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ABSTRACT
We present a development of the theory of higher groups, including

infinity groups and connective spectra, in homotopy type theory.

An infinity group is simply the loops in a pointed, connected type,

where the group structure comes from the structure inherent in the

identity types of Martin-Löf type theory. We investigate ordinary

groups from this viewpoint, as well as higher dimensional groups

and groups that can be delooped more than once. A major result

is the stabilization theorem, which states that if an n-type can be

delooped n + 2 times, then it is an infinite loop type. Most of the

results have been formalized in the Lean proof assistant.
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1 INTRODUCTION
The homotopy hypothesis is the statement that homotopy n-types
(topological spaces with trivial homotopy groups above level n)
correspond to n-groupoids for n ∈ N ∪ {∞} via the fundamen-

tal ∞-groupoid construction. In Grothendieck’s original version

in Pursuing Stacks [13] this was a conjecture about a particular

model of ∞-groupoids. It is also a theorem for many particular

models of∞-groupoids, for example the Kan simplicial sets, but it

is now mostly taken to be a property defining ∞-groupoids up to

equivalence.

In this paper, we investigate the homotopy hypothesis in the

context of homotopy type theory (HoTT). HoTT refers to the ho-

motopical interpretation of Martin-Löf’s dependent type theory
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[2, 27]. In this homotopical interpretation, every type-theoretical

construction corresponds to a homotopy-invariant construction on

spaces.

In HoTT, every type has a path space given by the identity type.

For a pointed type we can construct the loop space, which has the

structure of an ∞-group. Moreover, if the type is truncated, then
we can retreive the usual notion of groups, 2-groups and higher

groups. This allows us to define a higher group internally in the

language of type theory as a type that is the loop space of a pointed

connected type, its delooping.

We also investigate groups that can be delooped more than

once, which gives n-groups with additional coherences. The full

family of groups we consider is in Table 1, which we will explain

in detail in section 3. We prove that the first column of this table

is correct with respect to the usual formalizations of groups and

abelian groups as set-level structures, and we prove the stabilization

theorem justifying the ditto marks in the table. Along the way

we develop some elementary theory of higher groups and actions

thereof.

Our approach is additionally validated by the corresponding

observation in∞-topos theory, where it is a theorem that the ∞-

category of pointed, connected objects in X is equivalent to the

∞-category of higher group objects in X, for any∞-topos X [18,

Lemma 7.2.2.11(1)].

We have formalized most of our results in the HoTT library [9]

of the Lean Theorem Prover [19]. The formalized results can be

found in the file https://github.com/cmu-phil/Spectral/blob/master/

higher_groups.hlean. We will indicate the major formalized results

in this paper by referring to the name in the formalization inside

square brackets. For more information about the formalization, see

section 8.

We are indebted to Michael Shulman for writing a blog post [23]

on classifying spaces from a univalent perspective.

2 PRELIMINARIES
In this paper we will work in the type theory of the HoTT book [26],

although all arguments will also hold in a cubical type theory, such

as [1, 7]. In this section we briefly introduce the concepts we need

for the rest of the paper.

The type theory contains dependent function types (x : A) →
B(x), which are more traditionally denoted as Πx :AB(x) and depen-
dent pair types (x : A) × B(x), which are traditionally denoted as

Σx :AB(x). We choose to use this Agda-inspired notation because

we often deal with deeply nested dependent sum types.

Within a type A we have the identity type or path type =A :

A → A → Type. We have various operations on paths, such as

concatenation p ·q and inversion p−1 of paths. The functorial action

https://doi.org/10.1145/3209108.3209150
https://doi.org/10.1145/3209108.3209150
https://doi.org/10.1145/3209108.3209150
https://github.com/cmu-phil/Spectral/blob/master/higher_groups.hlean
https://github.com/cmu-phil/Spectral/blob/master/higher_groups.hlean
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Table 1: Periodic table of k-tuply groupal n-groupoids.

k \ n 0 1 2 · · · ∞

0 pointed set pointed groupoid pointed 2-groupoid · · · pointed∞-groupoid

1 group 2-group 3-group · · · ∞-group

2 abelian group braided 2-group braided 3-group · · · braided∞-group

3 — ” — symmetric 2-group sylleptic 3-group · · · sylleptic∞-group

4 — ” — — ” — symmetric 3-group · · · ??∞-group

...
...

...
...

. . .
...

ω — ” — — ” — — ” — · · · connective spectrum

of a function f : A → B on a path p : a1 =A a2 is denoted

apf (p) : f (a1) = f (a2). The constant path is denoted 1a : a = a.

When a type A is n-truncated we write istruncn A. Recall that
this is defined by recursion on n : N−2 := Z≥−2:

istrunc−2A := iscontrA := (a : A) ×
(
(x : A) → (a = x)

)
istruncn+1A := (x y : A) → istruncn (x = y)

For any type A we write ∥A∥n for its n-truncation, i.e., ∥A∥n is an

n-truncated type equipped with a map |−|n : A→ ∥A∥n such that

for any n-truncated type B the precomposition map

(∥A∥n → B) → (A→ B)

is an equivalence. Thenwe define beingn-connected as isconnn A :=

iscontr∥A∥n . Properties of truncations and connected maps are es-

tablished in Chapter 7 of [26].

The type of pointed types is Type
pt

:= (A : Type) × (pt : A). The

type of n-truncated types is Type≤n := (A : Type) × istruncn A and

for n-connected types it is Type
>n

:= (A : Type) × isconnn A. We

will combine these notations as needed.

Given A : Type
pt

we define the loop space ΩA := (pt =A pt),

which is pointed with basepoint 1pt. The homotopy groups of A are

defined to be πkA := ∥ΩkA∥0. These are groups in the usual sense

when k ≥ 1, with neutral element |1| and group operation induced

by path concatenation.

Given A,B : Type
pt

the type of pointed maps from A to B is

(A→pt B) := (f : A→ B) × (f (pt) =B pt). Given f : A→pt B we

write f : A→ B for the first projection (i.e. the underlying map)

and f0 : f (pt) = pt for the second projection. The fiber of a pointed
map is defined by fib(f ) := (a : A) × (f (a) =B pt), which is pointed

with basepoint (pt, f0).
In HoTTwe can use higher inductive types to construct Eilenberg-

MacLane spaces K(G,n) [17]. For a group G we define K(G, 1) as
the following HIT.

HIT K(G, 1) :=
• ⋆ : K(G, 1);
• p : G → ⋆ = ⋆;
• q : (д h : G) → p(дh) = p(д) · p(h);
• ϵ : istrunc1 K(G, 1).

(Using the univalent universe Type, other direct definitions are

also possible, for instance, K(G, 1) is equivalent to the type of small

G-torsors.) Let ΣX denote the suspension of X , i.e., the homotopy

pushout of 1← X → 1. For an abelian groupA can now inductively

define K(A,n + 1) := ∥ΣK(A,n)∥n+1. Then we have the following

result [17].

Theorem 2.1. Let G be a group and n ≥ 1, and assume that G
is abelian when n > 1. The space K(G,n) is (n − 1)-connected and
n-truncated and there is a group isomorphism πnK(G,n) ≃ G.

In some of our informal arguments we use the descent theorem

for pushouts,
1
which states that for a commuting cube of types

A11

A10 B11 A01

B10 A00 B01

B00,

(1)

if the bottom square is a pushout and the vertical squares are pull-

backs, then the top square is also a pushout. We will use the follow-

ing slight generalization.

Theorem 2.2. Consider a commuting cube of types as in (1), and
suppose the vertical squares are pullback squares. Then the square

A10 ⊔
A11 A01 A00

B10 ⊔
B11 B01 B00

is a pullback square.

Proof. It suffices to show that the pullback

(B10 ⊔
B11 B01) ×B00

A00

has the universal property of the pushout. This follows by the

descent theorem, since by the pasting lemma for pullbacks we also

1
Recall from [18, §6.1.3], following ideas from Charles Rezk, that we can define the
∞-toposes among locally cartesian closed∞-categories as those whose colimits are

van Kampen, viz., satisfying descent.
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have that the vertical squares in the cube

A11

A10 B11 A01

B10 (B10 ⊔
B11 B01) ×B00

A00 B01

B10 ⊔
B11 B01

are pullback squares. □

In the formalization, arguments using descent are more conve-

niently done via the equivalent principle captured formally as the

flattening lemma [26, §6.12].

3 HIGHER GROUPS
Recall that types in HoTT may be viewed as ∞-groupoids: ele-

ments are objects, paths are morphisms, higher paths are higher

morphisms, etc.

It follows that pointed connected types B may be viewed as higher

groups, with carrier ΩB := (pt =B pt). The neutral element is the

identity path, the group operation is given by path composition,

and higher paths witness the unit and associativity laws. Of course,

these higher paths are themselves subject to further laws, etc., but

the beauty of the type-theoretic definition is that we don’t have

to worry about that: all the (higher) laws follow from the rules of

the identity types. Writing G for the carrier ΩB, it is common to

write BG for the pointed connected type that comes equipped with

an identification G = ΩBG. We call BG the delooping of G, and
we emphasize that it is BG that is the essential datum specifying a

higher group.

Let us write

∞-Group := (G : Type) × (BG : Type
>0
pt
) × (G ≃ ΩBG)

≃ (G : Type
pt
) × (BG : Type

>0
pt
) × (G ≃pt ΩBG)

≃ Type
>0
pt

for the type of higher groups, or ∞-groups. Note that for G :

∞-Group we also have G : Type using the first projection as a

coercion. Using the last definition, this is the loop space map, and

not the usual coercion!

It is of course common practice in mathematics to refer to a

group by the name of its carrier type (a set in ordinary group

theory), and it is a familiar fact that the same set may harbor many

inequivalent group structures. Likewise, a type may have several

different deloopings.

What is perhaps surprising is that even once we fix the H-space

structure on a type A there can still be none or infinitely many

deloopings of A giving rise to the H-space structure. For example,

in classical homotopy theory there are uncountably many loop

space structures on the 3-sphere S3 matching its usual H-space

structure [20].

We recover the ordinary set-level groups by requiring that G
is a 0-type, or equivalently, that BG is a 1-type. This leads us to

introduce

n-Group := (G : Type
<n
pt
) × (BG : Type

>0
pt
) × (G ≃pt ΩBG)

≃ Type
>0,≤n
pt

for the type of groupal (group-like) (n−1)-groupoids, also known as
n-groups. For G : 1-Group a set-level group, we have BG = K(G, 1).

For example, the integers Z as an additive group are from this

perspective represented by their delooping BZ = S1, i.e., the circle.
Of course, double loop spaces are even better behaved than mere

loop spaces (e.g., they are commutative up to homotopy by the

Eckmann-Hilton argument [26, Theorem 2.1.6]). Say a type G is

k-tuply groupal if we have a k-fold delooping, BkG : Type
≥k
pt

, such

that G = ΩkBkG.
Mixing the two directions, let us introduce the type

(n,k)GType := (G : Type
≤n
pt
) × (BkG : Type

≥k
pt
) × (G ≃pt Ω

kBkG)

≃ Type
≥k,≤n+k
pt

[GType_equiv]

for the type of k-tuply groupal n-groupoids.2 (We allow taking n =
∞ in which case the truncation requirement is simply dropped.

[InfGType_equiv]) Note thatn-Group = (n−1, 1)GType. This shift
in indexing is slightly annoying, but we keep it to stay consistent

with the literature.

Since there are forgetful maps

(n,k + 1)GType→ (n,k)GType

given by Bk+1G 7→ ΩBk+1G we can also allow k to be infinite,

k = ω by setting

(n,ω)GType := limk (n,k)GType

≃
(
B−G : (k : N) → Type

≥k,≤n+k
pt

)
×
(
(k : N) → BkG ≃pt ΩB

k+1G
)
.

In section 6 we prove the stabilization theorem (Theorem 6.7), from

which it follows that (n,ω)GType = (n,k)GType for k ≥ n + 2.
When (n,k) = (∞,ω), this is the type of stably groupal∞-groups,

also known as connective spectra. If we also relax the connectivity

requirement, we get the type of all spectra, and we can think of a

spectrum as a kind of∞-groupoid with k-morphisms for all k ∈ Z.
The class of higher groups is summarized in Table 1. We shall

prove the correctness of the n = 0 column in section 5.

4 ELEMENTARY OBSERVATIONS
4.1 Automorphism groups
Automorphism groups form a major class of examples of∞-groups.

Given any typeA and any object a : A, the automorphism group at a
is defined as automorphism group Auta := (a = a). This is indeed an
∞-group, because it is the loop space of the connected component of

A at a, i.e., we define BAuta := im(a : 1→ A) = (x : A)×∥a = x ∥−1.
From this definition it is immediate that Auta = Ω BAuta, so we

see that Auta is indeed an example of an∞-group. Furthermore, if

A is (n + 1)-truncated, then Auta is an (n + 1)-group because Auta
is n-truncated.

2
This is called nTypek in [3], but here we give equal billing to n and k , and we add

the “G” to indicate group-structure.
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Moving across the homotopy hypothesis, for every pointed type

(X ,x) we have the fundamental∞-group of X , Π∞(X ,x) := Autx .
Its (n−1)-truncation (an instance of decategorification, see section 6)
is the fundamental n-group of X , Πn (X ,x), with corresponding

delooping BΠn (X ,x) = ∥BAutx ∥n .
If we take A = Set, we get the usual symmetric groups Sn :=

Aut(Finn), where Finn is a set with n elements. (Note that BSn =
BAut(Finn) is the type of all n-element sets.) We give further con-

structions related to ordinary groups in section 7.

4.2 Homomorphisms and conjugation
A homomorphism between higher groups is any function that can

be suitably delooped. For G,H : (n,k)GType, we define

hom(n,k)(G,H ) := (h : G →pt H ) × (B
kh : BkG →pt B

kH )

× (Ωk (Bkh) ∼pt h)

≃ (Bkh : BkG →pt B
kH ).

For (connective) spectra we need pointed maps between all the

deloopings and pointed homotopies showing they cohere.

Note that if h,k : G → H are homomorphisms between set-level

groups, then h and k are conjugate if Bh,Bk : BG →pt BH are freely
homotopic (i.e., equal as maps BG → BH ).

Also observe that πj (B
kG →pt B

kH ) ≃ ∥BkG →pt Ω
jBkH ∥0 ≃

∥ΣjBkG →pt B
kH ∥0 = 0 for j + k − 1 ≥ n + k , that is, for j > n,

so this suggests that hom(n,k )(G,H ) is n-truncated. (The calcula-
tion verifies this for the identity component.) To prove this, we

need to use an induction using the definition of n-truncated. If
f : hom(n,k )(G,H ), then its self-identity type is equivalent to(
α : (z : BkG) → (f z = f z)

)
×
(
α pt · дpt = fpt

)
. This type is

no longer a type of pointed maps, but rather a type of pointed

sections of a fibration of pointed types.

Definition 4.1. If X : Type
pt

and Y : X → Type
pt
, then we

introduce the type of pointed sections,

(x : X ) →pt Y x :=
(
s : (x : X ) → Y x

)
×
(
s pt = pt

)
.

This type is itself pointed by the trivial section λx , pt.

Theorem 4.2. Let X : Type
≥k
pt

be an (k − 1)-connected, pointed

type for some k ≥ 0, and let Y : X → Type
≤n+k
pt

be a fibration of
(n + k)-truncated, pointed types for some n ≥ −1. Then the type of
pointed sections, (x : X ) →pt Y x , is n-truncated.
[is_trunc_ppi_of_is_conn]

Proof. The proof is by induction on n.
For the base casen = −1 we have to show that the type of pointed

sections is a mere proposition. Since it is pointed, it must in fact

be contractible. The center of contraction is the trivial section s0.
If s is another section, then we get a pointed homotopy from s to
s0 from the elimination principle for pointed, connected types [26,

Lemma 7.5.7], since the types s x = s0 x are (k − 2)-truncated.
To show the result for n + 1, taking the n case as the induction

hypothesis, it suffices to show for any pointed section s that its
self-identity type is n-truncated. But this type is equivalent to (x :

X ) →pt Ω(Y x , s x), which is again a type of pointed sections, and

here we can apply the induction hypothesis. □

Corollary 4.3. Let k ≥ 0 and n ≥ −1. If X is (k − 1)-connected,
and Y is (n + k)-truncated, then the type of pointed maps X →pt Y
is n-truncated. In particular, hom(n,k )(G,H ) is an n-type for G,H :

(n,k)GType.

Corollary 4.4. The type (n,k)GType is (n + 1)-truncated.
[is_trunc_GType]

Proof. This follows immediately from the preceding corollary,

as the type of equivalences G ≃ H is a subtype of the homomor-

phisms from G to H . □

If k ≥ n + 2 (so we’re in the stable range), then hom(n,k)(G,H )
becomes a stably groupal n-groupoid. This generalizes the fact

that the homomorphisms between abelian groups form an abelian

group.

The automorphism groupAutG of a higher groupG : (n,k)GType
is in (n, 1)GType. This is equivalently the automorphism group of

the pointed type BkG . But we can also forget the basepoint and con-

sider the automorphism group Aut
c G of BkG : Type

≥k,≤n+k
. This

now allows for (higher) conjugations. We define the generalized
center of G to be ZG := Ωk

Aut
c G : (n,k + 1)GType (generalizing

the center of a set-level group, see below in subsection 4.4).

4.3 Group actions
In this section we consider a fixed groupG : GType with delooping

BG. An action of G on some object of type A is simply a function

X : BG → A. The object of the action is X (pt) : A, and it can be

convenient to consider evaluation at pt : BG to be a coercion from

actions of type A to A. To equip a : A with a G-action is to give

an action X : BG → A with X (pt) = a. The trivial action is the

constant function at a. Clearly, an action of G on a : A is the same

as a homomorphism G → Auta.
In the case where we take A := Type, we arrive at the notion of

an action X ofG on a type: it is a function X : BG → Type. In other

words, a G-type is a type family over BG. Then a map of G-types
from X to Y is just a function α : (z : BG) → X (z) → Y (z).

If X is a G-type, then we can form the

invariants XhG
:= (z : BG) → X (z), also known as the homotopy

fixed points, and the

coinvariants XhG := (z : BG) × X (z), which is also known as

homotopy orbit space or the homotopy quotient X //G.
It is easy to see that these constructions are respectively the right

and left adjoints of the functor that sends a type X to the trivial G-
action on X , X triv

: BG → Type, which is just the constant family

at X . Indeed, the adjunctions are just the usual argument swap and

(un)currying equivalences, for Y : Type,

hom(Y ,XhG ) = X → (z : BG) → Y (z) ≃ (z : BG) → X → Y (z)

≃ hom(X triv,Y ),

hom(XhG ,Y ) =
(
(z : BG) × X (z)

)
→ Y ≃ (z : BG) → X (z) → Y

≃ hom(X ,Y triv).

If we think of an action X : BG → Type as a type-valued diagram

on BG , this means that the homotopy fixed points and the homotopy

orbit space form the homotopy limit and homotopy colimit of this

diagram, respectively.



Higher Groups in Homotopy Type Theory LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Proposition 4.5. Let f : H → G be a homomorphism of higher
groups with delooping Bf : BH →pt BG, and let α : hom(X ,Y ) be a
map of G-types. By composing with f we can also view X and Y as
H -types, in which case we get a homotopy pullback square:

XhH YhH

XhG YhG .

Proof. The vertical maps are induced by Bf , and the horizontal
maps are induced by α . The homotopy pullback corner type C is

calculated as

C ≃ (z : BG) × (x : X z) × (w : BH ) × (y : Y (Bf w))

× (z = Bf w) × (y = α z x)

≃ (w : BH ) × (x : X (Bf w)) = XhH ,

and under this equivalence the top and the left maps are the canon-

ical ones. □

Every group G carries two canonical actions on itself:

the right action G : BG → Type, G(x) = (pt = x), and the

the adjoint action Gad
: BG → Type, Gad(x) = (x = x) (by

conjugation).

We have 1//G = BG ,G//G = 1 andGad//G = LBG := (S1 → BG),
the free loop space of BG. Recalling that BZ = S1, we see that

Gad = (BZ→ BG), i.e., the conjugacy classes of homomorphisms

from Z to G. Since the integers are the free (higher) group on one

generator, this is just the conjugacy classes of elements of G. But
that is exactly what we should get for the homotopy orbits of G
under the conjugation action.

The above proposition has an interesting corollary:

Corollary 4.6. If f : H → G is a homomorphism of higher
groups, thenG //H is equivalent to the homotopy fiber of the delooping
Bf : BH →pt BG, where H acts on G via the f -induced right action.

Proof. We apply Proposition 4.5 with α : G → 1 being the

canonical map from the right action ofG to the action ofG on the

unit type. Then the square becomes:

G //H BH

1 BG □

By definition, BG classifies principal G-bundles: pullbacks of the
right action of G. That is, a principal G-bundle over a type A is a

family F : A→ Type represented by a map χ : A→ BG such that

F (x) ≃ (pt = χ (x)) for all x : A.
For example, for every higher group G we have the correspond-

ing Hopf fibration ΣG → Type represented by the map χH : ΣG →
BG corresponding under the loop-suspension adjunction to the

identity map onG. (This particular fibration can be defined using

only the induced H-space structure on G.)
This perspective underlies the construction of the first and the

third named author of the real projective spaces in homotopy type

theory [5]. The fiber sequences S0 → Sn → RPn are principal

bundles for the 2-elements group S0 = S2 with delooping BS2 ≃
RP∞, the type of 2-element types.

4.4 Back to the center
We mentioned the generalized center above and claimed that it

generalized the usual notion of the center of a group. Indeed, if

G : 1-Group is a set-level group, then an element ofZG corresponds

to an element of Ω2
BAut

c G, or equivalently, a map from the 2-

sphere S2 to Type sending the basepoint to BG. By the universal

property of S2 as a HIT, this again corresponds to a homotopy from

the identity on BG to itself, c : (z : BG) → z = z. This is precisely
a homotopy fixed point of the adjoint action of G on itself, i.e., a

central element.

4.5 Equivariant homotopy theory
In this section, we would like to clear up a potential source of

confusion about the relationship between the classical subject of

equivariant homotopy theory of spaces with an action of a topolog-

ical groupG and the homotopy type theory of types with the action

of the corresponding object G : GType in the model consisting of

homotopy types (for instance presented as simplicial sets); note

that G might not be definable in HoTT.

Consider the type BG → Type of (small) types with a G-action.
Naively, one might think that this representsG-equivariant homo-

topy types, i.e., sufficiently nice
3
topological spaces with aG-action

considered up to G-equivariant homotopy equivalence. But this is

not so.

By Elmendorf’s theorem [12], this homotopy theory is rather that

of presheaves of (ordinary) homotopy types on the orbit category
OG of G. This is the full subcategory of the category of G-spaces
spanned by the homogeneous spaces G/H , where H ranges over

the closed subgroups of G.
Inside the orbit category we find a copy of the group G, namely

as the endomorphisms of the objectG/1 corresponding to the trivial
subgroup 1. Hence, a G-equivariant homotopy type gives rise to

type with a G-action by restriction along the inclusion BG ↪→ OG .
(Here we consider BG as a (pointed and connected) topological

groupoid on one object.)

As remarked by Shulman [24], when G is a compact Lie group,
then OG is an inverse EI ∞-category, and hence we know how

to model type theory in the presheaf ∞-topos over OG . And in

certain simple cases we can even define this model internally. For

instance, ifG = Z/pZ is a cyclic group of prime order, then a smallG-
equivariant type consists of a type with aG-action,X : BG → Type

together with another type family XG
: XhG → Type, where XG

gives for each homotopy fixed point a type of proofs or “special

reasons” why that point should be considered fixed [24, 7.6]. Hence

the total space of XG
is the type of actual fixed points, and the

projection to XhG
implements the map from actual fixed points to

homotopy fixed points.

Even without going to the orbit category, we can say something

about topological groups through their classifying types in type

theory. For example [6], if f : H → G is injective, then the homo-

topy fiber of Bf is by Corollary 4.6 is the homotopy orbit space

G //H , which in this case is just the coset space G/H , and hence in

3
Sufficiently nice means the G-CW-spaces. The same homotopy category arises by

taking all spaces with a G-action, but then the weak equivalences are the G-maps

f : X → Y that induce weak equivalences on H -fixed point spaces f H : XH → YH

for all closed subgroups H of G .
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type theory represents the homotopy type of this coset space. And

if

1→ K → G → H → 1

is a short exact sequence of topological groups, then BK → BG →
BH is a fibration sequence, i.e., we can recover the delooping BK
of K as the homotopy fiber of the map BG → BH .

4.6 Some elementary constructions
If we are given a homomorphism φ : H → Aut(N ), represented
by a pointed map Bφ : BH →pt BAutpt(BN ) where BAutpt(BN ) is
the type of pointed types merely equivalent to BN , we can build a

new group, the semidirect product, G := H ⋉φ N with classifying

type BG := (z : BH ) × (Bφ z). The type BG is indeed pointed

(by the pair of the basepoint pt in BG and the basepoint in the

pointed type Bφ(pt)), and connected, and hence presents a higher

group G. An element of д is given by a pair of an element h : H
and an identification д · pt = pt in Bφ(pt) ≃pt BN . But since the

action is via pointed maps, the second component is equivalently

an identification pt = pt in BN , i.e., an element of N . Under this

equivalence, the product of (h,n) and (h′,n′) is indeed (h · h′,n ·
φ(h)(n′)).

As a special case we obtain the direct product whenφ is the trivial

action. Here, B(H × N ) ≃ BH × BN .

As another special case we obtain the wreath products N ≀ Sn
of a group N and a symmetric group Sn . Here, Sn acts on the

direct power N Finn
by permuting the factors. Indeed, using the

representation of BSn as the type of n-element types, the map Bφ is

simplyA 7→ (A→ BN ). Hence the delooping of the wreath product
G := N ≀ Sn is just BG := (A : BSn ) × (A→ BN ).

5 SET-LEVEL GROUPS
In this section we give a proof that the n = 0 column of Table 1

is correct. Note that for n = 0 the hom-types hom(0,k )(G,H ) are
sets, which means that (0,k)GType forms a 1-category. Let Group

be the category of ordinary set-level groups (a set with multiplica-

tion, inverse and unit satisfying the group laws) and AbGroup the

category of abelian groups.

Theorem 5.1. We have the following equivalences of categories
(for k ≥ 2):

(0, 1)GType ≃ Group; [cGType_equivalence_Grp]

(0,k)GType ≃ AbGroup. [cGType_equivalence_AbGrp]

Since this theorem has been formalized wewill not give all details

of the proof.

Proof. Let k ≥ 1 and G be a group which is abelian if k > 1

and let X : Type
≥k,≤k
pt

. If we have a group homomorphism φ :

G → ΩkX we get a map ekφ : K(G,k) →pt X . For k = 1 this

follows directly from the induction principle of K(G, 1). For k > 1

we can define the group homomorphism φ̃ as the composite G
φ
−→

ΩkX ≃ Ωk−1(ΩX ), and apply the induction hypothesis to get a

map ek−1φ̃
: K(G,k − 1) →pt ΩX . By the adjunction Σ ⊣ Ω we get a

pointed map ΣK(G,k − 1) →pt X , and by the elimination principle

of the truncation we get a map K(G,k) = ∥ΣK(G,k − 1)∥k →pt X .

We can now show that Ωkekφ is the expected map, that is, the

following diagram commutes, but we omit this proof here.

ΩnK(G,k) G

ΩnX

∼

Ωnekφ φ

Now if φ is a group isomorphism, by Whitehead’s Theorem for

truncated types [26, Theorem 8.8.3] we know that ekφ is an equiv-

alence, since it induces an equivalence on all homotopy groups

(trivially on the levels other than k). We can also show that ekφ is

natural in φ.
Note that if we have a group homomorphism ψ : G → G ′, we

also get a group homomorphismG → ΩkK(G ′,k), and by the above
construction we get a pointed map K(ψ ,k) : K(G,k) →pt K(G

′,k).

This is functorial, which follows from naturality of ekφ .
Finally, we can construct the equivalence explicitly. We have

a functor πk : (0,k)GType → AbGroup which sends G to πkBG.
Conversely, we have the functorK(−,k) : AbGroup→ (0,k)GType.
We have natural isomorphisms πkK(G,k) ≃ G by Theorem 2.1 and

K(πkX ,k) ≃pt X by the application of Whitehead described above.

The construction is exactly the same for k = 1 after replacing

AbGroup by Group. □

6 STABILIZATION
In this sectionwe discuss some constructionswith higher groups [3].

We will give the actions on the carriers and the deloopings, but we

omit the third component, the pointed equivalence, for readability.

We recommend keeping Table 1 in mind during these constructions.

decategorification Decat : (n,k)GType→ (n − 1,k)GType

⟨G,BkG⟩ 7→ ⟨∥G∥n−1, ∥B
kG∥n+k−1⟩

discrete categorification Disc : (n,k)GType→ (n + 1,k)GType

⟨G,BkG⟩ 7→ ⟨G,BkG⟩

These functors make (n,k)GType a reflective sub-(∞, 1)-category
of (n + 1,k)GType. That is, there is an adjunction Decat ⊣ Disc

[Decat_adjoint_Disc]4 such that the counit induces an isomor-

phismDecat◦Disc = id [Decat_Disc]. These properties are straight-
forward consequences of the universal property of truncation.

There are also iterated versions of these functors.

∞-decategorification ∞-Decat : (∞,k)GType→ (n,k)GType
⟨G,BkG⟩ 7→ ⟨∥G∥n , ∥B

kG∥n+k ⟩
discrete∞-categorification ∞-Disc : (n,k)GType→ (∞,k)GType

⟨G,BkG⟩ 7→ ⟨G,BkG⟩

These functors satisfy the same properties: ∞-Decat ⊣ ∞-Disc

[InfDecat_adjoint_InfDisc] such that the counit induces an iso-

morphism∞-Decat ◦ ∞-Disc = id [InfDecat_InfDisc].
For the next constructions, we need the following properties.

Definition 6.1. For A : Type
pt

we define the n-connected cover
of A to be A⟨n⟩ := fib(A → ∥A∥n ). We have the projection p1 :

A⟨n⟩ →pt A.

4
In the formalization the naturality of the adjunction is a separate statement,

[Decat_adjoint_Disc_natural]. This is also true for the other adjunctions.
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Lemma 6.2. The universal property of the n-connected cover states
the following. For any n-connected pointed type B, the pointed map

(B →pt A⟨n⟩) →pt (B →pt A),

given by postcomposition with p1, is an equivalence.
[connect_intro_pequiv]

Proof. Given a map f : B →pt A, we can form a map f̃ : B →
A⟨n⟩. First note that for b : B the type | f b |n =∥A ∥n |pt|n is (n − 1)-
truncated and inhabited for b = pt. Since B is n-connected, the
universal property for connected types shows that we can construct

a qb : | f b |n = |pt|n for all b such that q0 : qb0 ·ap |− |n (f0) = 1. Then

we can define the map f̃ (b) := (f b,qb). Now f̃ is pointed, because

(f0,q0) : (f b0,qb0) = (a0, 1).
Now we show that this is indeed an inverse to the given map. On

the one hand, we need to show that if f : B →pt A, then p1 ◦ f̃ = f .
The underlying functions are equal because they both send b to

f (b). They respect points in the same way, because app1 ( f̃0) = f0.

The proof that the other composite is the identity follows from a

computation using fibers and connectivity, which we omit here,

but can be found in the formalization. □

The next reflective sub-(∞, 1)-category is formed by looping and

delooping.

looping Ω : (n,k)GType→ (n − 1,k + 1)GType

⟨G,BkG⟩ 7→ ⟨ΩG,BkG⟨k⟩⟩
delooping B : (n,k)GType→ (n + 1,k − 1)GType

⟨G,BkG⟩ 7→ ⟨Ωk−1BkG,BkG⟩

We have B ⊣ Ω [Deloop_adjoint_Loop], which follows from

Lemma 6.2 and Ω ◦ B = id [Loop_Deloop], which follows from

the fact that A⟨n⟩ = A if A is n-connected.
The last adjoint pair of functors is given by stabilization and

forgetting. This does not form a reflective sub-(∞, 1)-category.

forgetting F : (n,k)GType→ (n,k − 1)GType

⟨G,BkG⟩ 7→ ⟨G,ΩBkG⟩
stabilization S : (n,k)GType→ (n,k + 1)GType

⟨G,BkG⟩ 7→ ⟨SG, ∥ΣBkG∥n+k+1⟩,

where SG = ∥Ωk+1ΣBkG∥n

Wehave the adjunction S ⊣ F [Stabilize_adjoint_Forget] which
follows from the suspension-loop adjunction Σ ⊣ Ω on pointed

types.

The next main goal in this section is the stabilization theorem,

stating that the ditto marks in Table 1 are justified.

The following corollary is almost [26, Lemma 8.6.2], but proving

this in Book HoTT is a bit tricky. See the formalization for details.

Lemma 6.3 (Wedge connectivity). If A : Type
pt
is n-connected

and B : Type
pt

is m-connected, then the map A ∨ B → A × B is
(n +m)-connected. [is_conn_fun_prod_of_wedge]

Let us mention that there is an alternative way to prove the

wedge connectivity lemma: Recall that if A is n-connected and B is

m-connected, thenA ∗B is (n+m+ 2)-connected [21, Theorem 6.8].

Hence the wedge connectivity lemma is also a direct consequence

of the following lemma.

Lemma 6.4. Let A and B be pointed types. The fiber of the wedge
inclusion A ∨ B → A × B is equivalent to ΩA ∗ ΩB.

Proof. Note that the fiber of A → A × B is ΩB, the fiber of

B → A× B is ΩA, and of course the fiber of 1→ A× B is ΩA× ΩB.
We get a commuting cube

ΩA × ΩB

ΩB 1 ΩA

A 1 B

A × B

in which the vertical squares are pullback squares.

By the descent theorem for pushouts it now follows that ΩA∗ΩB
is the fiber of the wedge inclusion. □

The second main tool we need for the stabilization theorem is:

Theorem 6.5 (Freudenthal). If A : Type
>n
pt

with n ≥ 0, then
the map A→ ΩΣA is 2n-connected.

This is [26, Theorem 8.6.4].

The final building block we need is:

Lemma 6.6. There is a pullback square

ΣΩA A ∨A

A A ×A

εA

∆

for any A : Type
pt
.

Proof. Note that the pullback of ∆ : A → A × A along either

inclusion A→ A ×A is contractible. So we have a cube

ΩA

1 1 1

A A A

A ×A

∆

in which the vertical squares are all pullback squares. Therefore, if

we pull back along the wedge inclusion, we obtain by the descent

theorem for pushouts that the square in the statement is indeed a

pullback square. □

Theorem 6.7 (Stabilization). Ifk ≥ n+2, then S : (n,k)GType→
(n,k + 1)GType is an equivalence, and any G : (n,k)GType is an
infinite loop space. [stabilization]

Proof. We show that F ◦ S = id = S ◦ F : (n,k)GType →
(n,k)GType whenever k ≥ n + 2.

For the first, the unit map of the adjunction factors as

BkG → ΩΣBkG → Ω∥ΣBkG∥n+k+1

where the first map is 2k − 2-connected by Freudenthal, and the

second map is n+k-connected. Since the domain is n+k-truncated,
the composite is an equivalence whenever 2k − 2 ≥ n + k .



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Ulrik Buchholtz, Floris van Doorn, and Egbert Rijke

For the second, the counit map of the adjunction factors as

∥ΣΩBkG∥n+k → ∥B
kG∥n+k → BkG,

where the second map is an equivalence. By the two lemmas above,

the first map is 2k − 2-connected. □

For example, for G : (0, 2)GType an abelian group, we have

BnG = K(G,n), an Eilenberg-MacLane space.

The adjunction S ⊣ F implies that the free group on a pointed set

X is Ω∥ΣX ∥1 = π1(ΣX ). If X has decidable equality, ΣX is already

1-truncated. It is an open problem whether this is true in general.

Also, the abelianization of a set-level group G : 1-Group is

π2(ΣBG). If G : (n,k)GType is in the stable range (k ≥ n + 2),

then SFG = G.

7 PERSPECTIVES ON ORDINARY GROUP
THEORY

In this section we shall indicate how the theory of higher groups

can yield a new perspective even on ordinary group theory.

From the symmetric groups Sn , we can get other finite groups

using the constructions of subsection 4.6. Other groups can be

constructed more directly. For example, BAn , the classifying type
of the alternating group, can be taken to be the type of n-element

sets X equipped with a sign ordering: this is an equivalence class

of an ordering Finn ≃ X modulo even permutations. Indeed, there

are only two possible sign orderings, so this definition corresponds

to first considering the short exact sequence

1→ An → Sn
sgn

−−−→ S2 → 1

where the last map is the sign map, then realizing the sign map as

given by the map Bsgn : BSn → BS2 that takes an n-element set to

its set of sign orderings, and finally letting BAn be the homotopy

fiber of Bsgn.

Similarly, BCn , the classifying type of the cyclic group on n
elements, can be taken to be the type of n-elements setsX equipped

with a cyclic ordering: an equivalence class of an ordering Finn ≃ X
modulo cyclic permutations. But unlike the above, where we had

the coincidence that Aut(S2) ≃ S2, this doesn’t correspond to a

short exact sequence. Rather, it corresponds to a sequence

1→ Cn → Sn → Aut(Fin(n − 1)) ≃ S(n−1)!

where the delooping of the last map is the map from BSn to BS(n−1)!
that maps an n-element set to the set of cyclic orderings, of which

there are (n − 1)! many – since once we fix the position in the

ordering of a particular element, we are free to permute the rest.

As another example, consider the map p : BS4 →pt BS3 that

maps a 4-element setX to its set of 2-by-2 partitions, of which there

3. Using this construction, we can realize some famous semidirect

and wreath product identities, such as A4 ≃ S2
2
⋊A3, S4 ≃ S2

2
⋊ S3,

and, for the octahedral group, Oh ≃ S3
2
⋊ S3 ≃ S2 ≀ S3.

Let us turn to a different way of getting new groups from old,

namely via covering space theory.

7.1 1-groups and covering spaces
The connection between covering spaces of a pointed connected

type X and sets with an action of the fundamental group of X has

already been established in homotopy type theory [15]. Let us recall

this connection and expand a bit upon it.

For us, a pointed connected type X is equivalently an∞-group

G : ∞-Group with delooping BG := X . A covering space over BG is

simply a type familyC : BG → Set that lands in the universe of sets.

Hence by our discussion of actions in subsection 4.3 it is precisely

a set with a G-action. Since Set is a 1-type, C extends uniquely to a

type family C ′ : ∥BG∥1 → Set, but ∥BG∥1 is the delooping of the

fundamental group of X , and hence C ′ is the uniquely determined

choice of a set with an action of the fundamental group.

The universal covering space is the simply connected cover of

BG,

B̃G : BG → Set, z 7→ ∥pt = z∥0.

Note that the total space of B̃G is indeed the 1-connected cover

BG⟨1⟩, since ∥pt =BG pt∥0 ≃ (|pt| =∥BG ∥1 |pt|). Also note that ifG
is already a 1-group, then this is just the right action of G on itself,

and in general, it is the right action ofG on the fundamental group

(i.e., the decategorification ofG) via the truncation homomorphism

from G to π1(BG), where we can also view π1(BG) as the 1-Group
decategorification of G.

In general, there is a Galois correspondence between connected

covers of BG and conjugacy classes of subgroups of the fundamental

group. Indeed, if C : BG → Set has a connected total space, then

the space (д : ∥BG∥1) ×C
′(д) is itself a connected, 1-truncated type,

and the projection to ∥BG∥1 induced an inclusion of fundamental

groups once a point pt : C ′(pt) has been chosen.

Theorem 7.1 (Fundamental theorem of Galois theory for

covering spaces).

(1) The automorphism group of the universal covering space B̃G
is isomorphic to the 1-group decategorification of G,

Aut(B̃G) ≃ Decat1(G) ≃ π1(BG).

(2) Furthermore, there is a contravariant correspondence between
conjugacy classes of subgroups of Decat1(G) and connected
covers of BG.

(3) This lifts to a Galois correspondence between subgroups of
Decat1(G) and pointed, connected covers of BG. The normal
subgroups correspond to Galois covers.

Note that the universal covering space and the trivial covering

space (constant at the unit type) are canonically pointed, reflecting

the fact that the two trivial subgroups are normal.

The first part of the fundamental theorem has a clear generaliza-

tion to higher groups:

Theorem 7.2 (Fundamental theorem of Galois theory for

n-covers, part one). The automorphism group of the universal
n-type coverUn (BG),

Un (BG) : BG → Type
≤n , z 7→ ∥pt = z∥n

of BG is isomorphic to the (n + 1)-group decategorification of G,

Aut(Un (BG)) ≃ Decatn+1(G) ≃ Πn+1(BG).

Proof. Note that BAut(Un (BG)) is the image of the map 1 →

(BG → Type
≤n ) that sends the canonical element toUn (BG). Since

BG is connected, this image is exactly ∥BG∥n+1 by [21, Theorem 7.1].

Then we are done, since BΠn+1(BG) ≃ ∥BG∥n+1, by definition. □
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It is possible to use the other parts of Theorem 7.1 in order

to define the notions of “subgroup” and normal “subgroup” for n-
groups, which then become structure on rather than a property of a

homomorphism f : K → G. Since any map is an inclusion up to

homotopy, we refrain from using the word “subgroup”. Instead, we

say that a normal structure on f is a delooping B(G //K) of the type
G // K together with a map Bq : BG →pt B(G // K) giving rise to a

fiber sequence

G // K → BK
Bf
−−→ BG

Bq
−−→ B(G // K). (2)

7.2 Central extensions and group cohomology
The cohomology of a higher group G is simply the cohomology of

its delooping BG. Indeed, for any spectrum A, we define

Hk
Grp
(G,A) := ∥BG →pt B

kA∥0.

Of course, to define the k’th cohomology group, we only need the

k-fold delooping BkA.
IfA : (∞, 2)GType is a braided∞-group, thenwe have the second

cohomology group H2

Grp
(G,A), and an element c : BG →pt B

2A

gives rise to a central extension

BA→ BH → BG
c
−→ B2A,

where BH is the homotopy fiber of c . This lifts to the world of

higher groups the usual result that isomorphism classes of central

extensions of a 1-group G by an abelian 1-group A are given by

cohomology classes in H2

Grp
(G,A).

In the Spectral repository there is full formalization of the Serre

spectral sequence for cohomology [8]. If we have any normal sub-

group fiber sequence for ∞-groups as in (2), then we get a corre-

sponding spectral sequence with E2-page

H
p
Grp
(G // K ,H

q
Grp
(K ,A))

and converging toHn
Grp
(G,A), whereA is any truncated, connective

spectrum, which could even be a left G-module, in which case we

reproduce the Hochschild-Serre spectral sequence.

8 FORMALIZATION
We have formalized many results of this paper. We use the proof

assistant Lean 2
5
. This is an older version of the proof assistant

Lean
6
(version 3.3 as of January 2018). We use the old version, since

the newer version doesn’t officially support HoTT, although there

is an experimental library for HoTT
7
, but that doesn’t have as much

theory as the library in Lean 2.

The Lean 2 HoTT library is divided into two parts, the core

library
8
and the formalization of spectral sequences

9
. We worked

in the latter, so that we could use the results from that repository,

such as theorems about Eilenberg-MacLane spaces and pointed

maps. All results in this paper are stated in one file
10
, although for

many results the main parts of the proof is elsewhere (in Emacs,

click on a name and press M-. to find a definition).

5
https://github.com/leanprover/lean2

6
https://leanprover.github.io/

7
https://github.com/gebner/hott3

8
https://github.com/leanprover/lean2/blob/master/hott/hott.md

9
https://github.com/cmu-phil/Spectral

10
https://github.com/cmu-phil/Spectral/blob/master/higher_groups.hlean

To build the file, install Lean 2 via the instructions from that

repository, and then download the Spectral repository and compile

it (you can use the command path/to/lean2/bin/linja on the

command-line to compile the library you’re in). The Spectral repos-

itory contains some unproven results, marked by sorry. These are
however not related to the results discussed in this paper, and you

can write print axioms theoremname in a file to verify that sorry
isn’t used in the proofs.

9 CONCLUSION
We have presented a theory and formalization of higher groups in

HoTT, and we have proved that for set-level structures we recover

the well-known objects: groups and abelian groups. A possible

next step would be to do the same for the 1-type objects. The cor-

responding algebraic objects have a long history. Strict 2-groups

predate category theory as they originate in Whitehead’s study of

crossed modules [28]. The theory of weak 2-groups was begun by

Grothendieck’s student Hoàng Xuân Sính [25] and further devel-

oped in [4]. It should be possible to prove within HoTT that weak

2-groups and crossed modules are equivalent to 2-groups in our

sense, when we use the respective, correct notions of equivalence.

Symmetric 2-groups are by the stabilization theorem the same

as 1-truncated symmetric spectra. These are described more simply

than arbitrary crossed modules as Picard groupoids. This is part of
the stable homotopy hypothesis [14, 16]. It should also be possible

to develop the theory of Picard groupoids in HoTT, and thus prove

the corresponding stable homotopy hypothesis.

Higher groups have been intensively studied in homotopy theory,

in particular after p-completion for p a prime. A p-compact group is

an Fp -local∞-group whose carrier is Fp -finite, see [10]. They are

good homotopical analogues of Lie groups, and they interact nicely

with compact Lie groups, for instance:

Theorem 9.1 ([11]). Let P be a p-toral group, and let G be a com-
pact Lie group. Then ∥BP →pt BG∥0 is isomorphic to the conjugacy
classes of homomorphisms from P to G.

Higher groups also play a particularly prominent role in the

development of quantum field theory in cohesive homotopy type

theory [22]. In cohesive type theory we can actually capture the

topological or smooth structure of groups and their classifying

types, and hence develop Lie theory properly, including the higher

group generalization thereof. All of our results only use the core

part of HoTT, and hence they remain valid also in cohesive HoTT.

Note that we have crucially used a trick to study higher groups in

HoTT, namely that these can be represented by pointed, connected

types. The alternative would have been to define them as group-like

algebras for the little k-cubes operad Ek . But this requires exactly
the kind of infinitary tower of coherence conditions that we don’t

yet know how to define in HoTT. (Or whether it is even possible.)

Thus, while we have the type of higher groups, we do not have the

type of higher monoids (general Ek -algebras). Thus their theory,
and the corresponding stabilization theorem, is currently beyond

the reach of HoTT.
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