under taking
subgraphs and Section 8 is devoted to the tree-depth of FO-sentences.

Due to space limitations we only sketch some proofs or refer to
the full version of the paper.

2. Preliminaries

First-order logic FO and monadic second-order logic MSO. A
vocabulary τ is a finite set of relation symbols and of constants (i.e.,
constant symbols). Each relation symbol has an arity. A vocabu-
lary is relational if it does not contain constants. A structure A of
vocabulary τ , or τ -structure, consists of a nonempty finite set A,
called the universe of A, of an interpretation RA ⊆ Ar of each
r -ary relation symbol R ∈ τ , and of an element cA in A for every
constant c ∈ τ . A τ -structure B is a substructure of a τ -structure
A if B ⊆ A, RB ⊆ RA for R ∈ τ , and cB = cA for c ∈ τ . It is an
induced substructure if in addition RB = RA ∩ Br for r -ary R. If
τ and τ ′ are vocabularies with τ ′ ⊆ τ and A is a τ -structure, then
A ↾ τ ′ denotes the τ ′-reduct of A, that is, the τ ′-structure obtained
from A by forgetting the interpretation of the symbols in τ \ τ ′. The
τ -structure A is an expansion of the τ ′-structure B if A ↾ τ ′ = B.
If τ contains a binary relation symbol < and in A the relation <A

is an ordering of the universe, then A is an ordered structure.
Formulas φ of first-order logic FO of vocabulary τ are built up

from atomic formulas t1 = t2 and Rt1 . . . tr (where R ∈ τ is of
arity r and t1, t2, . . . , tr are variables from x1,x2, . . . or constants in

τ ) using the boolean connectives ¬, ∧, and ∨ and the existential ∃
and universal ∀ quantifiers. By the notation φ(x̄) with x̄ = x1, . . . ,xe
we indicate that the variables free in φ are among x1, . . . ,xe .

In addition to the individual variables of FO, formulas of monadic
second-order logic MSO may also contain set variables. We use
lower case letters (usually x ,y, z) to denote individual variables and
uppercase letters (usually X ,Y ,Z ) to denote set variables. To obtain
MSO the syntax of FO is enhanced by new atomic formulas of the
form Xy and quantification is also allowed over set variables.

For a vocabulary τ we denote by FO[τ ] (by MSO[τ ]) the set of
formulas of FO (of MSO) of vocabulary τ . A formula φ is a sentence
if it has neither free individual variables nor free set variables. The
quantifier rank of φ is defined inductively:

qr(φ) := 0 if φ is atomic, qr(¬φ) := qr(φ),
qr(φ1 ∧ φ2) = qr(φ1 ∨ φ2) := max{qr(ψ1), qr(ψ2)},
qr(∃xφ) = qr(∀xφ) = qr(∃Xφ) = qr(∀Xφ) = 1 + qr(φ).

Parameterized problems and slicewise definability. For n ∈ N let
[n] := {0, 1, . . . ,n − 1}. We denote the cardinality of a set A by
|A|. Let <[n] be the natural ordering on [n]. Clearly, if A is any
ordered structure, then (A, <A ) is isomorphic to ([|A|], <[ |A |]) and
the isomorphism is unique. For ternary relation symbols + and ×

we consider the ternary relations +[n] and ×[n] on [n] that are the
relations of addition and multiplication of N restricted to [n]. That is,
+[n] := {(a,b, c) ∈ [n]3 | c = a + b} and ×[n] := {(a,b, c) ∈ [n]3 |

c = a · b}. Finally, for everym ∈ N let N (m) := {ℓ | ℓ < m} be a set
of “numerical” constant symbols and set

ℓ [n] := ℓ, if ℓ < n and ℓ [n] := n − 1, if ℓ ≥ n.

Assume that τ contains <, +, and × but no numerical constants. A τ∪
N (m)-structure A has built-in < ,+, ×, N (m) if its {<,+,×,N (m)}-
reduct is isomorphic to ([n], <[n],+[n],×[n], (ℓ [n])ℓ<m ). If m = 0,
we briefly say that A has built-in arithmetic. We denote by ARI[τ ]
the class of τ -structures with built-in arithmetic. If A ∈ ARI[τ ] and
m ∈ N, we denote by AN (m) its unique expansion to a τ ∪ N (m)-
structure with built-in <, +, ×, N (m). So, if we consider the class
ARI[τ ], then τ will be a vocabulary containing <, +, and × but no
numerical constants.

A vocabulary is without arithmetical symbols if it neither contains
<, +, × nor numerical constants.

A parameterized problem of vocabulary τ is a subclass Q of
ARI[τ ] × N, where for each k ∈ N the class Qk := {A ∈ ARI[τ ] |
(A,k) ∈ Q} is closed under isomorphism (cf. [10]).

As the generalized quantifier elimination refers to formulas and
not only to sentences we have to consider model-checking problems
for formulas. This suggests an extension of the previous definition
of parameterized problem. In our applications the vocabulary τk of
the following definition will mostly have the form τ ∪ {c1, . . . , ck }
for a fixed relational vocabulary τ .

Definition 2.1. Let (τk )k ∈N be a computable sequence of vocabu-
laries. A parameterized problem of type (τk )k ∈N is a class Q with

Q ⊆
⋃
k ∈N

ARI[τk ] × {k},

where for each k ∈ N the class Qk := {A ∈ ARI[τk ] | (A,k) ∈ Q}

of τk -structures is closed under isomorphism. The class Qk is the
kth slice of Q . Every pair (A,k) in ARI[τk ] × {k} is an instance of
Q , A its input and k its parameter.
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The parameterized complexity class para-AC0 is the class of
parameterized problems that are in dlogtime-uniform AC0 after a
precomputation. In the Introduction we already indicated what kind
of family of circuits exist for problems in para-AC0. We do not need
to repeat it, as we use the following characterization of para-AC0 to
show that certain problems belong to para-AC0.

Theorem 2.2 ([9]). Let (τk )k ∈N be a computable sequence of vo-
cabularies of bounded arity (that is, there is an r ∈ N such that
all relation symbols in

⋃
k ∈N τk have arity ≤ r ). Then for every

parameterized problem Q of type (τk )k ∈N,

Q ∈ para-AC0 ⇐⇒ Q ∈ XFOqr.

We recall the definition of XFOqr. For q ∈ N we denote by FOq
the set of sentences of FO of quantifier rank ≤ q.

Definition 2.3. A parameterized problemQ of type (τk )k ∈N is slice-
wise definable in FO with bounded quantifier rank, briefly Q ∈

XFOqr, if there is a q ∈ N and computable functions h : N→ N and
f : N→ FOq [τk ∪ N (h(k))] such that for all instances (A,k) of Q ,

A ∈ Qk ⇐⇒ AN (h(k )) |= f (k).

That is, ifmk := h(k) and f (k) := φk , then

A ∈ Qk ⇐⇒ AN (mk ) |= φk .

Then Q is slicewise definable in FOq and we write Q ∈ XFOq .

3. Model-checking and generalized quantifier elimination

In this section we prove the equivalence of the statements, denoted
by (ii) and (iii) in the Abstract, that is, we prove:

Theorem 3.1. Let τ be a vocabulary without arithmetical symbols.
For a class K of τ -structures the following are equivalent:

(i) FO has an effective generalized quantifier elimination on K .
(ii) p-MC(K ,FO) ∈ para-AC0.

To define the concepts involved in this theorem, we need a notion
of union of two structures with built-in arithmetic.

Definition 3.2. Assume A ∈ ARI[τ ] and A ′ ∈ ARI[τ ′] satisfy

A ∩A′ = ∅ and τ ∩ τ ′ = {<,+,×}.

LetU be a new unary relation symbol. We set τ ⊎τ ′ := τ ∪τ ′∪ {U }.
Then A ⊎A ′ is the structure B ∈ ARI(τ ⊎ τ ′) with

– B := A ∪A′; U B = A′;
– RB := RA for R ∈ τ \ {<,+,×} and RB := RA′

for
R ∈ τ ′ \ {<,+,×};

– cB := cA for c ∈ τ and cB := cA
′

for c ∈ τ ′;
– <B :=<A ∪ <A

′

∪{(a,a′) | a ∈ A and a′ ∈ A′}, that is, the
ordering <B extends the orderings <A and <A

′

, and in <B

every element of A precedes every element of A′.

If A ∩ A′ , ∅, then we pass to isomorphic structures with disjoint
universes before defining A ⊎A ′.

Let τ be a vocabulary without arithmetical symbols. If for a
class K of τ -structures and a set Φ of formulas of vocabulary τ
(containing only free individual variables) we claim that the parame-
terized model-checking problem p-MC(K ,Φ)

Input: A ∈ K , φ(x1, . . . ,xe ) ∈ Φ, and a1, . . . ,ae ∈ A.
Parameter: k ∈ N.

Problem: Decide if k = |φ | and A |=φ(ā).

is in para-AC0 or is not in para-AC0, we mean that this holds for the
problem

Input: A ∈ ARI[τ ∪ {<,+,×}] with A ↾ τ ∈ K ,
φ(x1, . . . ,xe ) ∈ Φ, and a1, . . . ,ae ∈ A.

Parameter: k ∈ N.
Problem: Decide if k = |φ | and A |= φ(ā).

How do we interpret the input of this problem as a structure?
Any string x ∈ {0, 1}∗ of length n can be identified with the {<,
+,×,One}-structure Str(x) := ([n], <[n],+[n],×[n],Onex ). Here i ∈
[n] is in Onex , the interpretation of the unary relation symbol One,
if and only if the ith bit of x is a ‘1’.

We can view formulas as strings over {0, 1}. We take fresh con-
stants (i.e., constants not in τ ) c1, c2, . . . and set τe := τ∪{c1, . . . , ce }.
We identify the input with the structure (A, ā) ⊎ Str(φ(x̄)).

For easier presentation we tacitly assume that every FO-
formula of length ≤ k contains no variable xℓ with ℓ > k.

(3)

Now we define the notion of quantifier elimination relevant to Theo-
rem 3.1.

Definition 3.3. Let K be a class of τ -structures, where τ is a vo-
cabulary without arithmetical symbols. Then FO has generalized
quantifier elimination on K if there is an ℓ ∈ N and a function
h : N → N such that for all FO[τ ]-formulas φ(x̄) there is an
FO[τ ∪ {<,+,×} ∪ N (h(|φ |))]-formula φ∗(x̄) of quantifier rank at
most ℓ such that for all (A, <,+,×) ∈ ARI[τ ∪ {<,+,×}] with
A ∈ K and ā in A we have

A |= φ(ā) ⇐⇒ (A, <,+,×)N (h( |φ |)) |= φ
∗(ā),

or equivalently,

(A, <,+,×)N (h( |φ |)) |= ∀x̄(φ(x̄) ↔ φ∗(x̄)). (4)

If there is a computable mapping φ 7→ φ∗, then FO has an effective
generalized quantifier elimination on K .

Loosely speaking if FO has generalized quantifier elimination
on K , then for some ℓ ∈ N every FO-formula φ is equivalent in
structures of K to an FO-formula of quantifier rank at most ℓ if we
use built-in arithmetic and constants for an initial segment of natural
numbers, whose length depends only on the length of φ.

Often we will make use of the following observation.

Remark 3.4. In structures of the form AN (m) the sentencem − 1 =
m − 2 expresses that A has less thanm elements. Therefore for every
A ∈ ARI[τ ] with |A| < m and a1, . . . ,ae in A there is a quantifier
free FO[τ ∪ N (m)]-formula φAN (m), ā (x1, . . . ,xe ) such that for all
structures B ∈ ARI[τ ] and b̄ ∈ Be we have

BN (m) |= φAN (m), ā (b̄) ⇐⇒ (A, ā) � (B, b̄).

Hence, in Definition 3.3, it suffices to require that the equivalence
between φ and φ∗ in (4) holds for A ∈ K with |A| ≥ m. In fact, then
for the following formula φ̂∗(x̄)

(m − 1 ,m − 2 ∧ φ∗(x̄)) ∨
∨

A∈K, |A |<m, ā∈Ae
A|=φ(ā)

φAN (m), ā (x̄)

we have qr(φ̂∗) = qr(φ∗) and for all A ∈ K ,

(A, <,+,×)N (max{h(qr(φ)),m }) |= ∀x̄(φ ↔ φ̂∗).

A similar remark applies to the notion of slicewise definability in
FO with bounded quantifier rank (see [10, Prop. 8]).
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In the proof of Theorem 3.1 we need the notion of an FO-interpre-
tation. Let τ and τ ′ be vocabularies with τ := {R1, . . . ,Rm , c1, . . . , cn }
and ri -ary Ri . An FO-interpretation I of τ in τ ′ of width w consists
of FO[τ ′] formulas

φuni(x̄), φR1 (x̄1, . . . , x̄r1 ), . . . ,φRm (x̄1, . . . , x̄rm ),

φc1 (ȳ), . . . ,φcn (ȳ),
(5)

where all tuples x̄ , x̄1, . . . , ȳ have length w . Let A be a τ ′-structure
with A |= ∃x̄φuni(x̄) and

A |= ∃ȳ (φci (ȳ) ∧ ∀z̄(φci (z̄) → ȳ = z̄)
)

for i = 1, . . . ,n,

where ȳ = z̄ for ȳ = y1, . . . ,yw and z̄ = z1, . . . , zw denotes the
formula y1 = z1 ∧ · · · ∧ yw = zw . The interpretation I induces
the τ -structure AI with universe AI := {ā ∈ Aw | A |= φuni(ā)},
with RAI

i := {(ā1, . . . , āri ) ∈ (AI )ri | A |= φRi (ā1, . . . , āri )}, and

cA
I

i := ā if A |= φci (ā). For every FO[τ ]-sentence φ there is an
FO[τ ′]-sentence φI such that for all τ ′-structures A we have

AI |= φ ⇐⇒ A |= φI . (6)

Furthermore, for an FO-interpretation of width 1 there is for every
FO[τ ]-formulaφ(x1, . . . ,xe ) an FO[τ ′]-formulaφI (x1, . . . ,xe ) such
that for all τ ′-structures A and for arbitrary a1, . . . ,ae ∈ AI ,

AI |= φ(ā) ⇐⇒ A |= φI (ā). (7)

Let the interpretation I of width w be given by (5). The quantifier
rank qI of I is defined by

qI := max{qr(φuni), qr(φR1 ), . . . , qr(φRm ), qr(φc1 ), . . . , qr(φcn )}.

Then
qr(φI ) ≤ w · qr(φ) + qI . (8)

Lemma 3.5. Let τ and τ ′ be vocabularies with τ ∩ τ ′ = {<,+,×}.
Let B ∈ ARI[τ ′] and k ′ ≥ k := |B |. There is an interpretation IB of
width 2 such that for every A ∈ ARI[τ ] with |A| ≥ k ′ we have(

AN (k ′)
) IB � (

A ⊎ B
)
N (k ′).

The quantifier rank qIB of IB doesn’t depend on τ , τ ′, B, k, and k ′.

Sketch of proof: As formula defining the universe of the interpreted
structure we choose φuni(x ,x

′) := (x = 0̄ ∨ (x = 1̄ ∧ x ′ ≤ k − 1)).
Thus the set {(0̄AN (k′) ,a) | a ∈ A} ∪ {(1̄AN (k′) , īAN (k′) ) | i ∈ [k]}
is the universe of (AN (k ′))

IB . We define the formulasψU (x ,x ′) and
ψ<(x ,x

′,y,y′) (cf. Definition 3.2) by

ψU := x = 1̄ and ψ< := x < y ∨ (x = y ∧ x ′ < y′).

We look at addition: Let a,b ∈ A be such that a +A b does not
exist in A. Let v be the <A -greatest element of A, a +A u = v, and
(u+A (m̄)A )+1̄A = b for somem ∈ [k], then we have (0̄,a)+(0̄,b) =
(1̄,m̄) in (AN (k ′))

IB . For elements (0̄AN (k′) ,a) with a ∈ A and
(1̄AN (k′) , īAN (k′) ) with i ∈ [k] their sum exists iff for somem ∈ [k]
we have a = m̄AN (k′) and m + i ∈ [k]. Then (1̄AN (k′) ,m̄AN (k′) ) is
their sum. Now it is easy to write down an FO-formula ψ+(x̄ , ȳ, z̄)
defining addition. The remaining cases are treated similarly. 2

Proof of Theorem 3.1: Let τ and K be as in the statement of Theo-
rem 3.1. For fresh constants c1, c2, . . . we set τk := τ ∪ {c1, . . . , ck }.

(i) ⇒ (ii): By Theorem 2.2 it suffices to show that p-MC(K ,FO) is
slicewise definable with bounded quantifier rank. So we have to find
a q ∈ N and computable functions k 7→mk and k 7→ φk , where φk
is an FOq [τk ∪ {< +,×} ∪ N (mk )]-sentence, such that for all

(A, <,+,×) ∈ ARI[τ ∪ {<,+,×}]

with A ∈ K , all FO[τ ]-formula χ (x1, . . . ,xe ), all ā ∈ Ae , and all
k ∈ N,

(A |= χ (ā) and |χ | = k) ⇐⇒ ((A, ā, <,+,×)⊎Str(χ ))N (mk ) |= φk .

Fix k ∈ N. Let χ1(x1, . . . ,xe ), . . . , χs (x1, . . . ,xe ) be all FO[τ ]-
formulas of length k (by (3) we know that we can choose e ≤ k).
By (i) there is an ℓ ∈ N (not depending on k), a function h : N→ N
and FOℓ[τ ∪ {< +,×}]-formulas χ∗1 (x̄), . . . , χ

∗
s (x̄) equivalent to

χ1, . . . , χs in all (A, <,+,×)N (h(k)) with A ∈ K . Then for ā ∈ Ae ,

(A |= χ (ā) and |χ | = k
)
⇐⇒ ((A, ā, <,+,×) ⊎ Str(χ ))N (h(k )) |=

s∨
i=1

(“χ = χi " ∧ (χ∗i )
¬U (c1, . . . , ce )).

Here (compare Definition 3.2) (χ∗i )
¬U (c1, . . . , ce ) denotes the sen-

tence obtained from χ∗i (c1, . . . , ce ) by relativizing all quantifiers
to the complement of U , i.e., to the universe of A. Furthermore,
“χ = χi " is an abbreviation for

∃x
(
Ux∧∀y(y < x → ¬Uy) ∧

∧
j ∈ [k ] and the
j th bit of χi is 1

∃z(x + j = z ∧ One z)

∧
∧

j ∈ [k ] and the
j th bit of χi is 0

∃z(x + j = z ∧ ¬One z) ∧ ¬∃y x + k̄ = y
)
.

Thus, qr(
∨s
i=1(“χ = χi " ∧ (χ∗i )

¬U (c1, . . . , ce )) = max{2, ℓ}.

(ii) ⇒(i): By (ii) there is a q ∈ N, computable functions k 7→ mk
and k 7→ φk , where each φk is an FOq [τk ∪ {<,+,×} ∪ N (mk )]-
sentence, such that for all (A, <,+,×) ∈ ARI[τ ∪ {<,+,×}] with
A ∈ K , every FO[τ ]-formula χ (x1, . . . ,xe ), and all ā ∈ Ae ,

(A |= χ (ā) and |χ | = k) ⇐⇒

((A, ā, <,+,×) ⊎ Str(χ ))N (mk ) |= φk .
(9)

We have to show that there is an ℓ ∈ N and a function h : N → N
such that for every FO[τ ]-formulaψ (x1, . . . ,xe ) there is an FOℓ[τ ∪
{<,+,×} ∪ N (h(|ψ |))]-formula ψ ∗(x1, . . . ,xe ) such that for (A, <,
+,×) ∈ ARI[τ ∪ {<,+,×}] with A ∈ K and all ā ∈ Ae ,

A |= ψ (ā) ⇐⇒
(
A, <,+,×

)
N (h( |ψ |)) |= ψ

∗(ā).

Let k := |ψ |; by (3), w.l.o.g. we can assume that e = k . Then, by (9),

A |= ψ (ā) ⇐⇒ (A, ā, <,+,×) ⊎ Str(ψ ))N (mk ) |= φk . (10)

By Remark 3.4 we may restrict ourselves to structures A ∈ K with
|A| ≥ mk and furthermore we may assume that mk ≥ k. Now we
apply Lemma 3.5. For the interpretation IStr(ψ ) we have ((A, ā, <,
+,×))N (mk ))

IStr(ψ ) = ((A, ā, <,+,×) ⊎ Str(ψ ))N (mk ). Hence, by (7),

((A, ā, <,+,×) ⊎ Str(ψ ))N (mk ) |= φk ⇐⇒

(A, ā, <,+,×)N (mk ) |= (φk )
IStr(ψ ) .

(11)

By (10), and (11) we get

A |= ψ (ā) ⇐⇒
(
A, ā, <,+,×

)
N (mk )

|= (φk )
IStr(ψ ) .

We setψ ∗ :=
(
φk

) IStr(ψ ) x1, ...,xe
c1, ...,ce , the formula obtained from

(
φk

) IStr(ψ )

by replacing the constants c1, . . . , ce by the variables x1, . . . ,xe (and
renaming quantified variables if necessary). Then(

A, <,+,×
)
N (mk )

|= ∀x̄ (ψ (x̄) ↔ ψ ∗(x̄)
)
.

The set
{
ψ ∗

�� ψ ∈ FO[τ ]
}

is of bounded quantifier rank by (8) and
Lemma 3.5. 2
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4. Quantifier elimination for trees of bounded depth
As a step towards a proof of Courcelle’s Theorem for tree-depth we
prove that FO has an effective generalized quantifier elimination on
every class of rooted labelled trees of bounded depth.

We view rooted trees with s labels as τs := {P ,L1, . . . ,Ls }-
structures T =

(
T , PT ,LT1 , . . . ,L

T
s
)
. Here P is binary and PT is

the parent-child relation of the tree. The root of the tree can be
defined by the formula root(x) := ∀y¬Pyx . The unary relations
LT1 , . . . ,L

T
s are the labels. The depth of T is the maximum length of

a path from the root to a leaf. For s,d ∈ N we denote by TREE[s,d]
the class of rooted trees with s labels and of depth ≤ d . Here we show
that TREE[s,d] has an effective generalized quantifier elimination.

Applying the Ehrenfeucht-Fraïssé method. We now recall results
obtained by the technique of Ehrenfeucht and Fraïssé (e.g. see [12,
15, 18]) which we use in order to prove the generalized quantifier
elimination result just mentioned. Recall that τs := {P ,L1, . . . ,Ls }.

Fact 4.1. There is a computable function that given k ≥ 1 computes
finitely many FO[τs ]-sentences

ρk1 , . . . , ρ
k
tk

of quantifier rank at most k such that every τs -structure A satisfies
exactly one ρki , denoted by typk (A) and called the k-type of A.
If two structures have the same k-type, then they satisfy the same
FO[τs ]-sentences of quantifier rank at most k.

The next result is a Feferman-Vaught type application of the char-
acterization due to Ehrenfeucht and Fraïssé of when two structures
have the same k-type. For a rooted labelled tree T and a node a ∈ T
let the subtree Ta of T rooted at a be the induced substructure of T
whose universe Ta consists of a and all its descendants.

Proposition 4.2. Let T be a rooted tree with s labels. Let a0 be its
root and (aj )j ∈J the family of its children. For every k-type ρki , we
briefly say for every k-type ρ, we set

n(ρ) := |{j ∈ J | typk (Taj ) = ρ}|.

Then typk (T ) depends only on (min{k,n(ρ)})ρ k -type and the se-
quence (of answers to) (LT1 a0?, . . . ,LTs a0?). Here the answer to
LTj a0? is 1 if LTj a0 and 0 otherwise.

For m1, . . . ,mtk ≤ k (recall that tk is the number of k-types in
Fact 4.1) and w ∈ {0, 1}s we set

H (m1, . . . ,mtk ,w) = j (12)

if in Prop. 4.2 we have typk (T ) = ρkj assuming that for 1 ≤ i ≤ tk

we have min{k,n(ρki )} = mi and (LT1 a0?, . . . ,LTs a0?) = w . Note
that H (m1, . . . ,mtk ,w) is only defined for tuples (m1, . . . ,mtk ,w)

with the property that mj = 0 if ρkj has no (finite) model, which is a
rooted tree with s labels (compare Remark 4.4).

For d ∈ N we set

h(d,k) :=
d∑
i=0

(tk · k)i ≤ (tk · k)d+1. (13)

Corollary 4.3. Let T ∈ TREE[s,d]. Then there is an induced sub-
tree T ′ of T with the same root and of the same k-type as T and
with at most h(d,k) nodes.

Idea of proof: The claim is proved by a straightforward induction on
the depth d of the tree using the preceding proposition. 2

Remark 4.4. By the previous corollary every FO[τs ]-sentence of
quantifier rank at most k , satisfiable in a tree of TREE[s,d], is already
satisfiable in a tree of TREE[s,d] with at most h(d,k) nodes. Clearly
we can check whether a sentence φ is satisfiable in a tree with at most
h(d,k) nodes. Hence the function H (defined in (12)) is computable
and its domain is decidable. Similarly, we can decide whether an
FO[τs ]-sentence implies another one in TREE[s,d].

Applying the color-coding method. The following result allows to
express in FO the existence of k elements with an FO-property by
a number of quantifiers independent of k. The result, a main tool
in the proof of the claimed generalized quantifier elimination, was
shown in [10] using the color-coding technique of Alon et al. [1].

Lemma 4.5. There is an n0 ∈ N and an algorithm that assigns to
every k ∈ N and every FO[τ ]-formula φ(x̄ ,y), where τ is a vocabu-
lary containing <, +, ×, an FO[τ ∪ N (k2)]-formula χkφ (x̄) such that

for every A ∈ ARI[τ ] with |A| ≥ max{2k
2
,n0} we have

for all ā ∈ A
(
AN (k2) |= χ

k
φ (ā) ⇐⇒ there are pairwise

distinct b0, . . . ,bk−1 ∈ A with A |= φ(ā,bi ) for i ∈ [k]
)
,

(14)

or more succinctly: AN (k2) |= ∀x̄(χkφ (x̄) ↔ ∃≥kyφ(x̄ ,y)).
Furthermore, qr

(
χkφ (x̄)

)
= max

{
12, qr

(
φ(x̄ ,y)

)
+ 3

}
.

The following proposition shows that FO has an effective gener-
alized quantifier elimination for sentences on the class TREE[s,d].
There we only consider sufficiently large trees T ∈ TREE[s,d].
The result for all trees in TREE[s,d] is then obtained by applying
Remark 3.4. Let n0 be as in the preceding lemma.

Proposition 4.6. Let d ∈ N. Set ℓ := 2 for d = 0 and ℓ := 13 +
3(d − 1) for d ≥ 1. Then there is an algorithm which for every
s ∈ N assigns to every FO[τs ]-sentence φ of quantifier rank k ≥ 2
an FOℓ[τs ∪ {<,+,×} ∪ N (k2)]-sentence φ∗ such that for every
(T , <,+,×) ∈ ARI[τs ∪ {<,+,×}] with T ∈ TREE[s,d] and |T | ≥

max{2k
2
,n0} we have

(T , <,+,×)N (k2) |= (φ ↔ φ∗). (15)

Proof : Recall that root(x) := ∀y¬Pyx defines the root. For trees in
TREE[s,d] we express in FO that “x is a leaf” by leaf(x) := ∀y¬Pxy.
For every i ∈ N we define depthi (x) (“i is the depth of x”) by
induction on i ≥ 0:

depth0(x) := root(x), depthi+1(x) := ∃y(Pyx ∧ depthi (y)).

Now let φ be an FO[τs ]-sentence of quantifier rank k. As every
FO[τs ]-sentence of quantifier rank at most k is equivalent to a dis-
junction of some k-types, i.e., of some of the sentences in ρk1 , . . . , ρ

k
tk ,

we may assume that φ is one of the ρ’s. For d ′ ≤ d and every k-
type ρkj (with 1 ≤ j ≤ tk ) we define an FO[τs ∪ {<,+,×} ∪ N (k2)]-

formula ψk
d ′, j (x) of quantifier rank ≤ ℓ − 1 such that for every

(T , <,+,×) ∈ ARI[τs ∪ {<,+,×}] with T ∈ TREE[s,d] and ev-
ery a ∈ T of depth d ′ we have

(T , <,+,×)N (k2) |= ψ
k
d ′, j (a) ⇐⇒ Ta |= ρkj . (16)

Then, as Ta0 = T for the root a0 of T , we get

(T , <,+,×)N (k2) |=∃x(root(x) ∧ψk
0, j (x))

⇐⇒ (T , <,+,×)N (k2) |= ψ
k
0, j (a0)

⇐⇒ T |= ρkj .
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Thus, for ρ = ρkj we set

ρ∗ := ∃x(root(x) ∧ψk
0, j (x)) (17)

and have (T , <,+,×)N (k2) |= (ρ ↔ ρ∗), that is, the equivalence (15)
for φ = ρ.

In the definition of ψk
d ′, j (x) (with the property (16)) we have to

consider the two cases “x is a leaf” and “x is not a leaf” separately.
Soψk

d ′, j (x) has the form:

ψk
d ′, j (x) := depthd ′(x) ∧

(
leaf-ψk

d ′, j (x) ∨ non-leaf-ψk
d ′, j (x)

)
. (18)

If Ta |= ρkj for some leaf a, then in particular, ρkj |= ∀x∀y x = y ∧

∀x¬Pxx . If ρkj |= ¬(∀x∀y x = y∧∀x¬Pxx), we set leaf-ψk
d ′, j (x) :=

¬x = x . Otherwise we set (recall that τs := {P ,L1, . . . ,Ls })

leaf-ψk
d ′, j (x) := leaf(x) ∧

∧
1≤s ′≤s

ρkj |=∃yLs′y

Ls ′x ∧
∧

1≤s ′≤s
ρkj |=¬∃yLs′y

¬Ls ′x .

Then for leaf-ψk
d ′, j (x) instead of ψk

d ′, j the equivalence (16) holds

for leaves a of depth d ′. Note that qr(leaf-ψk
d ′, j (x)) = 1. Now we

look at nonleaves of depth d ′. In particular, then d ′ + 1 ≤ d. We
take as non-leaf-ψk

d ′, j (x) the formula
(
here if w ∈ {0, 1}s , then

w = (w1, . . . ,ws ); for the definition of the function H compare (12)
)

¬leaf(x) ∧
∨

m1, ...,mtk ≤k, w ∈{0,1}s

H (m1, ...,mt,k ,w )=j

( ∧
1≤i≤tk
mi<k

∃=miy(Pxy ∧ψk
d ′+1,i (y))

∧
∧

1≤i≤tk
mi=k

∃≥miy(Pxy ∧ψk
d ′+1,i (y)) ∧

∧
1≤s ′≤s
ws′=1

Ls ′x ∧
∧

1≤s ′≤s
ws′=0

¬Ls ′x
)
.

The quantifiers ∃=miy and ∃≥miy may be expressed by FO-formulas
of quantifier rank independent of mi by Lemma 4.5; more precisely,
qr(non-leaf-ψk

d ′, j (x)) = max{12,max({qr(ψk
d ′+1,i (x)) | 1 ≤ i ≤

tk }) + 3}. Now, using (17) and (18) a simple induction shows that
qr(ρ∗) ≤ 13 + 3(d − 1). 2

We use the previous result to get the generalized quantifier elimi-
nation for FO-formulas.

Proposition 4.7. Let d ∈ N. Set ℓ := 2 for d = 0 and ℓ := 13+ 3(d −
1) for d ≥ 1. Then there is an algorithm which for every s,n ∈ N
assigns to every FO[τs ]-formula φ(x1, . . . ,xn ) of quantifier rank
k ≥ 2 an FOℓ[τs ∪ {<,+,×} ∪N ((k + 2)2)]-formula φ∗(x1, . . . ,xn )
such that for every (T , <,+,×) ∈ ARI[τs ∪ {<,+,×}] with T ∈

TREE[s,d] and |T | ≥ max{2(k+2)2 ,n0},

(T , <,+,×)N (k2) |= ∀x1 . . . ∀xn (φ(x1, . . . ,xn ) ↔ φ∗(x1, . . . ,xn )).

Idea of proof: We replace the variable xi by a unary relation symbol
Si playing the role of the singleton {xi }. and applies Prop. 4.6. 2

5. An analogue of Courcelle’s theorem for tree-depth
Courcelle’s Theorem [11] states that the model-checking problem
for sentences of monadic second-order logic MSO on a class of
structures of bounded tree-width, parameterized by the length of the
MSO-sentence, is fixed-parameter tractable. We show that the prob-
lem lies in para-AC0 if we restrict to classes of structures of bounded
tree-depth. Already in [13] it was shown that for every fixed MSO-
sentence φ the question whether structures from a class of bounded
tree-depth have the property φ can be solved by a dlogtime-uniform

AC0 class of circuits1. Before we present the precise statement of
our result, we recall the notion of tree-depth.

A forest F consisting of rooted trees is a forest for a graph G if
– the set of nodes of F is the set G of vertices of G;
– every edge of G connects a pair of nodes of F that have an

ancestor-descendant relationship to each other in F .
The tree-depth td(G) of G is defined as 1 plus the minimum depth
of a forest for G. The depth of F is the maximum length of a path
from a root to a leaf.

The tree-depth td(A) of a τ -structure A is the tree-depth of the
Gaifman graph G(A) of A. Here G(A) has vertex set A and there
is an edge between distinct a,b ∈ A if for some R ∈ τ and some
(a1, . . . ,ar ) ∈ RA we have a,b ∈ {a1, . . . ,ar }.

We denote by STR[τ ,d] the class of all τ -structures of tree-depth
≤ d . For a class Φ of formulas we let Φsent be the class of sentences
in Φ. We show the following analogue of Courcelle’s Theorem.

Theorem 5.1. Let d ≥ 1 and let τ be a vocabulary without arith-
metical symbols. Then the problem p-MC(STR[τ ,d],MSOsent) is in
para-AC0. Moreover p-MC(STR[τ ,d],MSOsent) ∈ XFOO (d ).

Elberfeld et al. [12] proved that on every class of graphs of
bounded tree-depth FO and monadic second-order logic MSO (and
even guarded second-order logic) have the same expressive power.
This result can easily be generalized to the class STR[τ ,d]. More-
over there is an effective procedure assigning to an MSO-sentence
an equivalent FO-sentence (we present a proof of the effectivity in
the full version):

Theorem 5.2 ([12]). For every d ≥ 1 and every vocabulary τ there
is an effective procedure assigning to every MSO-sentence an FO-
sentence equivalent to it on the class STR[τ ,d].

This result allows to reduce p-MC(STR[τ ,d],MSOsent) to the
problemp-MC(STR[τ ,d],FOsent). We first introduce the correspond-
ing notion of para-FO reduction (which corresponds to the notion of
para-AC0 reduction [10]).

Definition 5.3. Let Q ⊆ ARI[τ ] × N and Q ′ ⊆ ARI[τ ′] × N be
parameterized problems. A mapping R : ARI[τ ]×N→ ARI[τ ′]×N
is a para-FO reduction from Q to Q ′ if for some vocabulary τ1 with
τ∩τ1 = {<,+,×} there are computable functions red : N→ ARI[τ1]
and д : N → N and an FO-interpretation I such that for every
instance (A,k) of Q and for (A ′,k ′) := R(A,k) we have

(i) (A,k) ∈ Q ⇐⇒ (A ′,k ′) ∈ Q ′;
(ii) A ′ ⊎ Str(k ′) =

(
A ⊎ red(k)

) I ; (iii) k ′ ≤ д(k).
Here Str(k ′) = Str(1 . . . 1) for the string 1 . . . 1 of k ′ ones.

If there is such an R we write Q ≤para-FO Q ′. And Q ≡para-FO Q ′

means that Q ≤para-FO Q ′ and Q ′ ≤para-FO Q .

Lemma 5.4. If Q ≤para-FO Q ′ and Q ′ ∈ para-AC0, then Q ∈

para-AC0.

Proof : As Q ′ ∈ para-AC0, for some q ∈ N there are computable
functions k ′ 7→ mk ′ and k ′ 7→ φk ′ , where all φk ′ are FOq [τ

′ ∪

N (mk ′)]-sentences, such that for every instance (A ′,k ′) we have

(A ′,k ′) ∈ Q ⇐⇒ A ′
N (mk′ )

|= φk ′ . (19)

We may assume that the function k ′ 7→mk ′ is increasing. Let R be
a para-FO reduction from Q to Q ′ and let red, д, and I be as in the

1However, the depth of the circuits depended on the MSO-sentence.
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Def. 5.3. Fix k ∈ N. We let rk be the maximum ofmд(k) and of the
cardinality of the universe of red(k). For the FO-interpretation Ired(k )
(defined in Lemma 3.5) we have (AN (rk ))

Ired(k ) = (A⊎red(k))N (rk ).
for every A ∈ ARI[τ ] with |A| ≥ rk . By a trivial modification of the
interpretation I of (ii) in Def. 5.3 we get an interpretation Ik of the
same quantifier rank as I such that( (

AN (rk )
) Ired(k )

) Ik
=
(
A ′ ⊎ Str(k ′)

)
N (rk )

. (20)

Now we have

(A,k) ∈ Q ⇐⇒ (A ′,k ′) ∈ Q ′
(
by (i) in Def. 5.3

)
⇐⇒ A ′

N (rk )
|= φk ′

(
by (19) as rk ≥ mд(k ) andmд(k ) ≥ mk ′

by (iii) in Def. 5.3
)

⇐⇒
(
(A ′ ⊎ Str(k ′)

)
N (rk )

|=
∨

ℓ≤д(k )

(
“k ′ = ℓ” ∧ (φℓ)

¬U )
(here (φℓ)

¬U is obtained from φℓ by relativizing

the quantifiers to ¬U , i.e., to the universe A′)

⇐⇒
(
(AN (rk ))

Ired(k )
) Ik |=

∨
ℓ≤д(k )

(“k ′ = ℓ′′ ∧ (φℓ)
¬U ) (by (20))

⇐⇒ AN (rk ) |=
(
(
∨

ℓ≤д(k )

(“k ′ = ℓ′′ ∧ φℓ))Ik
) Ired(k ) (by (6)).

As the quantifier ranks of Ired(k) and of Ik are independent of k , the
problem Q is slicewise definable with bounded quantifier rank. 2

Proposition 5.5. For d and τ as in Theorem 5.1,

p-MC(STR[τ ,d],MSOsent) ≤para-FO p-MC(STR[τ ,d],FOsent).

Proof : Let ((A, χ ),k), i.e., (A ⊎ Str(χ ),k) be an instance of the
problem p-MC(STR[τ ,d],MSOsent). Let χ1, . . . , χs be all MSO[τ ]-
sentences of length k. By Theorem 5.2 we can compute FO[τ ]-
sentences χ∗1 , . . . , χ

∗
s equivalent to χ1, . . . , χs on STR[τ ,d]. Denot-

ing by x⌢y the concatenation of the strings x and y we set

red(k) :=
(
Str(χ1)

⌢Str(χ∗1 )
⌢ · · ·⌢ Str(χs )⌢Str(χ∗s ), S, S

∗
)
,

where S and S∗ are unary relations indicating where a substring
representing a χj and a substring representing a χ∗j start. We define
the FO-interpretation I for the instance

(
(A, χ ),k

)
such that(

(A ⊎ Str(χ )) ⊎ red(k)
) I :=

(
A ⊎ Str(χ∗i )) ⊎ Str(ki )

if χ = χi and ki = |χ∗i | for some i with 1 ≤ i ≤ s, and such that(
(A ⊎ Str(χ )) ⊎ red(k)

) I :=
(
A ⊎ Str(∃x¬x = x)

)
⊎ Str(1)

otherwise. Setting R
(
(A, χi ),k

)
:=

(
(A, χ∗i ),ki

)
and R

(
(A, χ ),k

)
:=

(
(A,∃x¬x = x), 1

)
if |χ | , k, and д(k) := max{k1, . . . ,ks }, we

have the desired para-FO reduction (compare Definition 5.3). 2

We show that in order to get Theorem 5.1 it suffices to prove:

Theorem 5.6. Let τ be a vocabulary without arithmetical symbols
and d ≥ 1. Then first-order logic has an effective generalized quan-
tifier elimination on the class STR[τ ,d]. In the terminology of the
Definition 3.3 we have ℓ = O(d) for K := STR[τ ,d].

Proof of Theorem 5.1: FO has an effective generalized quantifier
elimination on STR[τ ,d] by Thm. 5.6. Thus,p-MC(STR[τ ,d],FO) ∈

para-AC0 by Thm. 3.1. As p-MC(STR[τ ,d],MSOsent) is para-FO
reducible top-MC(STR[τ ,d],FOsent), the problemp-MC(STR[τ ,d],
MSOsent) is in para-AC0, too (by Lemma 5.4). 2

The next section is devoted to a proof of Theorem 5.6.

6. FO has generalized quantifier elimination on any class of
structures of bounded tree-depth

In this section we prove Theorem 5.6, that is, FO has an effective
generalized quantifier elimination on the class STR[τ ,d], the class
of τ -structures of tree-depth ≤ d. Here d ∈ N and τ is a vocabulary
without arithmetical symbols. The two main steps of the proof are:

– There is an FO[τ ∪ {<}]-formula parent(x ,y) defining in all
ordered τ ∪ {<}-structures (A, <) with A ∈ STR[τ ,d] the “parent-
child”-relation of a forest witnessing the tree-depth of A (Prop. 6.5).

– For some s ∈ N the class of structures
(
A, <,+,×

)
∈ ARI

[
τ ∪

{<,+,×}
]

with A ∈ STR[τ ,d] and the class of structures
(
T , <,

+,×
)
∈ ARI

[
τs ∪ {<,+,×}

]
with T ∈ TREE[τs ,d] are mutually

FO-interpretable.
Then we obtain the desired result by applying the generalized

quantifier elimination for FO on TREE[τs ,d] proven in Prop. 4.7.

We start with the first step. As the Gaifman graph of a structure
A (see page 6) is FO-definable in A we can restrict ourselves to the
class GRAPH[d] of graphs of tree-depth ≤ d. We make use of the
following well-known facts:

Fact 6.1 ([17]). Let G be a graph and let Gi for i ∈ I be the
subgraphs induced on the connected components of G. Then

td(G) :=


1 if |G | = 1
max

{
td(Gi ) | i ∈ I

}
if |I | > 1

1 +min
{
td(G \ {u})

�� u ∈ G
}

otherwise.

Corollary 6.2. Let G be a graph and d ≥ 2.
(i) G has tree-depth 1 if and only if every vertex in G is isolated.

(ii) G has tree-depth ≤ d if and only if every subgraph induced
on a connected component of G has tree-depth ≤ d.

(iii) A connected G has tree-depth ≤ d if and only if there is a ver-
tex u ∈ G such that every subgraph induced on a connected
component of G \ {u} has tree-depth ≤ d − 1.

Fact 6.3 ([17]). All paths in any graph in GRAPH[d] have length at
most 2d − 2.

For i ∈ N let path≤i (x ,y) be an FO-formula of quantifier rank
O(log i) expressing in graphs that there is a path of length at most i
from x to y. By the previous fact, for d ∈ N we can express in
graphs of tree-depth ≤ d that there is a path from x to y by the
FO-formula path≤2d−2(x ,y). Moreover, for a sequence of variables
z̄ = z0, . . . , zℓ−1 we can define an FO-formula pathℓ

≤i (x ,y, z̄) with
qr(pathℓ

≤i (x ,y, z̄)) = qr(path≤i (x ,y)) = O(log i). such that for every
u,v, w̄ ∈ G,

G |= pathℓ≤i (u,v, w̄) ⇐⇒ there is a path of length at most i

from u to v in G \ {w0, . . . ,wℓ−1}.

In particular, this implies that u and v belong to G \ {w0, . . . ,wℓ−1}.

Proposition 6.4. Letd ≥ 1. The class GRAPH[d] is FO-axiomatizable;
more precisely, there is an FO[{E}]-sentence treedepth(d) of quanti-
fier rank O(d) such that for all graphs G,

G |= treedepth(d) ⇐⇒ G ∈ GRAPH[d]. (21)

Proof : First for every ℓ > 0 and z̄ = z0, . . . , zℓ−1 we define

∆ℓ
s (z̄) := ∀x∀y (¬pathℓ≤2s−2(x ,y, z̄) → ¬pathℓ≤2s−1(x ,y, z̄)

)
.

Then qr(∆ℓ
s ) = O(s). More importantly, if G |= ∆ℓ

s (w̄) for a graph
G and w̄ = w0, . . . ,wℓ−1 ∈ G, then for all vertices u and v of
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H := G \ {w0, . . . ,wℓ−1},

there is a path from u to v in H iff G |= pathℓ≤2s−2(u,v, w̄). (22)

Observe that by Fact 6.3 if G ∈ GRAPH[s], then G |= ∆ℓ
s (w̄) for

every w̄ = w0, . . . ,wℓ−1 ∈ G. We define by induction on d the
formulas

treedepthℓ
≤d (z̄) and ctreedepthℓ

≤d (x , z̄)

such that for every graph G and w̄ = w0, . . . ,wℓ−1 ∈ G:
– G |= treedepthℓ

≤d (w̄) if and only if G \ {w0, . . . ,wℓ−1} has
tree-depth ≤ d.

– For u ∈ G \ {w0, . . . ,wℓ−1}, we have G |= ctreedepthℓ
≤d (u, w̄)

if and only if the subgraph of G \ {w0, . . . ,wℓ−1} induced on the
connected component containing u has tree-depth ≤ d .

Let (the formula expresses that x is isolated in G\ {z0, . . . , zℓ−1})

ctreedepthℓ≤1(x , z̄) := ∀y(Exy →
∨
i ∈[ℓ]

y = zi )

and for d ≥ 2 (compare (iii) in Corollary 6.2),

ctreedepthℓ
≤d (x , z̄) := ∆ℓ

d (z̄) ∧ ∃y ( pathℓ
≤2d−2(x ,y, z̄)

∧∀x ′(pathℓ
≤2d−2(y,x

′, z̄) → ctreedepthℓ+1
≤d−1(x

′,yz̄))
)
.

If G |= ∆ℓ
d (w̄), then pathℓ

≤2d−2
(x ,y, w̄) and pathℓ

≤2d−2
(y,x ′, w̄) ex-

press that x , y, and x ′ are in the same connected component of
G \ {w0, . . . ,wℓ−1} (by (22)). Next we let

treedepthℓ
≤d (z̄) := ∀x (

(
∨
i ∈[ℓ]

x = zi ) ∨ ctreedepthℓ
≤d (x , z̄)

)
.

Finally, we set treedepth(d) := treedepth0
≤d . 2

Fact 6.1 (and Cor. 6.2) state that a graph G can be decomposed re-
cursively into graphs of strictly decreasing tree-depth by eliminating
vertices. This process yields a forest F for G. If td(G) = d, then
every tree in F has depth ≤ d − 1 and at least one has depth d − 1.

Let d ∈ N. If we have an ordered graph (G, <G), then in the third
line of the recursive definition of Fact 6.1 we remove the <G-least u
with the required property. Using the formulas introduced in the
previous proof, we can then inductively FO[{E, <}]-define the roots
of the trees of the forest, their children, their grandchildren, . . . By
induction on d we can get an FO[{E, <}]-formula that in ordered
graphs (G, <G) with G ∈ GRAPH[d] expresses that x is the parent
of y (and y is a child of x) in the forest. We replace the forest by a
tree by adding a new root whose children consist of the roots of the
trees in the forest. We call this tree the canonical tree T(G) of G
(more precisely, of (G, <G)). The tree witnesses the tree-depth of G
in the sense that T(G) has depth d if td(G) = d. So we have seen:

Proposition 6.5. There is an FO[{E, <}]-formula parent(x ,y) of
quantifier rank O(d) defining in all ordered graphs (G, <G) with
G ∈ GRAPH[d], where d ≥ 1, the “parent-child”-relation of the
canonical tree of (G, <G). 2

By replacing in the formulas depthi (x) (introduced in the proof
of Proposition 4.6) atomic formulas of the form Pxy by parent(x ,y)
we obtain a formula, which we again denote by depthi (x), and that
expresses in ordered graphs (G, <G) with G ∈ GRAPH[d] that x has
depth i in the canonical tree of (G, <G). We also can express that “x

2As the root of T(G) is not in G we should introduce an FO-interpretation of width 2
to be formally correct (see page 4 for the definition of FO-interpretation). We omit this
as we believe that it helps to grasp the main idea better.

is an ancestor of y” and that “x is the ancestor of y of depth i”, say
as follows:

– ancestor(x ,y) := x = y ∨
∨d
i=1 ∃x1 . . . ∃xi (x = x1 ∧

parent(xi ,y) ∧
∧i−1
j=1 parent(x j ,x j+1))

– ancestori (x ,y) := ancestor(x ,y) ∧ depthi (x).

We can FO-define in (G, <G) a labelling L
T(G)

1 , . . . ,L
T(G)

d on T(G)

coding the edge relation EG : A vertex u ∈ G gets the label Li if in
T(G) its depth is greater than i and (u,v) ∈ EG for its ancestor v on
level i. More formally, LT(G)

i is the set

{u ∈ G | (G <G) |=
∨

i<j≤d

depthj (u) ∧ ∃y(ancestori (y,u) ∧ Euy)}.

On the other hand, in (T (G),L
T(G)

1 , . . . ,L
T(G)

d ) we can FO-define
the graph G: Its universe consists of the nodes of T(G) distinct from
the root and EG consists of the pairs (u,v) of this universe with
(T (G),L

T(G)

1 , . . . ,L
T(G)

d ) |= ψ (u,v), where

ψ (x ,y) :=
∨

1≤i<j≤d

(
(depthj (x) ∧ Lix ∧ ancestori (y,x)) ∨

(depthj (y) ∧ Liy ∧ ancestori (x ,y))
)
.

Summing up, (implicitly) we have defined FO-interpretations I1 and
J1 such that for all ordered graph (G, <G) with G ∈ GRAPH[d],

(G, <G)I1 ∈ TREE[d,d] and ((G, <G)I1 )J1 = G. (23)

Moreover, we can FO-define in
(
G, <G

)
an ordering <T(G) on

T (G) by putting the root of T(G) (the only node not in G) at the
end of <G . On the other hand, in (T (G),L

T(G)

1 , . . . ,L
T(G)

d , <T(G))

we can FO-define <G from <T(G) by “forgetting its last element.”
We denote the corresponding extensions of I1 and J1 by I ′1 and J ′1,
respectively.

If we add built-in addition and multiplication the interpretations
I ′1 and J ′1 can be extended to interpretations I2 and J2 so that for
(G, <,+,×) ∈ ARI[{E, <,+,×}] with G ∈ GRAPH[d] we have

(G, <,+,×)I2 ∈ ARI[τd ∪ {<,+,×}] and(
(G, <,+,×)I2

) J2 = (G, <,+,×).
(24)

For (G, <,+,×) ∈ ARI[{E, <,+,×}] with G ∈ GRAPH[d], an
FO[{E}]-formula φ(x1, . . . ,xe ) and u1, . . . ,ue ∈ G we get

G |= φ(ū) ⇐⇒
(
(G, <)I1

) J1 |= φ(ū) (by (23))

⇐⇒ (G, <)I1 |= φ J1 (ū) (by (7))

⇐⇒ (G, <,+,×)I2 |= (φ J1 )∗(ū) (as I2 extends I1 and

by Prop 4.7; the formula φ J1 does not contain < by (23))

⇐⇒
(
G, <,+,×

)
|=

(
(φ J1 )∗

) I2 (ū) (by (7)).

By Proposition 4.7 and Proposition 6.5 the set of formulas (φ J1 )∗,
where φ ranges over the FO[{E}]-formulas, has quantifier rank
bounded by O(d). Thus the same holds for the set {((φ J1 )∗)I2 | φ ∈

FO[{E}]}. Thus, φ 7→
(
(φ J1 )∗

) I2 is the desired effective generalized
quantifier elimination procedure on GRAPH[d].

Due to space limitations we do not present the interpretations
corresponding to I1 and J1 for arbitrary τ -structures which yield the
effective generalized quantifier elimination on STR[τ ,d]
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7. Classes of graphs closed under taking subgraphs
In this section we present two characterizations of the classes

of graphs of bounded tree-depth closed under taking subgraphs.
Namely:

Theorem 7.1. Let K be a class of graphs closed under taking sub-
graphs. Then the following statements are equivalent:

(i) K has bounded tree-depth.
(ii) FO has an effective generalized quantifier elimination on K .

(iii) p-MC(K ,FO) ∈ para-AC0.

Theorem 3.1 shows the equivalence between (ii) and (iii). If K
has bounded tree-depth, then K ⊆ STR[{E},d] for some d. Thus
the implication (i) ⇒ (ii) follows from Theorem 5.6. So we do not
need the assumption “K is closed under taking subgraphs” for (ii) ⇔
(iii) and (i) ⇒ (ii). The remaining implication (iii) ⇒ (i) is a simple
consequence of the following fact and of the following theorem.

Fact 7.2 ([17]). A class K of graphs has bounded tree-depth if and
only if there is an upper bound on the lengths of paths in K .

Let PATH denote the class of graphs that are paths and SUB-PATH

be its closure under taking subgraphs.

Theorem 7.3. p-MC(SUB-PATH,FO) < para-AC0.

Proof of (iii) ⇒ (i) in Theorem 7.1: If (i) doesn’t hold, i.e., if K
doesn’t have bounded tree-depth, then, by Fact 7.2, there is no
bound on the lengths of paths in graphs of K . Therefore K contains
the class SUB-PATH as K is closed under taking subgraphs. Hence,
p-MC(K ,FO) < para-AC0 by the previous theorem. 2

Proof of Theorem 7.3: For n,k ∈ N let the graph G(n,k) consist
of k + 1 disjoint layers V0, . . . , Vk of sets of vertices, with each
Vi containing exactly n vertices, and with edges appearing only
between adjacent layers such that the induced subgraph onVi ∪Vi+1
is always a perfect bipartite matching. Let BIP be the class of all
{E, S,T }-structures

(
G(n,k), {s}, {t}

)
with n,k ≥ 3 and s ∈ V0 and

t ∈ Vk (so S andT are unary relation symbols). Let p-STCONN(BIP)
be the problem

Input:
(
G, {s}, {t}

)
∈ BIP.

Parameter: k ∈ N.
Problem: Decide whether there is a path of length at most k

from s to t .
By a result due to Beame et al [6, Section 3], p-STCONN(BIP) is not
in para-AC0. Thus it suffices to show that there is an FO-reduction
from p-STCONN(BIP) to p-MC(SUB-PATH,FO).

So let
(
G, {s}, {t}

)
∈ BIP be an input of p-STCONN(BIP) and

k ∈ N a parameter. We know that G = G(n, ℓ) for some n, ℓ ≥ 3. We
add to G two vertices s ′ and t ′ and the edges {s, s ′} and {t , t ′}, thus
obtaining a graph H , which is the disjoint union of paths and hence
in SUB-PATH. Now

(
(G, {s}, {t}),k

)
7→

(
(H ,φk ),k

′
)

is the desired
reduction, where k ′ := |φk | and the FO-sentence φk expresses that
there is an ℓ with 3 ≤ ℓ ≤ k and there are vertices u and v of degree
one such that there is a path from u to v of length exactly ℓ and there
is a path of length exactly ℓ + 2.

Let us mention in passing that p-STCONN(BIP) < para-AC0 im-
plies that the following problem Q(L) is notin para-AC0 for L = FO.

Input: A graph G and an L-sentence φ.
Parameter: k.

Problem: Decide whether k = td(G) + |φ | and G |= φ.
The corresponding problem, where the tree-depth td(G) of G is
replaced by the tree-width of G, is fixed-parameter tractable, even

for MSO, i.e., Q(MSO) ∈ FPT. The result for Q(MSO) is a (strong)
version of Courcelle’s Theorem.

As mentioned in the Introduction, in [3] it is shown that Q(MSO)

can be solved by a uniform family of circuits of depth bounded by
f (td(G) + |φ |) and size bounded by f (td(G) + |φ |) · |G |O (1), where
f is a computable function. Translating our proofs and results into
the language of circuits, they yield a uniform family of circuits
solving Q(MSO) of depth bounded by O(td(G)) and size bounded
by O(td(G)) · f (|φ |) · |G |O (1) for some computable function f .

In general the implication (iii) ⇒ (i) in Theorem 7.1 does not
hold without the assumption “K is closed under taking substructures.”
Indeed, by Fact 7.2 the class COMP of all complete graphs and
the class PATH have unbounded tree-depth. However, by standard
techniques it is easy to show that the model-checking problems
p-MC(COMP,FO) and p-MC(PATH,FO) are in para-AC0.

8. The model-checking problem for classes of FO-sentences
The model-checking for a class of Σ1-sentences of bounded tree-

width is fixed-parameter tractable (cf. [16]). With the color-coding
technique the result is extended to any class of Σ1-sentences of
modified bounded tree-width in [14]. We introduce the notion of
tree-depth of an FO-sentence and prove that the model-checking
problem for any class of FO-sentences of bounded tree-depth is in
para-AC0. We get this result by showing that the notions of tree-
depth and of quantifier rank are the two sides of the same coin.

Finally we explain the close connection between the complexity
of a parameterized problem slicewise definable by FO-sentences and
the parameterized model-checking problem for these sentences.

In contrast to the preceding sections, here we consider the pa-
rameterized model-checking problem for sentences in a vocabulary
possibly containing relations in {<,+,×} or numerical constants.

Let N (∞) := {i | i < ∞}. For an FO-formula φ we let N (φ)
be N (m) for the least j ∈ N such that the numerical constants in
φ are in N (j). Let τ be a relational vocabulary possibly containing
(some of) the relation symbols in {<,+,×} and L ⊆ FO[τ ∪ {<,
+,×} ∪ N (∞)]. Then the parameterized model-checking problem
p-MC(Lsent) for sentences in L is the problem

Input: A∈ARI[τ ∪ {<,+,×}] and φ ∈ Lsent.
Parameter: k ∈ N.

Problem: Decide if k = |φ | and AC(φ) |= φ.
By space limitations we omit the simple proof of:

Proposition 8.1. If L ⊆ FO[τ ∪ {<,+,×} ∪ N (∞)] has bounded
quantifier rank, then p-MC(L) ∈ para-AC0.

Tree-depth of first-order sentences. We define the tree-depth of
an FO-sentence φ with the property that all quantifiers in φ bind
distinct variables (note that every FO-formula is logically equivalent
to an FO-formula of the same quantifier rank with this additional
property). The graph G(φ) has the set var(φ) of all variables in φ as
universe. There is an edge between distinct x ,y ∈ var(φ) if φ has an
atomic subformula in which both, x and y, occur.

For example, for the sentence

ψ := ∃x1 . . . ∃xn∀y
n∨
i=1

Eyxi (25)

there is a tree of depth 1 (a star with root y) for G(ψ ) (in fact,
td(G(ψ )) = 2). However, one easily proves thatψ is not equivalent
to a sentence of quantifier rank ≤ n.
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To relate the quantifier rank with the tree-depth, for a sentence φ
we introduce a partial ordering <φ on var(φ) and the notion of a
good forest for G(φ). Let x ,y be two variables in φ. Then x <φ y
if y is quantified in the scope of x . For example, x <φ y if φ is of
the form . . . ∃x(. . . ∀y . . .) . . .. A forest F for G(φ) is good if for all
variables x ,y ∈ var(φ) with x <φ y the variable y is not an ancestor
of x in F . For a quantifier-free sentence φ we set td(φ) = 0.

It is easy to see that td(ψ ) = qr(ψ ) = n + 1 for theψ in (25).

As qr(φ) is the maximum number of nested quantifiers in φ, one
easily gets that every FO-sentence φ (where every two quantifiers
bind distinct variables) of quantifier rank ≤ q has tree-depth ≤ q. In
the full version of the paper we show the following converse:

Theorem 8.2. If an FO-sentence φ with the property that all quanti-
fiers bind distinct variables has tree-depth ≤ d, then φ is logically
equivalent to a sentence of quantifier rank ≤ d.

Hence, by Proposition 8.1:

Corollary 8.3. If L ⊆ FOsent[τ ∪ {<,+,×} ∪ N (∞)] has bounded
tree-depth, then p-MC(L) ∈ para-AC0.

For a Σ1-sentence, i.e, for a sentence of the form ∃x1 . . . ∃xs χ
with quantifier free χ , the preceding result has the following corol-
lary, which is, at least implicitly, in [8].

Corollary 8.4. Every Σ1-sentence φ, where all quantifiers bind dis-
tinct variables, is logically equivalent to a sentence of quantifier
rank ≤ td(G(φ)).

Proof : Let φ := ∃x1 . . . ∃xs χ . For every forest F for G(φ) there
is a permutation π of {1, . . . ,n} such that F is good for φπ :=
∃xπ (1) . . . ∃xπ (xs )χ . Now the result follows from the preceding the-
orem, as φ and φπ are logically equivalent. 2

The Σ1-sentence φ := ∃x1 . . . ∃xn∃y∧n
i=1 Eyxi has tree-depth

n + 1. Permuting the quantifiers in φ we get the logically equivalent
sentence ∃y∃x1 . . . ∃xn ∧n

i=1 Eyxi of tree-depth 2 (choose as good
forest a star with root y). And indeed, as claimed by the corollary,
φ is logically equivalent to a sentence of quantifier rank 2, e.g., to
∃y∧n

i=1 ∃xiEyxi
Model-checking and slicewise FO-definability. Let CFO be the ex-
tension of FO with counting quantifiers ∃≥i for i ∈ N and specify
that such a quantifier adds 1 to the quantifier rank. With the color-
coding technique we have shown that FO has generalized quantifier
elimination on K if every FO-sentence is equivalent in K to an CFO-
sentence of bounded quantifier rank (with built-in arithmetic and
constants for an initial segment). So far this is the only general
method known to us to prove the generalized quantifier elimination.
In the following Remark 8.5 we describe the relationship between
parameterized model-checking problems and slicewise FO-definable
parameterized problems. Summarizing we will see a close connec-
tion between “generalized quantifier elimination,” “membership of
p-MC(−,−) ∈ para-AC0,” and “slicewise definability with bounded
quantifier rank.” Perhaps it explains why nearly all nontrivial proofs
showing membership of a parameterized problem in para-AC0 use
the color-coding technique.

Remark 8.5. Let τ be a vocabulary with {<,+,×} ⊆ τ .
(a) LetQ ⊊ ARI[τ ]×N be a parameterized problem. Assume that the
kth slice of Q is definable by the FO-sentence φk ∈ FO[τ ∪ N (∞)],
that the enumeration (φk )k ∈N is computable, and that the set L :=

{φℓ | ℓ ∈ N} is decidable. Assume that φℓ , φℓ′ for ℓ , ℓ′ (pass
from φℓ to φℓ ∧ ī = ī for a suitable i ∈ N). Then

p-MC(L) ≡para-FO Q .

In fact note that

(A,k) ∈ Q ⇐⇒ AN (φk ) |= φk

⇐⇒ ((A,φk ), |φk |) ∈ p-MC(L)

⇐⇒ (A ⊎ Str(φk ), |φk |) ∈ p-MC(L).

For Q ≤para-FO p-MC(L) we take as red in Def. 5.3 the function
k 7→ Str(φk ) ⊎ Str(|φk |).

p-MC(L) ≤para-FO Q: As Q ⊊ ARI[τ ] ×N, there is an (A0,k0) <
Q . Let ((A,φ),k) be an instance of p-MC(L). For k ∈ N let φℓ1 ,
. . . , φℓs be all FO-sentences φℓ with |φℓ | = k. We set red(k) :=
(Str(φ⌢

ℓ1
ℓ⌢1 . . .

⌢ φ⌢
ℓs
ℓs ), S, P) ⊎ (A0 ⊎ Str(k0)) (here x⌢y denotes

the concatenation of the strings x and y), where S (and P) are unary
relations indicating where a substring representing a φℓi (and a
parameter ℓi ) starts. We define the FO-interpretation I such that for
an instance(
(A⊎Str(φ))⊎red(k)

) I :=

{
A ⊎ Str(ℓi ), if φ = φℓi for some ℓi

A0 ⊎ Str(k0), otherwise.

(b) Conversely, let L ⊆ FO[τ ∪ N (∞)] be an infinite decidable set
of sentences. Let (φk )k ∈N be a computable enumeration without
repetitions of this set. Define Q ⊆ ARI[τ ] × N by

(A,k) ∈ Q ⇐⇒ AN (φk ) |= φk .

Assume that Q ⊊ ARI[τ ] × N. Then, by (a) we have

p-MC(L) ≡para-FO Q .
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